Drew Short
9 years ago
8 changed files with 862 additions and 910 deletions
-
2Cargo.toml
-
24src/cache.rs
-
484src/hash.rs
-
61src/hash/ahash.rs
-
62src/hash/dhash.rs
-
197src/hash/mod.rs
-
219src/hash/phash.rs
-
373src/lib.rs
@ -1,484 +0,0 @@ |
|||
// Copyright 2015 Drew Short <drew@sothr.com>.
|
|||
//
|
|||
// Licensed under the MIT license<LICENSE-MIT or http://opensource.org/licenses/MIT>.
|
|||
// This file may not be copied, modified, or distributed except according to those terms.
|
|||
|
|||
use std::path::Path;
|
|||
use std::f64;
|
|||
use super::image;
|
|||
use super::image::{GenericImage, Pixel, FilterType};
|
|||
use super::dft;
|
|||
use super::dft::Transform;
|
|||
use cache::Cache;
|
|||
|
|||
// Used to get ranges for the precision of rounding floats
|
|||
// Can round to 1 significant factor of precision
|
|||
const FLOAT_PRECISION_MAX_1: f64 = f64::MAX / 10_f64;
|
|||
const FLOAT_PRECISION_MIN_1: f64 = f64::MIN / 10_f64;
|
|||
// Can round to 2 significant factors of precision
|
|||
const FLOAT_PRECISION_MAX_2: f64 = f64::MAX / 100_f64;
|
|||
const FLOAT_PRECISION_MIN_2: f64 = f64::MIN / 100_f64;
|
|||
// Can round to 3 significant factors of precision
|
|||
const FLOAT_PRECISION_MAX_3: f64 = f64::MAX / 1000_f64;
|
|||
const FLOAT_PRECISION_MIN_3: f64 = f64::MIN / 1000_f64;
|
|||
// Can round to 4 significant factors of precision
|
|||
const FLOAT_PRECISION_MAX_4: f64 = f64::MAX / 10000_f64;
|
|||
const FLOAT_PRECISION_MIN_4: f64 = f64::MIN / 10000_f64;
|
|||
// Can round to 5 significant factors of precision
|
|||
const FLOAT_PRECISION_MAX_5: f64 = f64::MAX / 100000_f64;
|
|||
const FLOAT_PRECISION_MIN_5: f64 = f64::MIN / 100000_f64;
|
|||
|
|||
/**
|
|||
* Prepared image that can be used to generate hashes
|
|||
*/
|
|||
pub struct PreparedImage<'a> {
|
|||
orig_path: &'a str,
|
|||
image: image::ImageBuffer<image::Luma<u8>, Vec<u8>>,
|
|||
cache: &'a Cache<'a>,
|
|||
}
|
|||
|
|||
/**
|
|||
* Wraps the various perceptual hashes
|
|||
*/
|
|||
pub struct PerceptualHashes<'a> {
|
|||
pub orig_path: &'a str,
|
|||
pub ahash: u64,
|
|||
pub dhash: u64,
|
|||
pub phash: u64,
|
|||
}
|
|||
|
|||
/**
|
|||
* All the supported precision types
|
|||
*
|
|||
* Low aims for 32 bit precision
|
|||
* Medium aims for 64 bit precision
|
|||
* High aims for 128 bit precision
|
|||
*/
|
|||
#[allow(dead_code)]
|
|||
pub enum Precision {
|
|||
Low,
|
|||
Medium,
|
|||
High,
|
|||
}
|
|||
|
|||
// Get the size of the required image
|
|||
//
|
|||
impl Precision {
|
|||
fn get_size(&self) -> u32 {
|
|||
match *self {
|
|||
Precision::Low => 4,
|
|||
Precision::Medium => 8,
|
|||
Precision::High => 16,
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
/**
|
|||
* Types of hashes supported
|
|||
*/
|
|||
pub enum HashType {
|
|||
Ahash,
|
|||
Dhash,
|
|||
Phash,
|
|||
}
|
|||
|
|||
/**
|
|||
* Resonsible for parsing a path, converting an image and package it to be
|
|||
* hashed.
|
|||
*
|
|||
* # Arguments
|
|||
*
|
|||
* * 'path' - The path to the image requested to be hashed
|
|||
* * 'size' - The size that the image should be resize to, in the form of size x size
|
|||
*
|
|||
* # Returns
|
|||
*
|
|||
* A PreparedImage struct with the required information for performing hashing
|
|||
*
|
|||
*/
|
|||
pub fn prepare_image<'a>(path: &'a Path,
|
|||
hash_type: &HashType,
|
|||
precision: &Precision,
|
|||
cache: &'a Cache<'a>)
|
|||
-> PreparedImage<'a> {
|
|||
let image_path = path.to_str().unwrap();
|
|||
let size: u32 = match *hash_type {
|
|||
HashType::Phash => precision.get_size() * 4,
|
|||
_ => precision.get_size(),
|
|||
};
|
|||
// Check if we have the already converted image in a cache and use that if possible.
|
|||
match cache.get_image_from_cache(&path, size) {
|
|||
Some(image) => {
|
|||
PreparedImage {
|
|||
orig_path: &*image_path,
|
|||
image: image,
|
|||
cache: &cache
|
|||
}
|
|||
}
|
|||
None => {
|
|||
// Otherwise let's do that work now and store it.
|
|||
let image = image::open(path).unwrap();
|
|||
let small_image = image.resize_exact(size, size, FilterType::Lanczos3);
|
|||
let grey_image = small_image.to_luma();
|
|||
match cache.put_image_in_cache(&path, size, &grey_image) {
|
|||
Ok(_) => {}
|
|||
Err(e) => println!("Unable to store image in cache. {}", e),
|
|||
};
|
|||
PreparedImage {
|
|||
orig_path: &*image_path,
|
|||
image: grey_image,
|
|||
cache: &cache,
|
|||
}
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
/**
|
|||
* Get all perceptual hashes for an image
|
|||
*/
|
|||
pub fn get_perceptual_hashes<'a>(path: &'a Path, precision: &Precision, cache: &Cache) -> PerceptualHashes<'a> {
|
|||
let image_path = path.to_str().unwrap();
|
|||
let ahash = AHash::new(&path, &precision, &cache).get_hash();
|
|||
let dhash = DHash::new(&path, &precision, &cache).get_hash();
|
|||
let phash = PHash::new(&path, &precision, &cache).get_hash();
|
|||
PerceptualHashes {
|
|||
orig_path: &*image_path,
|
|||
ahash: ahash,
|
|||
dhash: dhash,
|
|||
phash: phash,
|
|||
}
|
|||
}
|
|||
|
|||
/**
|
|||
* Calculate the number of bits different between two hashes
|
|||
* Add to the PerceptualHashTrait
|
|||
*/
|
|||
pub fn calculate_hamming_distance(hash1: u64, hash2: u64) -> u64 {
|
|||
// The binary xor of the two hashes should give us a number representing
|
|||
// the differences between the two hashes. All that's left is to count
|
|||
// the number of 1's in the difference to determine the hamming distance
|
|||
let bin_diff = hash1 ^ hash2;
|
|||
let bin_diff_str = format!("{:b}", bin_diff);
|
|||
let mut hamming = 0u64;
|
|||
for bit in bin_diff_str.chars() {
|
|||
match bit {
|
|||
'1' => hamming += 1,
|
|||
_ => continue,
|
|||
}
|
|||
}
|
|||
hamming
|
|||
}
|
|||
|
|||
pub trait PerceptualHash {
|
|||
fn get_hash(&self) -> u64;
|
|||
}
|
|||
|
|||
pub struct AHash<'a> {
|
|||
prepared_image: Box<PreparedImage<'a>>,
|
|||
}
|
|||
|
|||
impl<'a> AHash<'a> {
|
|||
pub fn new(path: &'a Path, precision: &Precision, cache: &'a Cache) -> Self {
|
|||
AHash { prepared_image: Box::new(prepare_image(&path, &HashType::Ahash, &precision, &cache)) }
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a> PerceptualHash for AHash<'a> {
|
|||
/**
|
|||
* Calculate the ahash of the provided prepared image.
|
|||
*
|
|||
* # Returns
|
|||
*
|
|||
* A u64 representing the value of the hash
|
|||
*/
|
|||
fn get_hash(&self) -> u64 {
|
|||
let (width, height) = self.prepared_image.image.dimensions();
|
|||
|
|||
// calculating the average pixel value
|
|||
let mut total = 0u64;
|
|||
for pixel in self.prepared_image.image.pixels() {
|
|||
let channels = pixel.channels();
|
|||
// println!("Pixel is: {}", channels[0]);
|
|||
total += channels[0] as u64;
|
|||
}
|
|||
let mean = total / (width * height) as u64;
|
|||
// println!("Mean for {} is {}", prepared_image.orig_path, mean);
|
|||
|
|||
// Calculating a hash based on the mean
|
|||
let mut hash = 0u64;
|
|||
for pixel in self.prepared_image.image.pixels() {
|
|||
let channels = pixel.channels();
|
|||
let pixel_sum = channels[0] as u64;
|
|||
if pixel_sum >= mean {
|
|||
hash |= 1;
|
|||
// println!("Pixel {} is >= {} therefore {:b}", pixel_sum, mean, hash);
|
|||
} else {
|
|||
hash |= 0;
|
|||
// println!("Pixel {} is < {} therefore {:b}", pixel_sum, mean, hash);
|
|||
}
|
|||
hash <<= 1;
|
|||
}
|
|||
// println!("Hash for {} is {}", prepared_image.orig_path, hash);
|
|||
|
|||
hash
|
|||
}
|
|||
}
|
|||
|
|||
pub struct DHash<'a> {
|
|||
prepared_image: Box<PreparedImage<'a>>,
|
|||
}
|
|||
|
|||
impl<'a> DHash<'a> {
|
|||
pub fn new(path: &'a Path, precision: &Precision, cache: &'a Cache) -> Self {
|
|||
DHash { prepared_image: Box::new(prepare_image(&path, &HashType::Dhash, &precision, &cache)) }
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a> PerceptualHash for DHash<'a> {
|
|||
/**
|
|||
* Calculate the dhash of the provided prepared image
|
|||
*
|
|||
* # Return
|
|||
*
|
|||
* Returns a u64 representing the value of the hash
|
|||
*/
|
|||
fn get_hash(&self) -> u64 {
|
|||
// Stored for later
|
|||
let first_pixel_val = self.prepared_image.image.pixels().nth(0).unwrap().channels()[0];
|
|||
let last_pixel_val = self.prepared_image.image.pixels().last().unwrap().channels()[0];
|
|||
|
|||
// Calculate the dhash
|
|||
let mut previous_pixel_val = 0u64;
|
|||
let mut hash = 0u64;
|
|||
for (index, pixel) in self.prepared_image.image.pixels().enumerate() {
|
|||
if index == 0 {
|
|||
previous_pixel_val = pixel.channels()[0] as u64;
|
|||
continue;
|
|||
}
|
|||
let channels = pixel.channels();
|
|||
let pixel_val = channels[0] as u64;
|
|||
if pixel_val >= previous_pixel_val {
|
|||
hash |= 1;
|
|||
} else {
|
|||
hash |= 0;
|
|||
}
|
|||
hash <<= 1;
|
|||
previous_pixel_val = channels[0] as u64;
|
|||
}
|
|||
|
|||
if first_pixel_val >= last_pixel_val {
|
|||
hash |= 1;
|
|||
} else {
|
|||
hash |= 0;
|
|||
}
|
|||
|
|||
hash
|
|||
}
|
|||
}
|
|||
|
|||
pub struct PHash<'a> {
|
|||
prepared_image: Box<PreparedImage<'a>>,
|
|||
}
|
|||
|
|||
impl<'a> PHash<'a> {
|
|||
pub fn new(path: &'a Path, precision: &Precision, cache: &'a Cache) -> Self {
|
|||
PHash { prepared_image: Box::new(prepare_image(&path, &HashType::Phash, &precision, &cache)) }
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a> PerceptualHash for PHash<'a> {
|
|||
/**
|
|||
* Calculate the phash of the provided prepared image
|
|||
*
|
|||
* # Return
|
|||
*
|
|||
* Returns a u64 representing the value of the hash
|
|||
*/
|
|||
fn get_hash(&self) -> u64 {
|
|||
// Get the image data into a vector to perform the DFT on.
|
|||
let width = self.prepared_image.image.width() as usize;
|
|||
let height = self.prepared_image.image.height() as usize;
|
|||
|
|||
// Get 2d data to 2d FFT/DFT
|
|||
// Either from the cache or calculate it
|
|||
// Pretty fast already, so caching doesn't make a huge difference
|
|||
// Atleast compared to opening and processing the images
|
|||
let mut data_matrix: Vec<Vec<f64>> = Vec::new();
|
|||
match self.prepared_image.cache.get_matrix_from_cache(&Path::new(self.prepared_image.orig_path),
|
|||
width as u32) {
|
|||
Some(matrix) => data_matrix = matrix,
|
|||
None => {
|
|||
// Preparing the results
|
|||
for x in 0..width {
|
|||
data_matrix.push(Vec::new());
|
|||
for y in 0..height {
|
|||
let pos_x = x as u32;
|
|||
let pos_y = y as u32;
|
|||
data_matrix[x]
|
|||
.push(self.prepared_image
|
|||
.image
|
|||
.get_pixel(pos_x, pos_y)
|
|||
.channels()[0] as f64);
|
|||
}
|
|||
}
|
|||
|
|||
// Perform the 2D DFT operation on our matrix
|
|||
calculate_2d_dft(&mut data_matrix);
|
|||
// Store this DFT in the cache
|
|||
match self.prepared_image.cache.put_matrix_in_cache(&Path::new(self.prepared_image.orig_path),
|
|||
width as u32,
|
|||
&data_matrix) {
|
|||
Ok(_) => {}
|
|||
Err(e) => println!("Unable to store matrix in cache. {}", e),
|
|||
};
|
|||
}
|
|||
}
|
|||
|
|||
// Only need the top left quadrant
|
|||
let target_width = (width / 4) as usize;
|
|||
let target_height = (height / 4) as usize;
|
|||
let dft_width = (width / 4) as f64;
|
|||
let dft_height = (height / 4) as f64;
|
|||
|
|||
// Calculate the mean
|
|||
let mut total = 0f64;
|
|||
for x in 0..target_width {
|
|||
for y in 0..target_height {
|
|||
total += data_matrix[x][y];
|
|||
}
|
|||
}
|
|||
let mean = total / (dft_width * dft_height);
|
|||
|
|||
// Calculating a hash based on the mean
|
|||
let mut hash = 0u64;
|
|||
for x in 0..target_width {
|
|||
// println!("Mean: {} Values: {:?}",mean,data_matrix[x]);
|
|||
for y in 0..target_height {
|
|||
if data_matrix[x][y] >= mean {
|
|||
hash |= 1;
|
|||
// println!("Pixel {} is >= {} therefore {:b}", pixel_sum, mean, hash);
|
|||
} else {
|
|||
hash |= 0;
|
|||
// println!("Pixel {} is < {} therefore {:b}", pixel_sum, mean, hash);
|
|||
}
|
|||
hash <<= 1;
|
|||
}
|
|||
}
|
|||
// println!("Hash for {} is {}", prepared_image.orig_path, hash);
|
|||
hash
|
|||
}
|
|||
}
|
|||
|
|||
// Use a 1D DFT to cacluate the 2D DFT.
|
|||
//
|
|||
// This is achieved by calculating the DFT for each row, then calculating the
|
|||
// DFT for each column of DFT row data. This means that a 32x32 image with have
|
|||
// 1024 1D DFT operations performed on it. (Slightly caclulation intensive)
|
|||
//
|
|||
// This operation is in place on the data in the provided vector
|
|||
//
|
|||
// Inspired by:
|
|||
// http://www.inf.ufsc.br/~visao/khoros/html-dip/c5/s2/front-page.html
|
|||
//
|
|||
// Checked with:
|
|||
// http://calculator.vhex.net/post/calculator-result/2d-discrete-fourier-transform
|
|||
//
|
|||
fn calculate_2d_dft(data_matrix: &mut Vec<Vec<f64>>) {
|
|||
// println!("{:?}", data_matrix);
|
|||
let width = data_matrix.len();
|
|||
let height = data_matrix[0].len();
|
|||
|
|||
let mut complex_data_matrix = Vec::with_capacity(width);
|
|||
|
|||
// Perform DCT on the columns of data
|
|||
for x in 0..width {
|
|||
let mut column: Vec<f64> = Vec::with_capacity(height);
|
|||
for y in 0..height {
|
|||
column.push(data_matrix[x][y]);
|
|||
}
|
|||
|
|||
// Perform the DCT on this column
|
|||
// println!("column[{}] before: {:?}", x, column);
|
|||
let forward_plan = dft::Plan::new(dft::Operation::Forward, column.len());
|
|||
column.transform(&forward_plan);
|
|||
let complex_column = dft::unpack(&column);
|
|||
// println!("column[{}] after: {:?}", x, complex_column);
|
|||
complex_data_matrix.push(complex_column);
|
|||
}
|
|||
|
|||
// Perform DCT on the rows of data
|
|||
for y in 0..height {
|
|||
let mut row = Vec::with_capacity(width);
|
|||
for x in 0..width {
|
|||
row.push(complex_data_matrix[x][y]);
|
|||
}
|
|||
// Perform DCT on the row
|
|||
// println!("row[{}] before: {:?}", y, row);
|
|||
let forward_plan = dft::Plan::new(dft::Operation::Forward, row.len());
|
|||
row.transform(&forward_plan);
|
|||
// println!("row[{}] after: {:?}", y, row);
|
|||
|
|||
// Put the row values back
|
|||
for x in 0..width {
|
|||
data_matrix[x][y] = round_float(row[x].re);
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
fn round_float(f: f64) -> f64 {
|
|||
if f >= FLOAT_PRECISION_MAX_1 || f <= FLOAT_PRECISION_MIN_1 {
|
|||
f
|
|||
} else if f >= FLOAT_PRECISION_MAX_2 || f <= FLOAT_PRECISION_MIN_2 {
|
|||
(f * 10_f64).round() / 10_f64
|
|||
} else if f >= FLOAT_PRECISION_MAX_3 || f <= FLOAT_PRECISION_MIN_3 {
|
|||
(f * 100_f64).round() / 100_f64
|
|||
} else if f >= FLOAT_PRECISION_MAX_4 || f <= FLOAT_PRECISION_MIN_4 {
|
|||
(f * 1000_f64).round() / 1000_f64
|
|||
} else if f >= FLOAT_PRECISION_MAX_5 || f <= FLOAT_PRECISION_MIN_5 {
|
|||
(f * 10000_f64).round() / 10000_f64
|
|||
} else {
|
|||
(f * 100000_f64).round() / 100000_f64
|
|||
}
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_2d_dft() {
|
|||
let mut test_matrix: Vec<Vec<f64>> = Vec::new();
|
|||
test_matrix.push(vec![1f64, 1f64, 1f64, 3f64]);
|
|||
test_matrix.push(vec![1f64, 2f64, 2f64, 1f64]);
|
|||
test_matrix.push(vec![1f64, 2f64, 2f64, 1f64]);
|
|||
test_matrix.push(vec![3f64, 1f64, 1f64, 1f64]);
|
|||
|
|||
println!("{:?}", test_matrix[0]);
|
|||
println!("{:?}", test_matrix[1]);
|
|||
println!("{:?}", test_matrix[2]);
|
|||
println!("{:?}", test_matrix[3]);
|
|||
|
|||
println!("Performing 2d DFT");
|
|||
calculate_2d_dft(&mut test_matrix);
|
|||
|
|||
println!("{:?}", test_matrix[0]);
|
|||
println!("{:?}", test_matrix[1]);
|
|||
println!("{:?}", test_matrix[2]);
|
|||
println!("{:?}", test_matrix[3]);
|
|||
|
|||
assert!(test_matrix[0][0] == 24_f64);
|
|||
assert!(test_matrix[0][1] == 0_f64);
|
|||
assert!(test_matrix[0][2] == 0_f64);
|
|||
assert!(test_matrix[0][3] == 0_f64);
|
|||
|
|||
assert!(test_matrix[1][0] == 0_f64);
|
|||
assert!(test_matrix[1][1] == 0_f64);
|
|||
assert!(test_matrix[1][2] == -2_f64);
|
|||
assert!(test_matrix[1][3] == 2_f64);
|
|||
|
|||
assert!(test_matrix[2][0] == 0_f64);
|
|||
assert!(test_matrix[2][1] == -2_f64);
|
|||
assert!(test_matrix[2][2] == -4_f64);
|
|||
assert!(test_matrix[2][3] == -2_f64);
|
|||
|
|||
assert!(test_matrix[3][0] == 0_f64);
|
|||
assert!(test_matrix[3][1] == 2_f64);
|
|||
assert!(test_matrix[3][2] == -2_f64);
|
|||
assert!(test_matrix[3][3] == 0_f64);
|
|||
}
|
@ -0,0 +1,61 @@ |
|||
// Copyright 2016 Drew Short <drew@sothr.com>.
|
|||
//
|
|||
// Licensed under the MIT license<LICENSE-MIT or http://opensource.org/licenses/MIT>.
|
|||
// This file may not be copied, modified, or distributed except according to those terms.
|
|||
|
|||
use super::{HashType, PerceptualHash, Precision, PreparedImage};
|
|||
use super::prepare_image;
|
|||
use super::image::{GenericImage, Pixel};
|
|||
use std::path::Path;
|
|||
use cache::Cache;
|
|||
|
|||
pub struct AHash<'a> {
|
|||
prepared_image: Box<PreparedImage<'a>>,
|
|||
}
|
|||
|
|||
impl<'a> AHash<'a> {
|
|||
pub fn new(path: &'a Path, precision: &Precision, cache: &'a Cache) -> Self {
|
|||
AHash { prepared_image: Box::new(prepare_image(&path, &HashType::AHash, &precision, &cache)) }
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a> PerceptualHash for AHash<'a> {
|
|||
/**
|
|||
* Calculate the ahash of the provided prepared image.
|
|||
*
|
|||
* # Returns
|
|||
*
|
|||
* A u64 representing the value of the hash
|
|||
*/
|
|||
fn get_hash(&self) -> u64 {
|
|||
let (width, height) = self.prepared_image.image.dimensions();
|
|||
|
|||
// calculating the average pixel value
|
|||
let mut total = 0u64;
|
|||
for pixel in self.prepared_image.image.pixels() {
|
|||
let channels = pixel.channels();
|
|||
// println!("Pixel is: {}", channels[0]);
|
|||
total += channels[0] as u64;
|
|||
}
|
|||
let mean = total / (width * height) as u64;
|
|||
// println!("Mean for {} is {}", prepared_image.orig_path, mean);
|
|||
|
|||
// Calculating a hash based on the mean
|
|||
let mut hash = 0u64;
|
|||
for pixel in self.prepared_image.image.pixels() {
|
|||
let channels = pixel.channels();
|
|||
let pixel_sum = channels[0] as u64;
|
|||
if pixel_sum >= mean {
|
|||
hash |= 1;
|
|||
// println!("Pixel {} is >= {} therefore {:b}", pixel_sum, mean, hash);
|
|||
} else {
|
|||
hash |= 0;
|
|||
// println!("Pixel {} is < {} therefore {:b}", pixel_sum, mean, hash);
|
|||
}
|
|||
hash <<= 1;
|
|||
}
|
|||
// println!("Hash for {} is {}", prepared_image.orig_path, hash);
|
|||
|
|||
hash
|
|||
}
|
|||
}
|
@ -0,0 +1,62 @@ |
|||
// Copyright 2016 Drew Short <drew@sothr.com>.
|
|||
//
|
|||
// Licensed under the MIT license<LICENSE-MIT or http://opensource.org/licenses/MIT>.
|
|||
// This file may not be copied, modified, or distributed except according to those terms.
|
|||
|
|||
use super::{HashType, PerceptualHash, Precision, PreparedImage};
|
|||
use super::prepare_image;
|
|||
use super::image::{GenericImage, Pixel};
|
|||
use std::path::Path;
|
|||
use cache::Cache;
|
|||
|
|||
pub struct DHash<'a> {
|
|||
prepared_image: Box<PreparedImage<'a>>,
|
|||
}
|
|||
|
|||
impl<'a> DHash<'a> {
|
|||
pub fn new(path: &'a Path, precision: &Precision, cache: &'a Cache) -> Self {
|
|||
DHash { prepared_image: Box::new(prepare_image(&path, &HashType::DHash, &precision, &cache)) }
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a> PerceptualHash for DHash<'a> {
|
|||
/**
|
|||
* Calculate the dhash of the provided prepared image
|
|||
*
|
|||
* # Return
|
|||
*
|
|||
* Returns a u64 representing the value of the hash
|
|||
*/
|
|||
fn get_hash(&self) -> u64 {
|
|||
// Stored for later
|
|||
let first_pixel_val = self.prepared_image.image.pixels().nth(0).unwrap().channels()[0];
|
|||
let last_pixel_val = self.prepared_image.image.pixels().last().unwrap().channels()[0];
|
|||
|
|||
// Calculate the dhash
|
|||
let mut previous_pixel_val = 0u64;
|
|||
let mut hash = 0u64;
|
|||
for (index, pixel) in self.prepared_image.image.pixels().enumerate() {
|
|||
if index == 0 {
|
|||
previous_pixel_val = pixel.channels()[0] as u64;
|
|||
continue;
|
|||
}
|
|||
let channels = pixel.channels();
|
|||
let pixel_val = channels[0] as u64;
|
|||
if pixel_val >= previous_pixel_val {
|
|||
hash |= 1;
|
|||
} else {
|
|||
hash |= 0;
|
|||
}
|
|||
hash <<= 1;
|
|||
previous_pixel_val = channels[0] as u64;
|
|||
}
|
|||
|
|||
if first_pixel_val >= last_pixel_val {
|
|||
hash |= 1;
|
|||
} else {
|
|||
hash |= 0;
|
|||
}
|
|||
|
|||
hash
|
|||
}
|
|||
}
|
@ -0,0 +1,197 @@ |
|||
// Copyright 2016 Drew Short <drew@sothr.com>.
|
|||
//
|
|||
// Licensed under the MIT license<LICENSE-MIT or http://opensource.org/licenses/MIT>.
|
|||
// This file may not be copied, modified, or distributed except according to those terms.
|
|||
|
|||
extern crate dft;
|
|||
extern crate image;
|
|||
|
|||
mod ahash;
|
|||
mod dhash;
|
|||
mod phash;
|
|||
|
|||
use std::path::Path;
|
|||
use std::f64;
|
|||
use self::image::{Pixel, FilterType};
|
|||
use cache::Cache;
|
|||
|
|||
// Constants //
|
|||
|
|||
// Used to get ranges for the precision of rounding floats
|
|||
// Can round to 1 significant factor of precision
|
|||
const FLOAT_PRECISION_MAX_1: f64 = f64::MAX / 10_f64;
|
|||
const FLOAT_PRECISION_MIN_1: f64 = f64::MIN / 10_f64;
|
|||
// Can round to 2 significant factors of precision
|
|||
const FLOAT_PRECISION_MAX_2: f64 = f64::MAX / 100_f64;
|
|||
const FLOAT_PRECISION_MIN_2: f64 = f64::MIN / 100_f64;
|
|||
// Can round to 3 significant factors of precision
|
|||
const FLOAT_PRECISION_MAX_3: f64 = f64::MAX / 1000_f64;
|
|||
const FLOAT_PRECISION_MIN_3: f64 = f64::MIN / 1000_f64;
|
|||
// Can round to 4 significant factors of precision
|
|||
const FLOAT_PRECISION_MAX_4: f64 = f64::MAX / 10000_f64;
|
|||
const FLOAT_PRECISION_MIN_4: f64 = f64::MIN / 10000_f64;
|
|||
// Can round to 5 significant factors of precision
|
|||
const FLOAT_PRECISION_MAX_5: f64 = f64::MAX / 100000_f64;
|
|||
const FLOAT_PRECISION_MIN_5: f64 = f64::MIN / 100000_f64;
|
|||
|
|||
// Structs/Enums //
|
|||
|
|||
/**
|
|||
* Prepared image that can be used to generate hashes
|
|||
*/
|
|||
pub struct PreparedImage<'a> {
|
|||
orig_path: &'a str,
|
|||
image: image::ImageBuffer<image::Luma<u8>, Vec<u8>>,
|
|||
cache: &'a Cache<'a>,
|
|||
}
|
|||
|
|||
/**
|
|||
* Wraps the various perceptual hashes
|
|||
*/
|
|||
pub struct PerceptualHashes<'a> {
|
|||
pub orig_path: &'a str,
|
|||
pub ahash: u64,
|
|||
pub dhash: u64,
|
|||
pub phash: u64,
|
|||
}
|
|||
|
|||
/**
|
|||
* All the supported precision types
|
|||
*
|
|||
* Low aims for 32 bit precision
|
|||
* Medium aims for 64 bit precision
|
|||
* High aims for 128 bit precision
|
|||
*/
|
|||
#[allow(dead_code)]
|
|||
pub enum Precision {
|
|||
Low,
|
|||
Medium,
|
|||
High,
|
|||
}
|
|||
|
|||
// Get the size of the required image
|
|||
//
|
|||
impl Precision {
|
|||
fn get_size(&self) -> u32 {
|
|||
match *self {
|
|||
Precision::Low => 4,
|
|||
Precision::Medium => 8,
|
|||
Precision::High => 16,
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
/**
|
|||
* Types of hashes supported
|
|||
*/
|
|||
pub enum HashType {
|
|||
AHash,
|
|||
DHash,
|
|||
PHash,
|
|||
}
|
|||
|
|||
// Traits //
|
|||
|
|||
pub trait PerceptualHash {
|
|||
fn get_hash(&self) -> u64;
|
|||
}
|
|||
|
|||
// Functions //
|
|||
|
|||
/**
|
|||
* Resonsible for parsing a path, converting an image and package it to be
|
|||
* hashed.
|
|||
*
|
|||
* # Arguments
|
|||
*
|
|||
* * 'path' - The path to the image requested to be hashed
|
|||
* * 'size' - The size that the image should be resize to, in the form of size x size
|
|||
*
|
|||
* # Returns
|
|||
*
|
|||
* A PreparedImage struct with the required information for performing hashing
|
|||
*
|
|||
*/
|
|||
pub fn prepare_image<'a>(path: &'a Path,
|
|||
hash_type: &HashType,
|
|||
precision: &Precision,
|
|||
cache: &'a Cache<'a>)
|
|||
-> PreparedImage<'a> {
|
|||
let image_path = path.to_str().unwrap();
|
|||
let size: u32 = match *hash_type {
|
|||
HashType::PHash => precision.get_size() * 4,
|
|||
_ => precision.get_size(),
|
|||
};
|
|||
// Check if we have the already converted image in a cache and use that if possible.
|
|||
match cache.get_image_from_cache(&path, size) {
|
|||
Some(image) => {
|
|||
PreparedImage {
|
|||
orig_path: &*image_path,
|
|||
image: image,
|
|||
cache: &cache
|
|||
}
|
|||
}
|
|||
None => {
|
|||
// Otherwise let's do that work now and store it.
|
|||
let image = image::open(path).unwrap();
|
|||
let small_image = image.resize_exact(size, size, FilterType::Lanczos3);
|
|||
let grey_image = small_image.to_luma();
|
|||
match cache.put_image_in_cache(&path, size, &grey_image) {
|
|||
Ok(_) => {}
|
|||
Err(e) => println!("Unable to store image in cache. {}", e),
|
|||
};
|
|||
PreparedImage {
|
|||
orig_path: &*image_path,
|
|||
image: grey_image,
|
|||
cache: &cache,
|
|||
}
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
/**
|
|||
* Get a specific HashType hash
|
|||
*/
|
|||
pub fn get_perceptual_hash<'a>(path: &'a Path, precision: &Precision, hash_type: &HashType, cache: &Cache) -> u64 {
|
|||
match *hash_type {
|
|||
HashType::AHash => ahash::AHash::new(&path, &precision, &cache).get_hash(),
|
|||
HashType::DHash => dhash::DHash::new(&path, &precision, &cache).get_hash(),
|
|||
HashType::PHash => phash::PHash::new(&path, &precision, &cache).get_hash()
|
|||
}
|
|||
}
|
|||
|
|||
/**
|
|||
* Get all perceptual hashes for an image
|
|||
*/
|
|||
pub fn get_perceptual_hashes<'a>(path: &'a Path, precision: &Precision, cache: &Cache) -> PerceptualHashes<'a> {
|
|||
let image_path = path.to_str().unwrap();
|
|||
let ahash = ahash::AHash::new(&path, &precision, &cache).get_hash();
|
|||
let dhash = dhash::DHash::new(&path, &precision, &cache).get_hash();
|
|||
let phash = phash::PHash::new(&path, &precision, &cache).get_hash();
|
|||
PerceptualHashes {
|
|||
orig_path: &*image_path,
|
|||
ahash: ahash,
|
|||
dhash: dhash,
|
|||
phash: phash,
|
|||
}
|
|||
}
|
|||
|
|||
/**
|
|||
* Calculate the number of bits different between two hashes
|
|||
* Add to the PerceptualHashTrait
|
|||
*/
|
|||
pub fn calculate_hamming_distance(hash1: u64, hash2: u64) -> u64 {
|
|||
// The binary xor of the two hashes should give us a number representing
|
|||
// the differences between the two hashes. All that's left is to count
|
|||
// the number of 1's in the difference to determine the hamming distance
|
|||
let bin_diff = hash1 ^ hash2;
|
|||
let bin_diff_str = format!("{:b}", bin_diff);
|
|||
let mut hamming = 0u64;
|
|||
for bit in bin_diff_str.chars() {
|
|||
match bit {
|
|||
'1' => hamming += 1,
|
|||
_ => continue,
|
|||
}
|
|||
}
|
|||
hamming
|
|||
}
|
@ -0,0 +1,219 @@ |
|||
// Copyright 2016 Drew Short <drew@sothr.com>.
|
|||
//
|
|||
// Licensed under the MIT license<LICENSE-MIT or http://opensource.org/licenses/MIT>.
|
|||
// This file may not be copied, modified, or distributed except according to those terms.
|
|||
|
|||
use super::dft;
|
|||
use super::dft::Transform;
|
|||
use super::{HashType, PerceptualHash, Precision, PreparedImage};
|
|||
use super::prepare_image;
|
|||
use super::image::{GenericImage, Pixel};
|
|||
use std::path::Path;
|
|||
use cache::Cache;
|
|||
|
|||
pub struct PHash<'a> {
|
|||
prepared_image: Box<PreparedImage<'a>>,
|
|||
}
|
|||
|
|||
impl<'a> PHash<'a> {
|
|||
pub fn new(path: &'a Path, precision: &Precision, cache: &'a Cache) -> Self {
|
|||
PHash { prepared_image: Box::new(prepare_image(&path, &HashType::PHash, &precision, &cache)) }
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a> PerceptualHash for PHash<'a> {
|
|||
/**
|
|||
* Calculate the phash of the provided prepared image
|
|||
*
|
|||
* # Return
|
|||
*
|
|||
* Returns a u64 representing the value of the hash
|
|||
*/
|
|||
fn get_hash(&self) -> u64 {
|
|||
// Get the image data into a vector to perform the DFT on.
|
|||
let width = self.prepared_image.image.width() as usize;
|
|||
let height = self.prepared_image.image.height() as usize;
|
|||
|
|||
// Get 2d data to 2d FFT/DFT
|
|||
// Either from the cache or calculate it
|
|||
// Pretty fast already, so caching doesn't make a huge difference
|
|||
// Atleast compared to opening and processing the images
|
|||
let mut data_matrix: Vec<Vec<f64>> = Vec::new();
|
|||
match self.prepared_image.cache.get_matrix_from_cache(&Path::new(self.prepared_image.orig_path),
|
|||
width as u32) {
|
|||
Some(matrix) => data_matrix = matrix,
|
|||
None => {
|
|||
// Preparing the results
|
|||
for x in 0..width {
|
|||
data_matrix.push(Vec::new());
|
|||
for y in 0..height {
|
|||
let pos_x = x as u32;
|
|||
let pos_y = y as u32;
|
|||
data_matrix[x]
|
|||
.push(self.prepared_image
|
|||
.image
|
|||
.get_pixel(pos_x, pos_y)
|
|||
.channels()[0] as f64);
|
|||
}
|
|||
}
|
|||
|
|||
// Perform the 2D DFT operation on our matrix
|
|||
calculate_2d_dft(&mut data_matrix);
|
|||
// Store this DFT in the cache
|
|||
match self.prepared_image.cache.put_matrix_in_cache(&Path::new(self.prepared_image.orig_path),
|
|||
width as u32,
|
|||
&data_matrix) {
|
|||
Ok(_) => {}
|
|||
Err(e) => println!("Unable to store matrix in cache. {}", e),
|
|||
};
|
|||
}
|
|||
}
|
|||
|
|||
// Only need the top left quadrant
|
|||
let target_width = (width / 4) as usize;
|
|||
let target_height = (height / 4) as usize;
|
|||
let dft_width = (width / 4) as f64;
|
|||
let dft_height = (height / 4) as f64;
|
|||
|
|||
// Calculate the mean
|
|||
let mut total = 0f64;
|
|||
for x in 0..target_width {
|
|||
for y in 0..target_height {
|
|||
total += data_matrix[x][y];
|
|||
}
|
|||
}
|
|||
let mean = total / (dft_width * dft_height);
|
|||
|
|||
// Calculating a hash based on the mean
|
|||
let mut hash = 0u64;
|
|||
for x in 0..target_width {
|
|||
// println!("Mean: {} Values: {:?}",mean,data_matrix[x]);
|
|||
for y in 0..target_height {
|
|||
if data_matrix[x][y] >= mean {
|
|||
hash |= 1;
|
|||
// println!("Pixel {} is >= {} therefore {:b}", pixel_sum, mean, hash);
|
|||
} else {
|
|||
hash |= 0;
|
|||
// println!("Pixel {} is < {} therefore {:b}", pixel_sum, mean, hash);
|
|||
}
|
|||
hash <<= 1;
|
|||
}
|
|||
}
|
|||
// println!("Hash for {} is {}", prepared_image.orig_path, hash);
|
|||
hash
|
|||
}
|
|||
}
|
|||
|
|||
// Use a 1D DFT to cacluate the 2D DFT.
|
|||
//
|
|||
// This is achieved by calculating the DFT for each row, then calculating the
|
|||
// DFT for each column of DFT row data. This means that a 32x32 image with have
|
|||
// 1024 1D DFT operations performed on it. (Slightly caclulation intensive)
|
|||
//
|
|||
// This operation is in place on the data in the provided vector
|
|||
//
|
|||
// Inspired by:
|
|||
// http://www.inf.ufsc.br/~visao/khoros/html-dip/c5/s2/front-page.html
|
|||
//
|
|||
// Checked with:
|
|||
// http://calculator.vhex.net/post/calculator-result/2d-discrete-fourier-transform
|
|||
//
|
|||
fn calculate_2d_dft(data_matrix: &mut Vec<Vec<f64>>) {
|
|||
// println!("{:?}", data_matrix);
|
|||
let width = data_matrix.len();
|
|||
let height = data_matrix[0].len();
|
|||
|
|||
let mut complex_data_matrix = Vec::with_capacity(width);
|
|||
|
|||
// Perform DCT on the columns of data
|
|||
for x in 0..width {
|
|||
let mut column: Vec<f64> = Vec::with_capacity(height);
|
|||
for y in 0..height {
|
|||
column.push(data_matrix[x][y]);
|
|||
}
|
|||
|
|||
// Perform the DCT on this column
|
|||
// println!("column[{}] before: {:?}", x, column);
|
|||
let forward_plan = dft::Plan::new(dft::Operation::Forward, column.len());
|
|||
column.transform(&forward_plan);
|
|||
let complex_column = dft::unpack(&column);
|
|||
// println!("column[{}] after: {:?}", x, complex_column);
|
|||
complex_data_matrix.push(complex_column);
|
|||
}
|
|||
|
|||
// Perform DCT on the rows of data
|
|||
for y in 0..height {
|
|||
let mut row = Vec::with_capacity(width);
|
|||
for x in 0..width {
|
|||
row.push(complex_data_matrix[x][y]);
|
|||
}
|
|||
// Perform DCT on the row
|
|||
// println!("row[{}] before: {:?}", y, row);
|
|||
let forward_plan = dft::Plan::new(dft::Operation::Forward, row.len());
|
|||
row.transform(&forward_plan);
|
|||
// println!("row[{}] after: {:?}", y, row);
|
|||
|
|||
// Put the row values back
|
|||
for x in 0..width {
|
|||
data_matrix[x][y] = round_float(row[x].re);
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
fn round_float(f: f64) -> f64 {
|
|||
if f >= super::FLOAT_PRECISION_MAX_1 || f <= super::FLOAT_PRECISION_MIN_1 {
|
|||
f
|
|||
} else if f >= super::FLOAT_PRECISION_MAX_2 || f <= super::FLOAT_PRECISION_MIN_2 {
|
|||
(f * 10_f64).round() / 10_f64
|
|||
} else if f >= super::FLOAT_PRECISION_MAX_3 || f <= super::FLOAT_PRECISION_MIN_3 {
|
|||
(f * 100_f64).round() / 100_f64
|
|||
} else if f >= super::FLOAT_PRECISION_MAX_4 || f <= super::FLOAT_PRECISION_MIN_4 {
|
|||
(f * 1000_f64).round() / 1000_f64
|
|||
} else if f >= super::FLOAT_PRECISION_MAX_5 || f <= super::FLOAT_PRECISION_MIN_5 {
|
|||
(f * 10000_f64).round() / 10000_f64
|
|||
} else {
|
|||
(f * 100000_f64).round() / 100000_f64
|
|||
}
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_2d_dft() {
|
|||
let mut test_matrix: Vec<Vec<f64>> = Vec::new();
|
|||
test_matrix.push(vec![1f64, 1f64, 1f64, 3f64]);
|
|||
test_matrix.push(vec![1f64, 2f64, 2f64, 1f64]);
|
|||
test_matrix.push(vec![1f64, 2f64, 2f64, 1f64]);
|
|||
test_matrix.push(vec![3f64, 1f64, 1f64, 1f64]);
|
|||
|
|||
println!("{:?}", test_matrix[0]);
|
|||
println!("{:?}", test_matrix[1]);
|
|||
println!("{:?}", test_matrix[2]);
|
|||
println!("{:?}", test_matrix[3]);
|
|||
|
|||
println!("Performing 2d DFT");
|
|||
calculate_2d_dft(&mut test_matrix);
|
|||
|
|||
println!("{:?}", test_matrix[0]);
|
|||
println!("{:?}", test_matrix[1]);
|
|||
println!("{:?}", test_matrix[2]);
|
|||
println!("{:?}", test_matrix[3]);
|
|||
|
|||
assert!(test_matrix[0][0] == 24_f64);
|
|||
assert!(test_matrix[0][1] == 0_f64);
|
|||
assert!(test_matrix[0][2] == 0_f64);
|
|||
assert!(test_matrix[0][3] == 0_f64);
|
|||
|
|||
assert!(test_matrix[1][0] == 0_f64);
|
|||
assert!(test_matrix[1][1] == 0_f64);
|
|||
assert!(test_matrix[1][2] == -2_f64);
|
|||
assert!(test_matrix[1][3] == 2_f64);
|
|||
|
|||
assert!(test_matrix[2][0] == 0_f64);
|
|||
assert!(test_matrix[2][1] == -2_f64);
|
|||
assert!(test_matrix[2][2] == -4_f64);
|
|||
assert!(test_matrix[2][3] == -2_f64);
|
|||
|
|||
assert!(test_matrix[3][0] == 0_f64);
|
|||
assert!(test_matrix[3][1] == 2_f64);
|
|||
assert!(test_matrix[3][2] == -2_f64);
|
|||
assert!(test_matrix[3][3] == 0_f64);
|
|||
}
|
Write
Preview
Loading…
Cancel
Save
Reference in new issue