2 changed files with 401 additions and 4 deletions
@ -0,0 +1,362 @@ |
|||||
|
package s3api |
||||
|
|
||||
|
import ( |
||||
|
"bytes" |
||||
|
"crypto/aes" |
||||
|
"crypto/cipher" |
||||
|
"crypto/rand" |
||||
|
"encoding/json" |
||||
|
"io" |
||||
|
"testing" |
||||
|
|
||||
|
"github.com/seaweedfs/seaweedfs/weed/pb/filer_pb" |
||||
|
) |
||||
|
|
||||
|
// TestSSEKMSChunkMetadataAssignment tests that SSE-KMS creates per-chunk metadata
|
||||
|
// with correct ChunkOffset values for each chunk (matching the fix in putToFiler)
|
||||
|
func TestSSEKMSChunkMetadataAssignment(t *testing.T) { |
||||
|
kmsKey := SetupTestKMS(t) |
||||
|
defer kmsKey.Cleanup() |
||||
|
|
||||
|
// Generate SSE-KMS key by encrypting test data (this gives us a real SSEKMSKey)
|
||||
|
encryptionContext := BuildEncryptionContext("test-bucket", "test-object", false) |
||||
|
testData := "Test data for SSE-KMS chunk metadata validation" |
||||
|
encryptedReader, sseKMSKey, err := CreateSSEKMSEncryptedReader(bytes.NewReader([]byte(testData)), kmsKey.KeyID, encryptionContext) |
||||
|
if err != nil { |
||||
|
t.Fatalf("Failed to create encrypted reader: %v", err) |
||||
|
} |
||||
|
// Read to complete encryption setup
|
||||
|
io.ReadAll(encryptedReader) |
||||
|
|
||||
|
// Serialize the base metadata (what putToFiler receives before chunking)
|
||||
|
baseMetadata, err := SerializeSSEKMSMetadata(sseKMSKey) |
||||
|
if err != nil { |
||||
|
t.Fatalf("Failed to serialize base SSE-KMS metadata: %v", err) |
||||
|
} |
||||
|
|
||||
|
// Simulate multi-chunk upload scenario (what putToFiler does after UploadReaderInChunks)
|
||||
|
simulatedChunks := []*filer_pb.FileChunk{ |
||||
|
{FileId: "chunk1", Offset: 0, Size: 8 * 1024 * 1024}, // 8MB chunk at offset 0
|
||||
|
{FileId: "chunk2", Offset: 8 * 1024 * 1024, Size: 8 * 1024 * 1024}, // 8MB chunk at offset 8MB
|
||||
|
{FileId: "chunk3", Offset: 16 * 1024 * 1024, Size: 4 * 1024 * 1024}, // 4MB chunk at offset 16MB
|
||||
|
} |
||||
|
|
||||
|
// THIS IS THE CRITICAL FIX: Create per-chunk metadata (lines 421-443 in putToFiler)
|
||||
|
for _, chunk := range simulatedChunks { |
||||
|
chunk.SseType = filer_pb.SSEType_SSE_KMS |
||||
|
|
||||
|
// Create a copy of the SSE-KMS key with chunk-specific offset
|
||||
|
chunkSSEKey := &SSEKMSKey{ |
||||
|
KeyID: sseKMSKey.KeyID, |
||||
|
EncryptedDataKey: sseKMSKey.EncryptedDataKey, |
||||
|
EncryptionContext: sseKMSKey.EncryptionContext, |
||||
|
BucketKeyEnabled: sseKMSKey.BucketKeyEnabled, |
||||
|
IV: sseKMSKey.IV, |
||||
|
ChunkOffset: chunk.Offset, // Set chunk-specific offset
|
||||
|
} |
||||
|
|
||||
|
// Serialize per-chunk metadata
|
||||
|
chunkMetadata, serErr := SerializeSSEKMSMetadata(chunkSSEKey) |
||||
|
if serErr != nil { |
||||
|
t.Fatalf("Failed to serialize SSE-KMS metadata for chunk at offset %d: %v", chunk.Offset, serErr) |
||||
|
} |
||||
|
chunk.SseMetadata = chunkMetadata |
||||
|
} |
||||
|
|
||||
|
// VERIFICATION 1: Each chunk should have different metadata (due to different ChunkOffset)
|
||||
|
metadataSet := make(map[string]bool) |
||||
|
for i, chunk := range simulatedChunks { |
||||
|
metadataStr := string(chunk.SseMetadata) |
||||
|
if metadataSet[metadataStr] { |
||||
|
t.Errorf("Chunk %d has duplicate metadata (should be unique per chunk)", i) |
||||
|
} |
||||
|
metadataSet[metadataStr] = true |
||||
|
|
||||
|
// Deserialize and verify ChunkOffset
|
||||
|
var metadata SSEKMSMetadata |
||||
|
if err := json.Unmarshal(chunk.SseMetadata, &metadata); err != nil { |
||||
|
t.Fatalf("Failed to deserialize chunk %d metadata: %v", i, err) |
||||
|
} |
||||
|
|
||||
|
expectedOffset := chunk.Offset |
||||
|
if metadata.PartOffset != expectedOffset { |
||||
|
t.Errorf("Chunk %d: expected PartOffset=%d, got %d", i, expectedOffset, metadata.PartOffset) |
||||
|
} |
||||
|
|
||||
|
t.Logf("✓ Chunk %d: PartOffset=%d (correct)", i, metadata.PartOffset) |
||||
|
} |
||||
|
|
||||
|
// VERIFICATION 2: Verify metadata can be deserialized and has correct ChunkOffset
|
||||
|
for i, chunk := range simulatedChunks { |
||||
|
// Deserialize chunk metadata
|
||||
|
deserializedKey, err := DeserializeSSEKMSMetadata(chunk.SseMetadata) |
||||
|
if err != nil { |
||||
|
t.Fatalf("Failed to deserialize chunk %d metadata: %v", i, err) |
||||
|
} |
||||
|
|
||||
|
// Verify the deserialized key has correct ChunkOffset
|
||||
|
if deserializedKey.ChunkOffset != chunk.Offset { |
||||
|
t.Errorf("Chunk %d: deserialized ChunkOffset=%d, expected %d", |
||||
|
i, deserializedKey.ChunkOffset, chunk.Offset) |
||||
|
} |
||||
|
|
||||
|
// Verify IV is set (should be inherited from base)
|
||||
|
if len(deserializedKey.IV) != aes.BlockSize { |
||||
|
t.Errorf("Chunk %d: invalid IV length: %d", i, len(deserializedKey.IV)) |
||||
|
} |
||||
|
|
||||
|
// Verify KeyID matches
|
||||
|
if deserializedKey.KeyID != sseKMSKey.KeyID { |
||||
|
t.Errorf("Chunk %d: KeyID mismatch", i) |
||||
|
} |
||||
|
|
||||
|
t.Logf("✓ Chunk %d: metadata deserialized successfully (ChunkOffset=%d, KeyID=%s)", |
||||
|
i, deserializedKey.ChunkOffset, deserializedKey.KeyID) |
||||
|
} |
||||
|
|
||||
|
// VERIFICATION 3: Ensure base metadata is NOT reused (the bug we're preventing)
|
||||
|
var baseMetadataStruct SSEKMSMetadata |
||||
|
if err := json.Unmarshal(baseMetadata, &baseMetadataStruct); err != nil { |
||||
|
t.Fatalf("Failed to deserialize base metadata: %v", err) |
||||
|
} |
||||
|
|
||||
|
// Base metadata should have ChunkOffset=0
|
||||
|
if baseMetadataStruct.PartOffset != 0 { |
||||
|
t.Errorf("Base metadata should have PartOffset=0, got %d", baseMetadataStruct.PartOffset) |
||||
|
} |
||||
|
|
||||
|
// Chunks 2 and 3 should NOT have the same metadata as base (proving we're not reusing)
|
||||
|
for i := 1; i < len(simulatedChunks); i++ { |
||||
|
if bytes.Equal(simulatedChunks[i].SseMetadata, baseMetadata) { |
||||
|
t.Errorf("CRITICAL BUG: Chunk %d reuses base metadata (should have per-chunk metadata)", i) |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
t.Log("✓ All chunks have unique per-chunk metadata (bug prevented)") |
||||
|
} |
||||
|
|
||||
|
// TestSSES3ChunkMetadataAssignment tests that SSE-S3 creates per-chunk metadata
|
||||
|
// with offset-adjusted IVs for each chunk (matching the fix in putToFiler)
|
||||
|
func TestSSES3ChunkMetadataAssignment(t *testing.T) { |
||||
|
// Initialize global SSE-S3 key manager
|
||||
|
globalSSES3KeyManager = NewSSES3KeyManager() |
||||
|
defer func() { |
||||
|
globalSSES3KeyManager = NewSSES3KeyManager() |
||||
|
}() |
||||
|
|
||||
|
keyManager := GetSSES3KeyManager() |
||||
|
keyManager.superKey = make([]byte, 32) |
||||
|
rand.Read(keyManager.superKey) |
||||
|
|
||||
|
// Generate SSE-S3 key
|
||||
|
sseS3Key, err := GenerateSSES3Key() |
||||
|
if err != nil { |
||||
|
t.Fatalf("Failed to generate SSE-S3 key: %v", err) |
||||
|
} |
||||
|
|
||||
|
// Generate base IV
|
||||
|
baseIV := make([]byte, aes.BlockSize) |
||||
|
rand.Read(baseIV) |
||||
|
sseS3Key.IV = baseIV |
||||
|
|
||||
|
// Serialize base metadata (what putToFiler receives)
|
||||
|
baseMetadata, err := SerializeSSES3Metadata(sseS3Key) |
||||
|
if err != nil { |
||||
|
t.Fatalf("Failed to serialize base SSE-S3 metadata: %v", err) |
||||
|
} |
||||
|
|
||||
|
// Simulate multi-chunk upload scenario (what putToFiler does after UploadReaderInChunks)
|
||||
|
simulatedChunks := []*filer_pb.FileChunk{ |
||||
|
{FileId: "chunk1", Offset: 0, Size: 8 * 1024 * 1024}, // 8MB chunk at offset 0
|
||||
|
{FileId: "chunk2", Offset: 8 * 1024 * 1024, Size: 8 * 1024 * 1024}, // 8MB chunk at offset 8MB
|
||||
|
{FileId: "chunk3", Offset: 16 * 1024 * 1024, Size: 4 * 1024 * 1024}, // 4MB chunk at offset 16MB
|
||||
|
} |
||||
|
|
||||
|
// THIS IS THE CRITICAL FIX: Create per-chunk metadata (lines 444-468 in putToFiler)
|
||||
|
for _, chunk := range simulatedChunks { |
||||
|
chunk.SseType = filer_pb.SSEType_SSE_S3 |
||||
|
|
||||
|
// Calculate chunk-specific IV using base IV and chunk offset
|
||||
|
chunkIV, _ := calculateIVWithOffset(sseS3Key.IV, chunk.Offset) |
||||
|
|
||||
|
// Create a copy of the SSE-S3 key with chunk-specific IV
|
||||
|
chunkSSEKey := &SSES3Key{ |
||||
|
Key: sseS3Key.Key, |
||||
|
KeyID: sseS3Key.KeyID, |
||||
|
Algorithm: sseS3Key.Algorithm, |
||||
|
IV: chunkIV, // Use chunk-specific IV
|
||||
|
} |
||||
|
|
||||
|
// Serialize per-chunk metadata
|
||||
|
chunkMetadata, serErr := SerializeSSES3Metadata(chunkSSEKey) |
||||
|
if serErr != nil { |
||||
|
t.Fatalf("Failed to serialize SSE-S3 metadata for chunk at offset %d: %v", chunk.Offset, serErr) |
||||
|
} |
||||
|
chunk.SseMetadata = chunkMetadata |
||||
|
} |
||||
|
|
||||
|
// VERIFICATION 1: Each chunk should have different metadata (due to different IVs)
|
||||
|
metadataSet := make(map[string]bool) |
||||
|
for i, chunk := range simulatedChunks { |
||||
|
metadataStr := string(chunk.SseMetadata) |
||||
|
if metadataSet[metadataStr] { |
||||
|
t.Errorf("Chunk %d has duplicate metadata (should be unique per chunk)", i) |
||||
|
} |
||||
|
metadataSet[metadataStr] = true |
||||
|
|
||||
|
// Deserialize and verify IV
|
||||
|
deserializedKey, err := DeserializeSSES3Metadata(chunk.SseMetadata, keyManager) |
||||
|
if err != nil { |
||||
|
t.Fatalf("Failed to deserialize chunk %d metadata: %v", i, err) |
||||
|
} |
||||
|
|
||||
|
// Calculate expected IV for this chunk
|
||||
|
expectedIV, _ := calculateIVWithOffset(baseIV, chunk.Offset) |
||||
|
if !bytes.Equal(deserializedKey.IV, expectedIV) { |
||||
|
t.Errorf("Chunk %d: IV mismatch\nExpected: %x\nGot: %x", |
||||
|
i, expectedIV[:8], deserializedKey.IV[:8]) |
||||
|
} |
||||
|
|
||||
|
t.Logf("✓ Chunk %d: IV correctly adjusted for offset=%d", i, chunk.Offset) |
||||
|
} |
||||
|
|
||||
|
// VERIFICATION 2: Verify decryption works with per-chunk IVs
|
||||
|
for i, chunk := range simulatedChunks { |
||||
|
// Deserialize chunk metadata
|
||||
|
deserializedKey, err := DeserializeSSES3Metadata(chunk.SseMetadata, keyManager) |
||||
|
if err != nil { |
||||
|
t.Fatalf("Failed to deserialize chunk %d metadata: %v", i, err) |
||||
|
} |
||||
|
|
||||
|
// Simulate encryption/decryption with the chunk's IV
|
||||
|
testData := []byte("Test data for SSE-S3 chunk decryption verification") |
||||
|
block, err := aes.NewCipher(deserializedKey.Key) |
||||
|
if err != nil { |
||||
|
t.Fatalf("Failed to create cipher: %v", err) |
||||
|
} |
||||
|
|
||||
|
// Encrypt with chunk's IV
|
||||
|
ciphertext := make([]byte, len(testData)) |
||||
|
stream := cipher.NewCTR(block, deserializedKey.IV) |
||||
|
stream.XORKeyStream(ciphertext, testData) |
||||
|
|
||||
|
// Decrypt with chunk's IV
|
||||
|
plaintext := make([]byte, len(ciphertext)) |
||||
|
block2, _ := aes.NewCipher(deserializedKey.Key) |
||||
|
stream2 := cipher.NewCTR(block2, deserializedKey.IV) |
||||
|
stream2.XORKeyStream(plaintext, ciphertext) |
||||
|
|
||||
|
if !bytes.Equal(plaintext, testData) { |
||||
|
t.Errorf("Chunk %d: decryption failed", i) |
||||
|
} |
||||
|
|
||||
|
t.Logf("✓ Chunk %d: encryption/decryption successful with chunk-specific IV", i) |
||||
|
} |
||||
|
|
||||
|
// VERIFICATION 3: Ensure base IV is NOT reused for non-zero offset chunks (the bug we're preventing)
|
||||
|
for i := 1; i < len(simulatedChunks); i++ { |
||||
|
if bytes.Equal(simulatedChunks[i].SseMetadata, baseMetadata) { |
||||
|
t.Errorf("CRITICAL BUG: Chunk %d reuses base metadata (should have per-chunk metadata)", i) |
||||
|
} |
||||
|
|
||||
|
// Verify chunk metadata has different IV than base IV
|
||||
|
deserializedKey, _ := DeserializeSSES3Metadata(simulatedChunks[i].SseMetadata, keyManager) |
||||
|
if bytes.Equal(deserializedKey.IV, baseIV) { |
||||
|
t.Errorf("CRITICAL BUG: Chunk %d uses base IV (should use offset-adjusted IV)", i) |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
t.Log("✓ All chunks have unique per-chunk IVs (bug prevented)") |
||||
|
} |
||||
|
|
||||
|
// TestSSEChunkMetadataComparison tests that the bug (reusing same metadata for all chunks)
|
||||
|
// would cause decryption failures, while the fix (per-chunk metadata) works correctly
|
||||
|
func TestSSEChunkMetadataComparison(t *testing.T) { |
||||
|
// Generate test key and IV
|
||||
|
key := make([]byte, 32) |
||||
|
rand.Read(key) |
||||
|
baseIV := make([]byte, aes.BlockSize) |
||||
|
rand.Read(baseIV) |
||||
|
|
||||
|
// Create test data for 3 chunks
|
||||
|
chunk0Data := []byte("Chunk 0 data at offset 0") |
||||
|
chunk1Data := []byte("Chunk 1 data at offset 8MB") |
||||
|
chunk2Data := []byte("Chunk 2 data at offset 16MB") |
||||
|
|
||||
|
chunkOffsets := []int64{0, 8 * 1024 * 1024, 16 * 1024 * 1024} |
||||
|
chunkDataList := [][]byte{chunk0Data, chunk1Data, chunk2Data} |
||||
|
|
||||
|
// Scenario 1: BUG - Using same IV for all chunks (what the old code did)
|
||||
|
t.Run("Bug: Reusing base IV causes decryption failures", func(t *testing.T) { |
||||
|
var encryptedChunks [][]byte |
||||
|
|
||||
|
// Encrypt each chunk with offset-adjusted IV (what encryption does)
|
||||
|
for i, offset := range chunkOffsets { |
||||
|
adjustedIV, _ := calculateIVWithOffset(baseIV, offset) |
||||
|
block, _ := aes.NewCipher(key) |
||||
|
stream := cipher.NewCTR(block, adjustedIV) |
||||
|
|
||||
|
ciphertext := make([]byte, len(chunkDataList[i])) |
||||
|
stream.XORKeyStream(ciphertext, chunkDataList[i]) |
||||
|
encryptedChunks = append(encryptedChunks, ciphertext) |
||||
|
} |
||||
|
|
||||
|
// Try to decrypt with base IV (THE BUG)
|
||||
|
for i := range encryptedChunks { |
||||
|
block, _ := aes.NewCipher(key) |
||||
|
stream := cipher.NewCTR(block, baseIV) // BUG: Always using base IV
|
||||
|
|
||||
|
plaintext := make([]byte, len(encryptedChunks[i])) |
||||
|
stream.XORKeyStream(plaintext, encryptedChunks[i]) |
||||
|
|
||||
|
if i == 0 { |
||||
|
// Chunk 0 should work (offset 0 means base IV = adjusted IV)
|
||||
|
if !bytes.Equal(plaintext, chunkDataList[i]) { |
||||
|
t.Errorf("Chunk 0 decryption failed (unexpected)") |
||||
|
} |
||||
|
} else { |
||||
|
// Chunks 1 and 2 should FAIL (wrong IV)
|
||||
|
if bytes.Equal(plaintext, chunkDataList[i]) { |
||||
|
t.Errorf("BUG NOT REPRODUCED: Chunk %d decrypted correctly with base IV (should fail)", i) |
||||
|
} else { |
||||
|
t.Logf("✓ Chunk %d: Correctly failed to decrypt with base IV (bug reproduced)", i) |
||||
|
} |
||||
|
} |
||||
|
} |
||||
|
}) |
||||
|
|
||||
|
// Scenario 2: FIX - Using per-chunk offset-adjusted IVs (what the new code does)
|
||||
|
t.Run("Fix: Per-chunk IVs enable correct decryption", func(t *testing.T) { |
||||
|
var encryptedChunks [][]byte |
||||
|
var chunkIVs [][]byte |
||||
|
|
||||
|
// Encrypt each chunk with offset-adjusted IV
|
||||
|
for i, offset := range chunkOffsets { |
||||
|
adjustedIV, _ := calculateIVWithOffset(baseIV, offset) |
||||
|
chunkIVs = append(chunkIVs, adjustedIV) |
||||
|
|
||||
|
block, _ := aes.NewCipher(key) |
||||
|
stream := cipher.NewCTR(block, adjustedIV) |
||||
|
|
||||
|
ciphertext := make([]byte, len(chunkDataList[i])) |
||||
|
stream.XORKeyStream(ciphertext, chunkDataList[i]) |
||||
|
encryptedChunks = append(encryptedChunks, ciphertext) |
||||
|
} |
||||
|
|
||||
|
// Decrypt with per-chunk IVs (THE FIX)
|
||||
|
for i := range encryptedChunks { |
||||
|
block, _ := aes.NewCipher(key) |
||||
|
stream := cipher.NewCTR(block, chunkIVs[i]) // FIX: Using per-chunk IV
|
||||
|
|
||||
|
plaintext := make([]byte, len(encryptedChunks[i])) |
||||
|
stream.XORKeyStream(plaintext, encryptedChunks[i]) |
||||
|
|
||||
|
if !bytes.Equal(plaintext, chunkDataList[i]) { |
||||
|
t.Errorf("Chunk %d decryption failed with per-chunk IV (unexpected)", i) |
||||
|
} else { |
||||
|
t.Logf("✓ Chunk %d: Successfully decrypted with per-chunk IV", i) |
||||
|
} |
||||
|
} |
||||
|
}) |
||||
|
} |
||||
|
|
||||
Write
Preview
Loading…
Cancel
Save
Reference in new issue