|
|
package shell
import ( "context" "errors" "fmt" "math/rand/v2" "sort" "sync" "time"
"github.com/seaweedfs/seaweedfs/weed/glog" "github.com/seaweedfs/seaweedfs/weed/operation" "github.com/seaweedfs/seaweedfs/weed/pb" "github.com/seaweedfs/seaweedfs/weed/pb/master_pb" "github.com/seaweedfs/seaweedfs/weed/pb/volume_server_pb" "github.com/seaweedfs/seaweedfs/weed/storage/erasure_coding" "github.com/seaweedfs/seaweedfs/weed/storage/needle" "github.com/seaweedfs/seaweedfs/weed/storage/super_block" "github.com/seaweedfs/seaweedfs/weed/storage/types" "google.golang.org/grpc" "slices" )
type DataCenterId string type EcNodeId string type RackId string
type EcNode struct { info *master_pb.DataNodeInfo dc DataCenterId rack RackId freeEcSlot int } type CandidateEcNode struct { ecNode *EcNode shardCount int }
type EcRack struct { ecNodes map[EcNodeId]*EcNode freeEcSlot int }
var ( ecBalanceAlgorithmDescription = ` func EcBalance() { for each collection: balanceEcVolumes(collectionName) for each rack: balanceEcRack(rack) }
func balanceEcVolumes(collectionName){ for each volume: doDeduplicateEcShards(volumeId)
tracks rack~shardCount mapping for each volume: doBalanceEcShardsAcrossRacks(volumeId)
for each volume: doBalanceEcShardsWithinRacks(volumeId) }
// spread ec shards into more racks
func doBalanceEcShardsAcrossRacks(volumeId){ tracks rack~volumeIdShardCount mapping averageShardsPerEcRack = totalShardNumber / numRacks // totalShardNumber is 14 for now, later could varies for each dc
ecShardsToMove = select overflown ec shards from racks with ec shard counts > averageShardsPerEcRack for each ecShardsToMove { destRack = pickOneRack(rack~shardCount, rack~volumeIdShardCount, ecShardReplicaPlacement) destVolumeServers = volume servers on the destRack pickOneEcNodeAndMoveOneShard(destVolumeServers) } }
func doBalanceEcShardsWithinRacks(volumeId){ racks = collect all racks that the volume id is on for rack, shards := range racks doBalanceEcShardsWithinOneRack(volumeId, shards, rack) }
// move ec shards
func doBalanceEcShardsWithinOneRack(volumeId, shards, rackId){ tracks volumeServer~volumeIdShardCount mapping averageShardCount = len(shards) / numVolumeServers volumeServersOverAverage = volume servers with volumeId's ec shard counts > averageShardsPerEcRack ecShardsToMove = select overflown ec shards from volumeServersOverAverage for each ecShardsToMove { destVolumeServer = pickOneVolumeServer(volumeServer~shardCount, volumeServer~volumeIdShardCount, ecShardReplicaPlacement) pickOneEcNodeAndMoveOneShard(destVolumeServers) } }
// move ec shards while keeping shard distribution for the same volume unchanged or more even
func balanceEcRack(rack){ averageShardCount = total shards / numVolumeServers for hasMovedOneEcShard { sort all volume servers ordered by the number of local ec shards pick the volume server A with the lowest number of ec shards x pick the volume server B with the highest number of ec shards y if y > averageShardCount and x +1 <= averageShardCount { if B has a ec shard with volume id v that A does not have { move one ec shard v from B to A hasMovedOneEcShard = true } } } } ` // Overridable functions for testing.
getDefaultReplicaPlacement = _getDefaultReplicaPlacement )
type ErrorWaitGroup struct { maxConcurrency int wg *sync.WaitGroup wgSem chan bool errors []error errorsMu sync.Mutex } type ErrorWaitGroupTask func() error
func NewErrorWaitGroup(maxConcurrency int) *ErrorWaitGroup { if maxConcurrency <= 0 { // No concurrency = one task at the time
maxConcurrency = 1 } return &ErrorWaitGroup{ maxConcurrency: maxConcurrency, wg: &sync.WaitGroup{}, wgSem: make(chan bool, maxConcurrency), } }
func (ewg *ErrorWaitGroup) Add(f ErrorWaitGroupTask) { if ewg.maxConcurrency <= 1 { // Keep run order deterministic when parallelization is off
ewg.errors = append(ewg.errors, f()) return }
ewg.wg.Add(1) go func() { ewg.wgSem <- true
err := f() ewg.errorsMu.Lock() ewg.errors = append(ewg.errors, err) ewg.errorsMu.Unlock()
<-ewg.wgSem ewg.wg.Done() }() }
func (ewg *ErrorWaitGroup) Wait() error { ewg.wg.Wait() return errors.Join(ewg.errors...) }
func _getDefaultReplicaPlacement(commandEnv *CommandEnv) (*super_block.ReplicaPlacement, error) { var resp *master_pb.GetMasterConfigurationResponse var err error
err = commandEnv.MasterClient.WithClient(false, func(client master_pb.SeaweedClient) error { resp, err = client.GetMasterConfiguration(context.Background(), &master_pb.GetMasterConfigurationRequest{}) return err }) if err != nil { return nil, err }
return super_block.NewReplicaPlacementFromString(resp.DefaultReplication) }
func parseReplicaPlacementArg(commandEnv *CommandEnv, replicaStr string) (*super_block.ReplicaPlacement, error) { if replicaStr != "" { rp, err := super_block.NewReplicaPlacementFromString(replicaStr) if err == nil { fmt.Printf("using replica placement %q for EC volumes\n", rp.String()) } return rp, err }
// No replica placement argument provided, resolve from master default settings.
rp, err := getDefaultReplicaPlacement(commandEnv) if err == nil { fmt.Printf("using master default replica placement %q for EC volumes\n", rp.String()) } return rp, err }
func collectTopologyInfo(commandEnv *CommandEnv, delayBeforeCollecting time.Duration) (topoInfo *master_pb.TopologyInfo, volumeSizeLimitMb uint64, err error) {
if delayBeforeCollecting > 0 { time.Sleep(delayBeforeCollecting) }
var resp *master_pb.VolumeListResponse err = commandEnv.MasterClient.WithClient(false, func(client master_pb.SeaweedClient) error { resp, err = client.VolumeList(context.Background(), &master_pb.VolumeListRequest{}) return err }) if err != nil { return }
return resp.TopologyInfo, resp.VolumeSizeLimitMb, nil
}
func collectEcNodesForDC(commandEnv *CommandEnv, selectedDataCenter string) (ecNodes []*EcNode, totalFreeEcSlots int, err error) { // list all possible locations
// collect topology information
topologyInfo, _, err := collectTopologyInfo(commandEnv, 0) if err != nil { return }
// find out all volume servers with one slot left.
ecNodes, totalFreeEcSlots = collectEcVolumeServersByDc(topologyInfo, selectedDataCenter)
sortEcNodesByFreeslotsDescending(ecNodes)
return }
func collectEcNodes(commandEnv *CommandEnv) (ecNodes []*EcNode, totalFreeEcSlots int, err error) { return collectEcNodesForDC(commandEnv, "") }
func collectCollectionsForVolumeIds(t *master_pb.TopologyInfo, vids []needle.VolumeId) []string { if len(vids) == 0 { return nil }
found := map[string]bool{} for _, dc := range t.DataCenterInfos { for _, r := range dc.RackInfos { for _, dn := range r.DataNodeInfos { for _, diskInfo := range dn.DiskInfos { for _, vi := range diskInfo.VolumeInfos { for _, vid := range vids { if needle.VolumeId(vi.Id) == vid && vi.Collection != "" { found[vi.Collection] = true } } } for _, ecs := range diskInfo.EcShardInfos { for _, vid := range vids { if needle.VolumeId(ecs.Id) == vid && ecs.Collection != "" { found[ecs.Collection] = true } } } } } } } if len(found) == 0 { return nil }
collections := []string{} for k, _ := range found { collections = append(collections, k) } sort.Strings(collections) return collections }
func moveMountedShardToEcNode(commandEnv *CommandEnv, existingLocation *EcNode, collection string, vid needle.VolumeId, shardId erasure_coding.ShardId, destinationEcNode *EcNode, applyBalancing bool) (err error) {
if !commandEnv.isLocked() { return fmt.Errorf("lock is lost") }
copiedShardIds := []uint32{uint32(shardId)}
if applyBalancing {
existingServerAddress := pb.NewServerAddressFromDataNode(existingLocation.info)
// ask destination node to copy shard and the ecx file from source node, and mount it
copiedShardIds, err = oneServerCopyAndMountEcShardsFromSource(commandEnv.option.GrpcDialOption, destinationEcNode, []uint32{uint32(shardId)}, vid, collection, existingServerAddress) if err != nil { return err }
// unmount the to be deleted shards
err = unmountEcShards(commandEnv.option.GrpcDialOption, vid, existingServerAddress, copiedShardIds) if err != nil { return err }
// ask source node to delete the shard, and maybe the ecx file
err = sourceServerDeleteEcShards(commandEnv.option.GrpcDialOption, collection, vid, existingServerAddress, copiedShardIds) if err != nil { return err }
fmt.Printf("moved ec shard %d.%d %s => %s\n", vid, shardId, existingLocation.info.Id, destinationEcNode.info.Id)
}
destinationEcNode.addEcVolumeShards(vid, collection, copiedShardIds) existingLocation.deleteEcVolumeShards(vid, copiedShardIds)
return nil
}
func oneServerCopyAndMountEcShardsFromSource(grpcDialOption grpc.DialOption, targetServer *EcNode, shardIdsToCopy []uint32, volumeId needle.VolumeId, collection string, existingLocation pb.ServerAddress) (copiedShardIds []uint32, err error) {
fmt.Printf("allocate %d.%v %s => %s\n", volumeId, shardIdsToCopy, existingLocation, targetServer.info.Id)
targetAddress := pb.NewServerAddressFromDataNode(targetServer.info) err = operation.WithVolumeServerClient(false, targetAddress, grpcDialOption, func(volumeServerClient volume_server_pb.VolumeServerClient) error {
if targetAddress != existingLocation { fmt.Printf("copy %d.%v %s => %s\n", volumeId, shardIdsToCopy, existingLocation, targetServer.info.Id) _, copyErr := volumeServerClient.VolumeEcShardsCopy(context.Background(), &volume_server_pb.VolumeEcShardsCopyRequest{ VolumeId: uint32(volumeId), Collection: collection, ShardIds: shardIdsToCopy, CopyEcxFile: true, CopyEcjFile: true, CopyVifFile: true, SourceDataNode: string(existingLocation), }) if copyErr != nil { return fmt.Errorf("copy %d.%v %s => %s : %v\n", volumeId, shardIdsToCopy, existingLocation, targetServer.info.Id, copyErr) } }
fmt.Printf("mount %d.%v on %s\n", volumeId, shardIdsToCopy, targetServer.info.Id) _, mountErr := volumeServerClient.VolumeEcShardsMount(context.Background(), &volume_server_pb.VolumeEcShardsMountRequest{ VolumeId: uint32(volumeId), Collection: collection, ShardIds: shardIdsToCopy, }) if mountErr != nil { return fmt.Errorf("mount %d.%v on %s : %v\n", volumeId, shardIdsToCopy, targetServer.info.Id, mountErr) }
if targetAddress != existingLocation { copiedShardIds = shardIdsToCopy glog.V(0).Infof("%s ec volume %d deletes shards %+v", existingLocation, volumeId, copiedShardIds) }
return nil })
if err != nil { return }
return }
func eachDataNode(topo *master_pb.TopologyInfo, fn func(dc DataCenterId, rack RackId, dn *master_pb.DataNodeInfo)) { for _, dc := range topo.DataCenterInfos { for _, rack := range dc.RackInfos { for _, dn := range rack.DataNodeInfos { fn(DataCenterId(dc.Id), RackId(rack.Id), dn) } } } }
func sortEcNodesByFreeslotsDescending(ecNodes []*EcNode) { slices.SortFunc(ecNodes, func(a, b *EcNode) int { return b.freeEcSlot - a.freeEcSlot }) }
func sortEcNodesByFreeslotsAscending(ecNodes []*EcNode) { slices.SortFunc(ecNodes, func(a, b *EcNode) int { return a.freeEcSlot - b.freeEcSlot }) }
// if the index node changed the freeEcSlot, need to keep every EcNode still sorted
func ensureSortedEcNodes(data []*CandidateEcNode, index int, lessThan func(i, j int) bool) { for i := index - 1; i >= 0; i-- { if lessThan(i+1, i) { swap(data, i, i+1) } else { break } } for i := index + 1; i < len(data); i++ { if lessThan(i, i-1) { swap(data, i, i-1) } else { break } } }
func swap(data []*CandidateEcNode, i, j int) { t := data[i] data[i] = data[j] data[j] = t }
func countShards(ecShardInfos []*master_pb.VolumeEcShardInformationMessage) (count int) { for _, ecShardInfo := range ecShardInfos { shardBits := erasure_coding.ShardBits(ecShardInfo.EcIndexBits) count += shardBits.ShardIdCount() } return }
func countFreeShardSlots(dn *master_pb.DataNodeInfo, diskType types.DiskType) (count int) { if dn.DiskInfos == nil { return 0 } diskInfo := dn.DiskInfos[string(diskType)] if diskInfo == nil { return 0 } return int(diskInfo.MaxVolumeCount-diskInfo.VolumeCount)*erasure_coding.DataShardsCount - countShards(diskInfo.EcShardInfos) }
func (ecNode *EcNode) localShardIdCount(vid uint32) int { for _, diskInfo := range ecNode.info.DiskInfos { for _, ecShardInfo := range diskInfo.EcShardInfos { if vid == ecShardInfo.Id { shardBits := erasure_coding.ShardBits(ecShardInfo.EcIndexBits) return shardBits.ShardIdCount() } } } return 0 }
func collectEcVolumeServersByDc(topo *master_pb.TopologyInfo, selectedDataCenter string) (ecNodes []*EcNode, totalFreeEcSlots int) { eachDataNode(topo, func(dc DataCenterId, rack RackId, dn *master_pb.DataNodeInfo) { if selectedDataCenter != "" && selectedDataCenter != string(dc) { return }
freeEcSlots := countFreeShardSlots(dn, types.HardDriveType) ecNodes = append(ecNodes, &EcNode{ info: dn, dc: dc, rack: rack, freeEcSlot: int(freeEcSlots), }) totalFreeEcSlots += freeEcSlots }) return }
func sourceServerDeleteEcShards(grpcDialOption grpc.DialOption, collection string, volumeId needle.VolumeId, sourceLocation pb.ServerAddress, toBeDeletedShardIds []uint32) error {
fmt.Printf("delete %d.%v from %s\n", volumeId, toBeDeletedShardIds, sourceLocation)
return operation.WithVolumeServerClient(false, sourceLocation, grpcDialOption, func(volumeServerClient volume_server_pb.VolumeServerClient) error { _, deleteErr := volumeServerClient.VolumeEcShardsDelete(context.Background(), &volume_server_pb.VolumeEcShardsDeleteRequest{ VolumeId: uint32(volumeId), Collection: collection, ShardIds: toBeDeletedShardIds, }) return deleteErr })
}
func unmountEcShards(grpcDialOption grpc.DialOption, volumeId needle.VolumeId, sourceLocation pb.ServerAddress, toBeUnmountedhardIds []uint32) error {
fmt.Printf("unmount %d.%v from %s\n", volumeId, toBeUnmountedhardIds, sourceLocation)
return operation.WithVolumeServerClient(false, sourceLocation, grpcDialOption, func(volumeServerClient volume_server_pb.VolumeServerClient) error { _, deleteErr := volumeServerClient.VolumeEcShardsUnmount(context.Background(), &volume_server_pb.VolumeEcShardsUnmountRequest{ VolumeId: uint32(volumeId), ShardIds: toBeUnmountedhardIds, }) return deleteErr }) }
func mountEcShards(grpcDialOption grpc.DialOption, collection string, volumeId needle.VolumeId, sourceLocation pb.ServerAddress, toBeMountedhardIds []uint32) error {
fmt.Printf("mount %d.%v on %s\n", volumeId, toBeMountedhardIds, sourceLocation)
return operation.WithVolumeServerClient(false, sourceLocation, grpcDialOption, func(volumeServerClient volume_server_pb.VolumeServerClient) error { _, mountErr := volumeServerClient.VolumeEcShardsMount(context.Background(), &volume_server_pb.VolumeEcShardsMountRequest{ VolumeId: uint32(volumeId), Collection: collection, ShardIds: toBeMountedhardIds, }) return mountErr }) }
func ceilDivide(a, b int) int { var r int if (a % b) != 0 { r = 1 } return (a / b) + r }
func findEcVolumeShards(ecNode *EcNode, vid needle.VolumeId) erasure_coding.ShardBits {
if diskInfo, found := ecNode.info.DiskInfos[string(types.HardDriveType)]; found { for _, shardInfo := range diskInfo.EcShardInfos { if needle.VolumeId(shardInfo.Id) == vid { return erasure_coding.ShardBits(shardInfo.EcIndexBits) } } }
return 0 }
func (ecNode *EcNode) addEcVolumeShards(vid needle.VolumeId, collection string, shardIds []uint32) *EcNode {
foundVolume := false diskInfo, found := ecNode.info.DiskInfos[string(types.HardDriveType)] if found { for _, shardInfo := range diskInfo.EcShardInfos { if needle.VolumeId(shardInfo.Id) == vid { oldShardBits := erasure_coding.ShardBits(shardInfo.EcIndexBits) newShardBits := oldShardBits for _, shardId := range shardIds { newShardBits = newShardBits.AddShardId(erasure_coding.ShardId(shardId)) } shardInfo.EcIndexBits = uint32(newShardBits) ecNode.freeEcSlot -= newShardBits.ShardIdCount() - oldShardBits.ShardIdCount() foundVolume = true break } } } else { diskInfo = &master_pb.DiskInfo{ Type: string(types.HardDriveType), } ecNode.info.DiskInfos[string(types.HardDriveType)] = diskInfo }
if !foundVolume { var newShardBits erasure_coding.ShardBits for _, shardId := range shardIds { newShardBits = newShardBits.AddShardId(erasure_coding.ShardId(shardId)) } diskInfo.EcShardInfos = append(diskInfo.EcShardInfos, &master_pb.VolumeEcShardInformationMessage{ Id: uint32(vid), Collection: collection, EcIndexBits: uint32(newShardBits), DiskType: string(types.HardDriveType), }) ecNode.freeEcSlot -= len(shardIds) }
return ecNode }
func (ecNode *EcNode) deleteEcVolumeShards(vid needle.VolumeId, shardIds []uint32) *EcNode {
if diskInfo, found := ecNode.info.DiskInfos[string(types.HardDriveType)]; found { for _, shardInfo := range diskInfo.EcShardInfos { if needle.VolumeId(shardInfo.Id) == vid { oldShardBits := erasure_coding.ShardBits(shardInfo.EcIndexBits) newShardBits := oldShardBits for _, shardId := range shardIds { newShardBits = newShardBits.RemoveShardId(erasure_coding.ShardId(shardId)) } shardInfo.EcIndexBits = uint32(newShardBits) ecNode.freeEcSlot -= newShardBits.ShardIdCount() - oldShardBits.ShardIdCount() } } }
return ecNode }
func groupByCount(data []*EcNode, identifierFn func(*EcNode) (id string, count int)) map[string]int { countMap := make(map[string]int) for _, d := range data { id, count := identifierFn(d) countMap[id] += count } return countMap }
func groupBy(data []*EcNode, identifierFn func(*EcNode) (id string)) map[string][]*EcNode { groupMap := make(map[string][]*EcNode) for _, d := range data { id := identifierFn(d) groupMap[id] = append(groupMap[id], d) } return groupMap }
type ecBalancer struct { commandEnv *CommandEnv ecNodes []*EcNode replicaPlacement *super_block.ReplicaPlacement applyBalancing bool maxParallelization int }
func (ecb *ecBalancer) errorWaitGroup() *ErrorWaitGroup { return NewErrorWaitGroup(ecb.maxParallelization) }
func (ecb *ecBalancer) racks() map[RackId]*EcRack { racks := make(map[RackId]*EcRack) for _, ecNode := range ecb.ecNodes { if racks[ecNode.rack] == nil { racks[ecNode.rack] = &EcRack{ ecNodes: make(map[EcNodeId]*EcNode), } } racks[ecNode.rack].ecNodes[EcNodeId(ecNode.info.Id)] = ecNode racks[ecNode.rack].freeEcSlot += ecNode.freeEcSlot } return racks }
func (ecb *ecBalancer) balanceEcVolumes(collection string) error {
fmt.Printf("balanceEcVolumes %s\n", collection)
if err := ecb.deleteDuplicatedEcShards(collection); err != nil { return fmt.Errorf("delete duplicated collection %s ec shards: %v", collection, err) }
if err := ecb.balanceEcShardsAcrossRacks(collection); err != nil { return fmt.Errorf("balance across racks collection %s ec shards: %v", collection, err) }
if err := ecb.balanceEcShardsWithinRacks(collection); err != nil { return fmt.Errorf("balance within racks collection %s ec shards: %v", collection, err) }
return nil }
func (ecb *ecBalancer) deleteDuplicatedEcShards(collection string) error { vidLocations := ecb.collectVolumeIdToEcNodes(collection)
ewg := ecb.errorWaitGroup() for vid, locations := range vidLocations { ewg.Add(func() error { return ecb.doDeduplicateEcShards(collection, vid, locations) }) } return ewg.Wait() }
func (ecb *ecBalancer) doDeduplicateEcShards(collection string, vid needle.VolumeId, locations []*EcNode) error { // check whether this volume has ecNodes that are over average
shardToLocations := make([][]*EcNode, erasure_coding.TotalShardsCount) for _, ecNode := range locations { shardBits := findEcVolumeShards(ecNode, vid) for _, shardId := range shardBits.ShardIds() { shardToLocations[shardId] = append(shardToLocations[shardId], ecNode) } } for shardId, ecNodes := range shardToLocations { if len(ecNodes) <= 1 { continue } sortEcNodesByFreeslotsAscending(ecNodes) fmt.Printf("ec shard %d.%d has %d copies, keeping %v\n", vid, shardId, len(ecNodes), ecNodes[0].info.Id) if !ecb.applyBalancing { continue }
duplicatedShardIds := []uint32{uint32(shardId)} for _, ecNode := range ecNodes[1:] { if err := unmountEcShards(ecb.commandEnv.option.GrpcDialOption, vid, pb.NewServerAddressFromDataNode(ecNode.info), duplicatedShardIds); err != nil { return err } if err := sourceServerDeleteEcShards(ecb.commandEnv.option.GrpcDialOption, collection, vid, pb.NewServerAddressFromDataNode(ecNode.info), duplicatedShardIds); err != nil { return err } ecNode.deleteEcVolumeShards(vid, duplicatedShardIds) } } return nil }
func (ecb *ecBalancer) balanceEcShardsAcrossRacks(collection string) error { // collect vid => []ecNode, since previous steps can change the locations
vidLocations := ecb.collectVolumeIdToEcNodes(collection)
// spread the ec shards evenly
ewg := ecb.errorWaitGroup() for vid, locations := range vidLocations { ewg.Add(func() error { return ecb.doBalanceEcShardsAcrossRacks(collection, vid, locations) }) } return ewg.Wait() }
func countShardsByRack(vid needle.VolumeId, locations []*EcNode) map[string]int { return groupByCount(locations, func(ecNode *EcNode) (id string, count int) { shardBits := findEcVolumeShards(ecNode, vid) return string(ecNode.rack), shardBits.ShardIdCount() }) }
func (ecb *ecBalancer) doBalanceEcShardsAcrossRacks(collection string, vid needle.VolumeId, locations []*EcNode) error { racks := ecb.racks()
// calculate average number of shards an ec rack should have for one volume
averageShardsPerEcRack := ceilDivide(erasure_coding.TotalShardsCount, len(racks))
// see the volume's shards are in how many racks, and how many in each rack
rackToShardCount := countShardsByRack(vid, locations) rackEcNodesWithVid := groupBy(locations, func(ecNode *EcNode) string { return string(ecNode.rack) })
// ecShardsToMove = select overflown ec shards from racks with ec shard counts > averageShardsPerEcRack
ecShardsToMove := make(map[erasure_coding.ShardId]*EcNode) for rackId, count := range rackToShardCount { if count <= averageShardsPerEcRack { continue } possibleEcNodes := rackEcNodesWithVid[rackId] for shardId, ecNode := range pickNEcShardsToMoveFrom(possibleEcNodes, vid, count-averageShardsPerEcRack) { ecShardsToMove[shardId] = ecNode } }
for shardId, ecNode := range ecShardsToMove { rackId, err := ecb.pickRackToBalanceShardsInto(racks, rackToShardCount) if err != nil { fmt.Printf("ec shard %d.%d at %s can not find a destination rack:\n%s\n", vid, shardId, ecNode.info.Id, err.Error()) continue }
var possibleDestinationEcNodes []*EcNode for _, n := range racks[rackId].ecNodes { possibleDestinationEcNodes = append(possibleDestinationEcNodes, n) } err = ecb.pickOneEcNodeAndMoveOneShard(ecNode, collection, vid, shardId, possibleDestinationEcNodes) if err != nil { return err } rackToShardCount[string(rackId)] += 1 rackToShardCount[string(ecNode.rack)] -= 1 racks[rackId].freeEcSlot -= 1 racks[ecNode.rack].freeEcSlot += 1 }
return nil }
func (ecb *ecBalancer) pickRackToBalanceShardsInto(rackToEcNodes map[RackId]*EcRack, rackToShardCount map[string]int) (RackId, error) { targets := []RackId{} targetShards := -1 for _, shards := range rackToShardCount { if shards > targetShards { targetShards = shards } }
details := "" for rackId, rack := range rackToEcNodes { shards := rackToShardCount[string(rackId)]
if rack.freeEcSlot <= 0 { details += fmt.Sprintf(" Skipped %s because it has no free slots\n", rackId) continue } if ecb.replicaPlacement != nil && shards >= ecb.replicaPlacement.DiffRackCount { details += fmt.Sprintf(" Skipped %s because shards %d >= replica placement limit for other racks (%d)\n", rackId, shards, ecb.replicaPlacement.DiffRackCount) continue }
if shards < targetShards { // Favor racks with less shards, to ensure an uniform distribution.
targets = nil targetShards = shards } if shards == targetShards { targets = append(targets, rackId) } }
if len(targets) == 0 { return "", errors.New(details) } return targets[rand.IntN(len(targets))], nil }
func (ecb *ecBalancer) balanceEcShardsWithinRacks(collection string) error { // collect vid => []ecNode, since previous steps can change the locations
vidLocations := ecb.collectVolumeIdToEcNodes(collection) racks := ecb.racks()
// spread the ec shards evenly
ewg := ecb.errorWaitGroup() for vid, locations := range vidLocations {
// see the volume's shards are in how many racks, and how many in each rack
rackToShardCount := countShardsByRack(vid, locations) rackEcNodesWithVid := groupBy(locations, func(ecNode *EcNode) string { return string(ecNode.rack) })
for rackId, _ := range rackToShardCount {
var possibleDestinationEcNodes []*EcNode for _, n := range racks[RackId(rackId)].ecNodes { if _, found := n.info.DiskInfos[string(types.HardDriveType)]; found { possibleDestinationEcNodes = append(possibleDestinationEcNodes, n) } } sourceEcNodes := rackEcNodesWithVid[rackId] averageShardsPerEcNode := ceilDivide(rackToShardCount[rackId], len(possibleDestinationEcNodes)) ewg.Add(func() error { return ecb.doBalanceEcShardsWithinOneRack(averageShardsPerEcNode, collection, vid, sourceEcNodes, possibleDestinationEcNodes) }) } } return ewg.Wait() }
func (ecb *ecBalancer) doBalanceEcShardsWithinOneRack(averageShardsPerEcNode int, collection string, vid needle.VolumeId, existingLocations, possibleDestinationEcNodes []*EcNode) error { for _, ecNode := range existingLocations {
shardBits := findEcVolumeShards(ecNode, vid) overLimitCount := shardBits.ShardIdCount() - averageShardsPerEcNode
for _, shardId := range shardBits.ShardIds() {
if overLimitCount <= 0 { break }
fmt.Printf("%s has %d overlimit, moving ec shard %d.%d\n", ecNode.info.Id, overLimitCount, vid, shardId)
err := ecb.pickOneEcNodeAndMoveOneShard(ecNode, collection, vid, shardId, possibleDestinationEcNodes) if err != nil { return err }
overLimitCount-- } }
return nil }
func (ecb *ecBalancer) balanceEcRacks() error { // balance one rack for all ec shards
ewg := ecb.errorWaitGroup() for _, ecRack := range ecb.racks() { ewg.Add(func() error { return ecb.doBalanceEcRack(ecRack) }) } return ewg.Wait() }
func (ecb *ecBalancer) doBalanceEcRack(ecRack *EcRack) error { if len(ecRack.ecNodes) <= 1 { return nil }
var rackEcNodes []*EcNode for _, node := range ecRack.ecNodes { rackEcNodes = append(rackEcNodes, node) }
ecNodeIdToShardCount := groupByCount(rackEcNodes, func(ecNode *EcNode) (id string, count int) { diskInfo, found := ecNode.info.DiskInfos[string(types.HardDriveType)] if !found { return } for _, ecShardInfo := range diskInfo.EcShardInfos { count += erasure_coding.ShardBits(ecShardInfo.EcIndexBits).ShardIdCount() } return ecNode.info.Id, count })
var totalShardCount int for _, count := range ecNodeIdToShardCount { totalShardCount += count }
averageShardCount := ceilDivide(totalShardCount, len(rackEcNodes))
hasMove := true for hasMove { hasMove = false slices.SortFunc(rackEcNodes, func(a, b *EcNode) int { return b.freeEcSlot - a.freeEcSlot }) emptyNode, fullNode := rackEcNodes[0], rackEcNodes[len(rackEcNodes)-1] emptyNodeShardCount, fullNodeShardCount := ecNodeIdToShardCount[emptyNode.info.Id], ecNodeIdToShardCount[fullNode.info.Id] if fullNodeShardCount > averageShardCount && emptyNodeShardCount+1 <= averageShardCount {
emptyNodeIds := make(map[uint32]bool) if emptyDiskInfo, found := emptyNode.info.DiskInfos[string(types.HardDriveType)]; found { for _, shards := range emptyDiskInfo.EcShardInfos { emptyNodeIds[shards.Id] = true } } if fullDiskInfo, found := fullNode.info.DiskInfos[string(types.HardDriveType)]; found { for _, shards := range fullDiskInfo.EcShardInfos { if _, found := emptyNodeIds[shards.Id]; !found { for _, shardId := range erasure_coding.ShardBits(shards.EcIndexBits).ShardIds() {
fmt.Printf("%s moves ec shards %d.%d to %s\n", fullNode.info.Id, shards.Id, shardId, emptyNode.info.Id)
err := moveMountedShardToEcNode(ecb.commandEnv, fullNode, shards.Collection, needle.VolumeId(shards.Id), shardId, emptyNode, ecb.applyBalancing) if err != nil { return err }
ecNodeIdToShardCount[emptyNode.info.Id]++ ecNodeIdToShardCount[fullNode.info.Id]-- hasMove = true break } break } } } } }
return nil }
func (ecb *ecBalancer) pickEcNodeToBalanceShardsInto(vid needle.VolumeId, existingLocation *EcNode, possibleDestinations []*EcNode) (*EcNode, error) { if existingLocation == nil { return nil, fmt.Errorf("INTERNAL: missing source nodes") } if len(possibleDestinations) == 0 { return nil, fmt.Errorf("INTERNAL: missing destination nodes") }
nodeShards := map[*EcNode]int{} for _, node := range possibleDestinations { nodeShards[node] = findEcVolumeShards(node, vid).ShardIdCount() }
targets := []*EcNode{} targetShards := -1 for _, shards := range nodeShards { if shards > targetShards { targetShards = shards } }
details := "" for _, node := range possibleDestinations { if node.info.Id == existingLocation.info.Id { continue } if node.freeEcSlot <= 0 { details += fmt.Sprintf(" Skipped %s because it has no free slots\n", node.info.Id) continue }
shards := nodeShards[node] if ecb.replicaPlacement != nil && shards >= ecb.replicaPlacement.SameRackCount { details += fmt.Sprintf(" Skipped %s because shards %d >= replica placement limit for the rack (%d)\n", node.info.Id, shards, ecb.replicaPlacement.SameRackCount) continue }
if shards < targetShards { // Favor nodes with less shards, to ensure an uniform distribution.
targets = nil targetShards = shards } if shards == targetShards { targets = append(targets, node) } }
if len(targets) == 0 { return nil, errors.New(details) } return targets[rand.IntN(len(targets))], nil }
func (ecb *ecBalancer) pickOneEcNodeAndMoveOneShard(existingLocation *EcNode, collection string, vid needle.VolumeId, shardId erasure_coding.ShardId, possibleDestinationEcNodes []*EcNode) error { destNode, err := ecb.pickEcNodeToBalanceShardsInto(vid, existingLocation, possibleDestinationEcNodes) if err != nil { fmt.Printf("WARNING: Could not find suitable taget node for %d.%d:\n%s", vid, shardId, err.Error()) return nil }
fmt.Printf("%s moves ec shard %d.%d to %s\n", existingLocation.info.Id, vid, shardId, destNode.info.Id) return moveMountedShardToEcNode(ecb.commandEnv, existingLocation, collection, vid, shardId, destNode, ecb.applyBalancing) }
func pickNEcShardsToMoveFrom(ecNodes []*EcNode, vid needle.VolumeId, n int) map[erasure_coding.ShardId]*EcNode { picked := make(map[erasure_coding.ShardId]*EcNode) var candidateEcNodes []*CandidateEcNode for _, ecNode := range ecNodes { shardBits := findEcVolumeShards(ecNode, vid) if shardBits.ShardIdCount() > 0 { candidateEcNodes = append(candidateEcNodes, &CandidateEcNode{ ecNode: ecNode, shardCount: shardBits.ShardIdCount(), }) } } slices.SortFunc(candidateEcNodes, func(a, b *CandidateEcNode) int { return b.shardCount - a.shardCount }) for i := 0; i < n; i++ { selectedEcNodeIndex := -1 for i, candidateEcNode := range candidateEcNodes { shardBits := findEcVolumeShards(candidateEcNode.ecNode, vid) if shardBits > 0 { selectedEcNodeIndex = i for _, shardId := range shardBits.ShardIds() { candidateEcNode.shardCount-- picked[shardId] = candidateEcNode.ecNode candidateEcNode.ecNode.deleteEcVolumeShards(vid, []uint32{uint32(shardId)}) break } break } } if selectedEcNodeIndex >= 0 { ensureSortedEcNodes(candidateEcNodes, selectedEcNodeIndex, func(i, j int) bool { return candidateEcNodes[i].shardCount > candidateEcNodes[j].shardCount }) }
} return picked }
func (ecb *ecBalancer) collectVolumeIdToEcNodes(collection string) map[needle.VolumeId][]*EcNode { vidLocations := make(map[needle.VolumeId][]*EcNode) for _, ecNode := range ecb.ecNodes { diskInfo, found := ecNode.info.DiskInfos[string(types.HardDriveType)] if !found { continue } for _, shardInfo := range diskInfo.EcShardInfos { // ignore if not in current collection
if shardInfo.Collection == collection { vidLocations[needle.VolumeId(shardInfo.Id)] = append(vidLocations[needle.VolumeId(shardInfo.Id)], ecNode) } } } return vidLocations }
func EcBalance(commandEnv *CommandEnv, collections []string, dc string, ecReplicaPlacement *super_block.ReplicaPlacement, maxParallelization int, applyBalancing bool) (err error) { if len(collections) == 0 { return fmt.Errorf("no collections to balance") }
// collect all ec nodes
allEcNodes, totalFreeEcSlots, err := collectEcNodesForDC(commandEnv, dc) if err != nil { return err } if totalFreeEcSlots < 1 { return fmt.Errorf("no free ec shard slots. only %d left", totalFreeEcSlots) }
ecb := &ecBalancer{ commandEnv: commandEnv, ecNodes: allEcNodes, replicaPlacement: ecReplicaPlacement, applyBalancing: applyBalancing, maxParallelization: maxParallelization, }
for _, c := range collections { if err = ecb.balanceEcVolumes(c); err != nil { return err } } if err := ecb.balanceEcRacks(); err != nil { return fmt.Errorf("balance ec racks: %v", err) }
return nil }
|