4 changed files with 285 additions and 200 deletions
-
42src/complex.rs
-
185src/lib.rs
-
256tests/fixtures.rs
-
2tests/lib.rs
@ -0,0 +1,42 @@ |
|||
use std::ops::{Add, Mul, Sub};
|
|||
|
|||
/// A complex number.
|
|||
#[allow(non_camel_case_types)]
|
|||
#[derive(Clone, Copy, Debug)]
|
|||
pub struct c64(pub f64, pub f64);
|
|||
|
|||
impl Add for c64 {
|
|||
type Output = Self;
|
|||
|
|||
#[inline(always)]
|
|||
fn add(self, rhs: c64) -> c64 {
|
|||
c64(self.0 + rhs.0, self.1 + rhs.1)
|
|||
}
|
|||
}
|
|||
|
|||
impl Mul for c64 {
|
|||
type Output = Self;
|
|||
|
|||
#[inline(always)]
|
|||
fn mul(self, rhs: c64) -> c64 {
|
|||
c64(self.0 * rhs.0 - self.1 * rhs.1, self.0 * rhs.1 + self.1 * rhs.0)
|
|||
}
|
|||
}
|
|||
|
|||
impl Mul<f64> for c64 {
|
|||
type Output = Self;
|
|||
|
|||
#[inline(always)]
|
|||
fn mul(self, rhs: f64) -> c64 {
|
|||
c64(self.0 * rhs, self.1 * rhs)
|
|||
}
|
|||
}
|
|||
|
|||
impl Sub for c64 {
|
|||
type Output = Self;
|
|||
|
|||
#[inline(always)]
|
|||
fn sub(self, rhs: c64) -> c64 {
|
|||
c64(self.0 - rhs.0, self.1 - rhs.1)
|
|||
}
|
|||
}
|
@ -1,96 +1,139 @@ |
|||
#![feature(step_by)]
|
|||
use std::slice;
|
|||
|
|||
mod complex;
|
|||
pub use complex::c64;
|
|||
|
|||
/// A means of obtaining a slice of mutable complex numbers.
|
|||
pub trait AsMutComplex<'l> {
|
|||
fn as_mut_complex(self) -> &'l mut [c64];
|
|||
}
|
|||
|
|||
impl<'l> AsMutComplex<'l> for &'l mut [c64] {
|
|||
#[inline(always)]
|
|||
fn as_mut_complex(self) -> &'l mut [c64] {
|
|||
self
|
|||
}
|
|||
}
|
|||
|
|||
impl<'l> AsMutComplex<'l> for &'l mut [f64] {
|
|||
/// Treat the slice as a collection of pairs of real and imaginary parts and
|
|||
/// reinterpret it as a slice of complex numbers.
|
|||
///
|
|||
/// ## Panics
|
|||
///
|
|||
/// The function panics if the number of elements is not even.
|
|||
#[inline]
|
|||
fn as_mut_complex(self) -> &'l mut [c64] {
|
|||
unsafe {
|
|||
let length = self.len();
|
|||
assert!(length % 2 == 0, "the number of elements should be even");
|
|||
slice::from_raw_parts_mut(self.as_mut_ptr() as *mut _, length / 2)
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
impl<'l> AsMutComplex<'l> for &'l mut Vec<f64> {
|
|||
#[inline]
|
|||
fn as_mut_complex(self) -> &'l mut [c64] {
|
|||
<&mut [f64]>::as_mut_complex(&mut *self)
|
|||
}
|
|||
}
|
|||
|
|||
/// Perform the Fourier transform.
|
|||
///
|
|||
/// `data` should contain `n` complex numbers where `n` is a power of two. Each
|
|||
/// complex number is stored as a pair of `f64`s so that the first is the real
|
|||
/// part and the second is the corresponding imaginary part. Hence, the total
|
|||
/// length of `data` should be `2 × n`.
|
|||
///
|
|||
/// # Panics
|
|||
///
|
|||
/// The function panics if `data.len()` is not even or `data.len() / 2` is not a
|
|||
/// power of two.
|
|||
/// The number of points should be a power of two.
|
|||
#[inline(always)]
|
|||
pub fn forward(data: &mut [f64]) {
|
|||
transform(data, 1.0);
|
|||
pub fn forward<'l, T: AsMutComplex<'l>>(data: T) {
|
|||
let data = data.as_mut_complex();
|
|||
|
|||
let n = data.len();
|
|||
if n < 1 || n & (n - 1) != 0 {
|
|||
panic!("expected the number of points to be a power of two");
|
|||
}
|
|||
|
|||
rearrange(data, n);
|
|||
perform(data, n, false);
|
|||
}
|
|||
|
|||
/// Perform the inverse Fourier transform.
|
|||
///
|
|||
/// `data` should contain `n` complex numbers where `n` is a power of two. Each
|
|||
/// complex number is stored as a pair of `f64`s so that the first is the real
|
|||
/// part and the second is the corresponding imaginary part. Hence, the total
|
|||
/// length of `data` should be `2 × n`.
|
|||
///
|
|||
/// # Panics
|
|||
///
|
|||
/// The function panics if `data.len()` is not even or `data.len() / 2` is not a
|
|||
/// power of two.
|
|||
/// The number of points should be a power of two.
|
|||
#[inline(always)]
|
|||
pub fn inverse(data: &mut [f64]) {
|
|||
transform(data, -1.0);
|
|||
}
|
|||
|
|||
fn transform(data: &mut [f64], isign: f64) {
|
|||
use std::f64::consts::PI;
|
|||
|
|||
let l = data.len();
|
|||
if l % 2 != 0 {
|
|||
panic!("expected the length of the data to be even");
|
|||
}
|
|||
pub fn inverse<'l, T: AsMutComplex<'l>>(data: T, scaling: bool) {
|
|||
let data = data.as_mut_complex();
|
|||
|
|||
let n = l / 2;
|
|||
let n = data.len();
|
|||
if n < 1 || n & (n - 1) != 0 {
|
|||
panic!("expected the number of points to be a power of two");
|
|||
}
|
|||
|
|||
let nn = n << 1;
|
|||
rearrange(data, n);
|
|||
perform(data, n, true);
|
|||
if scaling {
|
|||
scale(data, n);
|
|||
}
|
|||
}
|
|||
|
|||
let mut j = 1;
|
|||
for i in (1..nn).step_by(2) {
|
|||
if j > i {
|
|||
data.swap(j - 1, i - 1);
|
|||
data.swap(j, i);
|
|||
#[inline(always)]
|
|||
fn rearrange(data: &mut [c64], n: usize) {
|
|||
let mut target = 0;
|
|||
for position in 0..n {
|
|||
if target > position {
|
|||
data.swap(position, target);
|
|||
}
|
|||
let mut m = n;
|
|||
while m >= 2 && j > m {
|
|||
j -= m;
|
|||
m >>= 1;
|
|||
let mut mask = n >> 1;
|
|||
while target & mask != 0 {
|
|||
target &= !mask;
|
|||
mask >>= 1;
|
|||
}
|
|||
j += m;
|
|||
target |= mask;
|
|||
}
|
|||
}
|
|||
|
|||
let mut mmax = 2;
|
|||
while nn > mmax {
|
|||
let istep = mmax << 1;
|
|||
let theta = isign * (2.0 * PI / mmax as f64);
|
|||
let wtemp = (0.5 * theta).sin();
|
|||
let wpr = -2.0 * wtemp * wtemp;
|
|||
let wpi = theta.sin();
|
|||
let mut wr = 1.0;
|
|||
let mut wi = 0.0;
|
|||
for m in (1..mmax).step_by(2) {
|
|||
for i in (m..(nn + 1)).step_by(istep) {
|
|||
let j = i + mmax;
|
|||
let tempr = wr * data[j - 1] - wi * data[j];
|
|||
let tempi = wr * data[j] + wi * data[j - 1];
|
|||
data[j - 1] = data[i - 1] - tempr;
|
|||
data[j] = data[i] - tempi;
|
|||
data[i - 1] += tempr;
|
|||
data[i] += tempi;
|
|||
#[inline(always)]
|
|||
fn perform(data: &mut [c64], n: usize, inverse: bool) {
|
|||
use std::f64::consts::PI;
|
|||
|
|||
let pi = if inverse { PI } else { -PI };
|
|||
|
|||
let mut step = 1;
|
|||
while step < n {
|
|||
let jump = step << 1;
|
|||
let delta = pi / step as f64;
|
|||
let sine = (0.5 * delta).sin();
|
|||
let multiplier = c64(-2.0 * sine * sine, delta.sin());
|
|||
let mut factor = c64(1.0, 0.0);
|
|||
for group in 0..step {
|
|||
let mut pair = group;
|
|||
while pair < n {
|
|||
let match_pair = pair + step;
|
|||
let product = factor * data[match_pair];
|
|||
data[match_pair] = data[pair] - product;
|
|||
data[pair] = data[pair] + product;
|
|||
pair += jump;
|
|||
}
|
|||
let wtemp = wr;
|
|||
wr = wr * wpr - wi * wpi + wr;
|
|||
wi = wi * wpr + wtemp * wpi + wi;
|
|||
factor = multiplier * factor + factor;
|
|||
}
|
|||
mmax = istep;
|
|||
step <<= 1;
|
|||
}
|
|||
}
|
|||
|
|||
if isign == -1.0 {
|
|||
let scale = 1.0 / n as f64;
|
|||
for i in 0..l {
|
|||
data[i] *= scale;
|
|||
}
|
|||
#[inline(always)]
|
|||
fn scale(data: &mut [c64], n: usize) {
|
|||
let factor = 1.0 / n as f64;
|
|||
for position in 0..n {
|
|||
data[position] = data[position] * factor;
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use c64;
|
|||
use std::mem;
|
|||
|
|||
#[test]
|
|||
fn size_of() {
|
|||
assert_eq!(mem::size_of::<c64>(), 2 * mem::size_of::<f64>());
|
|||
assert_eq!(mem::size_of::<[c64; 42]>(), 2 * mem::size_of::<[f64; 42]>());
|
|||
}
|
|||
}
|
Write
Preview
Loading…
Cancel
Save
Reference in new issue