You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

420 lines
13 KiB

package shell
import (
"cmp"
"flag"
"fmt"
"io"
"os"
"time"
"github.com/seaweedfs/seaweedfs/weed/pb"
"github.com/seaweedfs/seaweedfs/weed/storage/erasure_coding"
"github.com/seaweedfs/seaweedfs/weed/storage/super_block"
"github.com/seaweedfs/seaweedfs/weed/storage/types"
"golang.org/x/exp/slices"
"github.com/seaweedfs/seaweedfs/weed/pb/master_pb"
"github.com/seaweedfs/seaweedfs/weed/storage/needle"
)
func init() {
Commands = append(Commands, &commandVolumeBalance{})
}
type commandVolumeBalance struct {
}
func (c *commandVolumeBalance) Name() string {
return "volume.balance"
}
func (c *commandVolumeBalance) Help() string {
return `balance all volumes among volume servers
volume.balance [-collection ALL_COLLECTIONS|EACH_COLLECTION|<collection_name>] [-force] [-dataCenter=<data_center_name>]
Algorithm:
For each type of volume server (different max volume count limit){
for each collection {
balanceWritableVolumes()
balanceReadOnlyVolumes()
}
}
func balanceWritableVolumes(){
idealWritableVolumeRatio = totalWritableVolumes / totalNumberOfMaxVolumes
for hasMovedOneVolume {
sort all volume servers ordered by the localWritableVolumeRatio = localWritableVolumes to localVolumeMax
pick the volume server B with the highest localWritableVolumeRatio y
for any the volume server A with the number of writable volumes x + 1 <= idealWritableVolumeRatio * localVolumeMax {
if y > localWritableVolumeRatio {
if B has a writable volume id v that A does not have, and satisfy v replication requirements {
move writable volume v from A to B
}
}
}
}
}
func balanceReadOnlyVolumes(){
//similar to balanceWritableVolumes
}
`
}
func (c *commandVolumeBalance) HasTag(CommandTag) bool {
return false
}
func (c *commandVolumeBalance) Do(args []string, commandEnv *CommandEnv, writer io.Writer) (err error) {
balanceCommand := flag.NewFlagSet(c.Name(), flag.ContinueOnError)
collection := balanceCommand.String("collection", "ALL_COLLECTIONS", "collection name, or use \"ALL_COLLECTIONS\" across collections, \"EACH_COLLECTION\" for each collection")
dc := balanceCommand.String("dataCenter", "", "only apply the balancing for this dataCenter")
applyBalancing := balanceCommand.Bool("force", false, "apply the balancing plan.")
if err = balanceCommand.Parse(args); err != nil {
return nil
}
infoAboutSimulationMode(writer, *applyBalancing, "-force")
if err = commandEnv.confirmIsLocked(args); err != nil {
return
}
// collect topology information
topologyInfo, _, err := collectTopologyInfo(commandEnv, 15*time.Second)
if err != nil {
return err
}
volumeServers := collectVolumeServersByDc(topologyInfo, *dc)
volumeReplicas, _ := collectVolumeReplicaLocations(topologyInfo)
diskTypes := collectVolumeDiskTypes(topologyInfo)
if *collection == "EACH_COLLECTION" {
collections, err := ListCollectionNames(commandEnv, true, false)
if err != nil {
return err
}
for _, c := range collections {
if err = balanceVolumeServers(commandEnv, diskTypes, volumeReplicas, volumeServers, c, *applyBalancing); err != nil {
return err
}
}
} else {
if err = balanceVolumeServers(commandEnv, diskTypes, volumeReplicas, volumeServers, *collection, *applyBalancing); err != nil {
return err
}
}
return nil
}
func balanceVolumeServers(commandEnv *CommandEnv, diskTypes []types.DiskType, volumeReplicas map[uint32][]*VolumeReplica, nodes []*Node, collection string, applyBalancing bool) error {
for _, diskType := range diskTypes {
if err := balanceVolumeServersByDiskType(commandEnv, diskType, volumeReplicas, nodes, collection, applyBalancing); err != nil {
return err
}
}
return nil
}
func balanceVolumeServersByDiskType(commandEnv *CommandEnv, diskType types.DiskType, volumeReplicas map[uint32][]*VolumeReplica, nodes []*Node, collection string, applyBalancing bool) error {
for _, n := range nodes {
n.selectVolumes(func(v *master_pb.VolumeInformationMessage) bool {
if collection != "ALL_COLLECTIONS" {
if v.Collection != collection {
return false
}
}
return v.DiskType == string(diskType)
})
}
if err := balanceSelectedVolume(commandEnv, diskType, volumeReplicas, nodes, sortWritableVolumes, applyBalancing); err != nil {
return err
}
return nil
}
func collectVolumeServersByDc(t *master_pb.TopologyInfo, selectedDataCenter string) (nodes []*Node) {
for _, dc := range t.DataCenterInfos {
if selectedDataCenter != "" && dc.Id != selectedDataCenter {
continue
}
for _, r := range dc.RackInfos {
for _, dn := range r.DataNodeInfos {
nodes = append(nodes, &Node{
info: dn,
dc: dc.Id,
rack: r.Id,
})
}
}
}
return
}
func collectVolumeDiskTypes(t *master_pb.TopologyInfo) (diskTypes []types.DiskType) {
knownTypes := make(map[string]bool)
for _, dc := range t.DataCenterInfos {
for _, r := range dc.RackInfos {
for _, dn := range r.DataNodeInfos {
for diskType := range dn.DiskInfos {
if _, found := knownTypes[diskType]; !found {
knownTypes[diskType] = true
}
}
}
}
}
for diskType := range knownTypes {
diskTypes = append(diskTypes, types.ToDiskType(diskType))
}
return
}
type Node struct {
info *master_pb.DataNodeInfo
selectedVolumes map[uint32]*master_pb.VolumeInformationMessage
dc string
rack string
}
type CapacityFunc func(*master_pb.DataNodeInfo) float64
func capacityByMaxVolumeCount(diskType types.DiskType) CapacityFunc {
return func(info *master_pb.DataNodeInfo) float64 {
diskInfo, found := info.DiskInfos[string(diskType)]
if !found {
return 0
}
return float64(diskInfo.MaxVolumeCount)
}
}
func capacityByFreeVolumeCount(diskType types.DiskType) CapacityFunc {
return func(info *master_pb.DataNodeInfo) float64 {
diskInfo, found := info.DiskInfos[string(diskType)]
if !found {
return 0
}
var ecShardCount int
for _, ecShardInfo := range diskInfo.EcShardInfos {
ecShardCount += erasure_coding.ShardBits(ecShardInfo.EcIndexBits).ShardIdCount()
}
return float64(diskInfo.MaxVolumeCount-diskInfo.VolumeCount) - float64(ecShardCount)/erasure_coding.DataShardsCount
}
}
func (n *Node) localVolumeRatio(capacityFunc CapacityFunc) float64 {
return float64(len(n.selectedVolumes)) / capacityFunc(n.info)
}
func (n *Node) localVolumeNextRatio(capacityFunc CapacityFunc) float64 {
return float64(len(n.selectedVolumes)+1) / capacityFunc(n.info)
}
func (n *Node) isOneVolumeOnly() bool {
if len(n.selectedVolumes) != 1 {
return false
}
for _, disk := range n.info.DiskInfos {
if disk.VolumeCount == 1 && disk.MaxVolumeCount == 1 {
return true
}
}
return false
}
func (n *Node) selectVolumes(fn func(v *master_pb.VolumeInformationMessage) bool) {
n.selectedVolumes = make(map[uint32]*master_pb.VolumeInformationMessage)
for _, diskInfo := range n.info.DiskInfos {
for _, v := range diskInfo.VolumeInfos {
if fn(v) {
n.selectedVolumes[v.Id] = v
}
}
}
}
func sortWritableVolumes(volumes []*master_pb.VolumeInformationMessage) {
slices.SortFunc(volumes, func(a, b *master_pb.VolumeInformationMessage) int {
return cmp.Compare(a.Size, b.Size)
})
}
func balanceSelectedVolume(commandEnv *CommandEnv, diskType types.DiskType, volumeReplicas map[uint32][]*VolumeReplica, nodes []*Node, sortCandidatesFn func(volumes []*master_pb.VolumeInformationMessage), applyBalancing bool) (err error) {
selectedVolumeCount, volumeMaxCount := 0, float64(0)
var nodesWithCapacity []*Node
capacityFunc := capacityByMaxVolumeCount(diskType)
for _, dn := range nodes {
selectedVolumeCount += len(dn.selectedVolumes)
capacity := capacityFunc(dn.info)
if capacity > 0 {
nodesWithCapacity = append(nodesWithCapacity, dn)
}
volumeMaxCount += capacity
}
idealVolumeRatio := float64(selectedVolumeCount) / volumeMaxCount
hasMoved := true
// fmt.Fprintf(os.Stdout, " total %d volumes, max %d volumes, idealVolumeRatio %f\n", selectedVolumeCount, volumeMaxCount, idealVolumeRatio)
for hasMoved {
hasMoved = false
slices.SortFunc(nodesWithCapacity, func(a, b *Node) int {
return cmp.Compare(a.localVolumeRatio(capacityFunc), b.localVolumeRatio(capacityFunc))
})
if len(nodesWithCapacity) == 0 {
fmt.Printf("no volume server found with capacity for %s", diskType.ReadableString())
return nil
}
var fullNode *Node
var fullNodeIndex int
for fullNodeIndex = len(nodesWithCapacity) - 1; fullNodeIndex >= 0; fullNodeIndex-- {
fullNode = nodesWithCapacity[fullNodeIndex]
if !fullNode.isOneVolumeOnly() {
break
}
}
var candidateVolumes []*master_pb.VolumeInformationMessage
for _, v := range fullNode.selectedVolumes {
candidateVolumes = append(candidateVolumes, v)
}
sortCandidatesFn(candidateVolumes)
for _, emptyNode := range nodesWithCapacity[:fullNodeIndex] {
if !(fullNode.localVolumeRatio(capacityFunc) > idealVolumeRatio && emptyNode.localVolumeNextRatio(capacityFunc) <= idealVolumeRatio) {
// no more volume servers with empty slots
break
}
fmt.Fprintf(os.Stdout, "%s %.2f %.2f:%.2f\t", diskType.ReadableString(), idealVolumeRatio, fullNode.localVolumeRatio(capacityFunc), emptyNode.localVolumeNextRatio(capacityFunc))
hasMoved, err = attemptToMoveOneVolume(commandEnv, volumeReplicas, fullNode, candidateVolumes, emptyNode, applyBalancing)
if err != nil {
return
}
if hasMoved {
// moved one volume
break
}
}
}
return nil
}
func attemptToMoveOneVolume(commandEnv *CommandEnv, volumeReplicas map[uint32][]*VolumeReplica, fullNode *Node, candidateVolumes []*master_pb.VolumeInformationMessage, emptyNode *Node, applyBalancing bool) (hasMoved bool, err error) {
for _, v := range candidateVolumes {
hasMoved, err = maybeMoveOneVolume(commandEnv, volumeReplicas, fullNode, v, emptyNode, applyBalancing)
if err != nil {
return
}
if hasMoved {
break
}
}
return
}
func maybeMoveOneVolume(commandEnv *CommandEnv, volumeReplicas map[uint32][]*VolumeReplica, fullNode *Node, candidateVolume *master_pb.VolumeInformationMessage, emptyNode *Node, applyChange bool) (hasMoved bool, err error) {
if !commandEnv.isLocked() {
return false, fmt.Errorf("lock is lost")
}
if candidateVolume.RemoteStorageName != "" {
return false, fmt.Errorf("does not move volume in remove storage")
}
if candidateVolume.ReplicaPlacement > 0 {
replicaPlacement, _ := super_block.NewReplicaPlacementFromByte(byte(candidateVolume.ReplicaPlacement))
if !isGoodMove(replicaPlacement, volumeReplicas[candidateVolume.Id], fullNode, emptyNode) {
return false, nil
}
}
if _, found := emptyNode.selectedVolumes[candidateVolume.Id]; !found {
if err = moveVolume(commandEnv, candidateVolume, fullNode, emptyNode, applyChange); err == nil {
adjustAfterMove(candidateVolume, volumeReplicas, fullNode, emptyNode)
return true, nil
} else {
return
}
}
return
}
func moveVolume(commandEnv *CommandEnv, v *master_pb.VolumeInformationMessage, fullNode *Node, emptyNode *Node, applyChange bool) error {
collectionPrefix := v.Collection + "_"
if v.Collection == "" {
collectionPrefix = ""
}
fmt.Fprintf(os.Stdout, " moving %s volume %s%d %s => %s\n", v.DiskType, collectionPrefix, v.Id, fullNode.info.Id, emptyNode.info.Id)
if applyChange {
return LiveMoveVolume(commandEnv.option.GrpcDialOption, os.Stderr, needle.VolumeId(v.Id), pb.NewServerAddressFromDataNode(fullNode.info), pb.NewServerAddressFromDataNode(emptyNode.info), 5*time.Second, v.DiskType, 0, false)
}
return nil
}
func isGoodMove(placement *super_block.ReplicaPlacement, existingReplicas []*VolumeReplica, sourceNode, targetNode *Node) bool {
for _, replica := range existingReplicas {
if replica.location.dataNode.Id == targetNode.info.Id &&
replica.location.rack == targetNode.rack &&
replica.location.dc == targetNode.dc {
// never move to existing nodes
return false
}
}
// existing replicas except the one on sourceNode
existingReplicasExceptSourceNode := make([]*VolumeReplica, 0)
for _, replica := range existingReplicas {
if replica.location.dataNode.Id != sourceNode.info.Id {
existingReplicasExceptSourceNode = append(existingReplicasExceptSourceNode, replica)
}
}
// target location
targetLocation := location{
dc: targetNode.dc,
rack: targetNode.rack,
dataNode: targetNode.info,
}
// check if this satisfies replication requirements
return satisfyReplicaPlacement(placement, existingReplicasExceptSourceNode, targetLocation)
}
func adjustAfterMove(v *master_pb.VolumeInformationMessage, volumeReplicas map[uint32][]*VolumeReplica, fullNode *Node, emptyNode *Node) {
delete(fullNode.selectedVolumes, v.Id)
if emptyNode.selectedVolumes != nil {
emptyNode.selectedVolumes[v.Id] = v
}
existingReplicas := volumeReplicas[v.Id]
for _, replica := range existingReplicas {
if replica.location.dataNode.Id == fullNode.info.Id &&
replica.location.rack == fullNode.rack &&
replica.location.dc == fullNode.dc {
loc := newLocation(emptyNode.dc, emptyNode.rack, emptyNode.info)
replica.location = &loc
for diskType, diskInfo := range fullNode.info.DiskInfos {
if diskType == v.DiskType {
addVolumeCount(diskInfo, -1)
}
}
for diskType, diskInfo := range emptyNode.info.DiskInfos {
if diskType == v.DiskType {
addVolumeCount(diskInfo, 1)
}
}
return
}
}
}