You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

152 lines
5.3 KiB

package ml
import (
"time"
"github.com/seaweedfs/seaweedfs/weed/glog"
"github.com/seaweedfs/seaweedfs/weed/util/chunk_cache"
"github.com/seaweedfs/seaweedfs/weed/wdclient"
)
// MLOptimization provides ML-aware optimizations for FUSE mounting
type MLOptimization struct {
ReaderCache *MLReaderCache
PrefetchManager *PrefetchManager
PatternDetector *AccessPatternDetector
enabled bool
}
// MLConfig holds configuration for ML optimizations
type MLConfig struct {
// Prefetch configuration
PrefetchWorkers int // Number of prefetch workers
PrefetchQueueSize int // Size of prefetch queue
PrefetchTimeout time.Duration // Timeout for prefetch operations
// Pattern detection configuration
EnableMLHeuristics bool // Enable ML-specific pattern detection
SequentialThreshold int // Minimum consecutive reads for sequential detection
ConfidenceThreshold float64 // Minimum confidence to trigger prefetch
// Cache configuration
MaxPrefetchAhead int // Maximum chunks to prefetch ahead
PrefetchBatchSize int // Number of chunks to prefetch in one batch
}
// DefaultMLConfig returns default configuration optimized for ML workloads
func DefaultMLConfig() *MLConfig {
return &MLConfig{
// Prefetch settings
PrefetchWorkers: 8,
PrefetchQueueSize: 100,
PrefetchTimeout: 30 * time.Second,
// Pattern detection settings
EnableMLHeuristics: true,
SequentialThreshold: 3,
ConfidenceThreshold: 0.6,
// Cache settings
MaxPrefetchAhead: 8,
PrefetchBatchSize: 3,
}
}
// NewMLOptimization creates a new ML optimization instance
func NewMLOptimization(config *MLConfig, chunkCache chunk_cache.ChunkCache, lookupFn wdclient.LookupFileIdFunctionType) *MLOptimization {
if config == nil {
config = DefaultMLConfig()
}
// Create ML reader cache with embedded prefetch manager and pattern detector
mlReaderCache := NewMLReaderCache(10, chunkCache, lookupFn)
// Configure the ML reader cache with provided settings
mlReaderCache.SetPrefetchConfiguration(config.MaxPrefetchAhead, config.PrefetchBatchSize)
opt := &MLOptimization{
ReaderCache: mlReaderCache,
PrefetchManager: mlReaderCache.prefetchManager,
PatternDetector: mlReaderCache.patternDetector,
enabled: true,
}
glog.V(1).Infof("ML optimization enabled with config: workers=%d, queue=%d, confidence=%.2f",
config.PrefetchWorkers, config.PrefetchQueueSize, config.ConfidenceThreshold)
return opt
}
// Enable enables or disables ML optimization
func (opt *MLOptimization) Enable(enabled bool) {
opt.enabled = enabled
if opt.ReaderCache != nil {
opt.ReaderCache.EnableMLPrefetch(enabled)
}
glog.V(2).Infof("ML optimization %s", map[bool]string{true: "enabled", false: "disabled"}[enabled])
}
// IsEnabled returns whether ML optimization is enabled
func (opt *MLOptimization) IsEnabled() bool {
return opt.enabled
}
// GetMetrics returns comprehensive ML optimization metrics
func (opt *MLOptimization) GetMetrics() *MLOptimizationMetrics {
if opt.ReaderCache == nil {
return &MLOptimizationMetrics{}
}
mlMetrics := opt.ReaderCache.GetMLMetrics()
return &MLOptimizationMetrics{
Enabled: opt.enabled,
PrefetchHits: mlMetrics.PrefetchHits,
PrefetchMisses: mlMetrics.PrefetchMisses,
MLPrefetchTriggered: mlMetrics.MLPrefetchTriggered,
TotalAccesses: mlMetrics.PatternMetrics.TotalAccesses,
SequentialReads: mlMetrics.PatternMetrics.SequentialReads,
RandomReads: mlMetrics.PatternMetrics.RandomReads,
PatternCounts: mlMetrics.PatternMetrics.PatternCounts,
ActivePrefetchJobs: mlMetrics.PrefetchMetrics.ActiveJobs,
PrefetchWorkers: mlMetrics.PrefetchMetrics.Workers,
}
}
// MLOptimizationMetrics holds comprehensive metrics for ML optimization
type MLOptimizationMetrics struct {
Enabled bool `json:"enabled"`
PrefetchHits int64 `json:"prefetch_hits"`
PrefetchMisses int64 `json:"prefetch_misses"`
MLPrefetchTriggered int64 `json:"ml_prefetch_triggered"`
TotalAccesses int64 `json:"total_accesses"`
SequentialReads int64 `json:"sequential_reads"`
RandomReads int64 `json:"random_reads"`
PatternCounts map[AccessPattern]int `json:"pattern_counts"`
ActivePrefetchJobs int64 `json:"active_prefetch_jobs"`
PrefetchWorkers int64 `json:"prefetch_workers"`
}
// Shutdown gracefully shuts down all ML optimization components
func (opt *MLOptimization) Shutdown() {
if opt.ReaderCache != nil {
opt.ReaderCache.Shutdown()
}
glog.V(1).Infof("ML optimization shutdown complete")
}
// RecordAccess records a file access for pattern detection (convenience method)
func (opt *MLOptimization) RecordAccess(inode uint64, offset int64, size int) *AccessInfo {
if !opt.enabled || opt.PatternDetector == nil {
return nil
}
return opt.PatternDetector.RecordAccess(inode, offset, size)
}
// ShouldPrefetch determines if prefetching should be triggered (convenience method)
func (opt *MLOptimization) ShouldPrefetch(inode uint64) (bool, int64) {
if !opt.enabled || opt.PatternDetector == nil {
return false, 0
}
return opt.PatternDetector.ShouldPrefetch(inode)
}