You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

574 lines
15 KiB

package topology
import (
"fmt"
"github.com/seaweedfs/seaweedfs/weed/pb/master_pb"
"math/rand"
"sync"
"sync/atomic"
"time"
"github.com/seaweedfs/seaweedfs/weed/storage/types"
"github.com/seaweedfs/seaweedfs/weed/glog"
"github.com/seaweedfs/seaweedfs/weed/storage"
"github.com/seaweedfs/seaweedfs/weed/storage/needle"
"github.com/seaweedfs/seaweedfs/weed/storage/super_block"
)
type copyState int
const (
noCopies copyState = 0 + iota
insufficientCopies
enoughCopies
)
type volumeState string
const (
readOnlyState volumeState = "ReadOnly"
oversizedState = "Oversized"
crowdedState = "Crowded"
noWritableVolumes = "No writable volumes"
)
type stateIndicator func(copyState) bool
func ExistCopies() stateIndicator {
return func(state copyState) bool { return state != noCopies }
}
func NoCopies() stateIndicator {
return func(state copyState) bool { return state == noCopies }
}
type volumesBinaryState struct {
rp *super_block.ReplicaPlacement
name volumeState // the name for volume state (eg. "Readonly", "Oversized")
indicator stateIndicator // indicate whether the volumes should be marked as `name`
copyMap map[needle.VolumeId]*VolumeLocationList
}
func NewVolumesBinaryState(name volumeState, rp *super_block.ReplicaPlacement, indicator stateIndicator) *volumesBinaryState {
return &volumesBinaryState{
rp: rp,
name: name,
indicator: indicator,
copyMap: make(map[needle.VolumeId]*VolumeLocationList),
}
}
func (v *volumesBinaryState) Dump() (res []uint32) {
for vid, list := range v.copyMap {
if v.indicator(v.copyState(list)) {
res = append(res, uint32(vid))
}
}
return
}
func (v *volumesBinaryState) IsTrue(vid needle.VolumeId) bool {
list, _ := v.copyMap[vid]
return v.indicator(v.copyState(list))
}
func (v *volumesBinaryState) Add(vid needle.VolumeId, dn *DataNode) {
list, _ := v.copyMap[vid]
if list != nil {
list.Set(dn)
return
}
list = NewVolumeLocationList()
list.Set(dn)
v.copyMap[vid] = list
}
func (v *volumesBinaryState) Remove(vid needle.VolumeId, dn *DataNode) {
list, _ := v.copyMap[vid]
if list != nil {
list.Remove(dn)
if list.Length() == 0 {
delete(v.copyMap, vid)
}
}
}
func (v *volumesBinaryState) copyState(list *VolumeLocationList) copyState {
if list == nil {
return noCopies
}
if list.Length() < v.rp.GetCopyCount() {
return insufficientCopies
}
return enoughCopies
}
// mapping from volume to its locations, inverted from server to volume
type VolumeLayout struct {
growRequest atomic.Bool
lastGrowCount atomic.Uint32
rp *super_block.ReplicaPlacement
ttl *needle.TTL
diskType types.DiskType
vid2location map[needle.VolumeId]*VolumeLocationList
writables []needle.VolumeId // transient array of writable volume id
crowded map[needle.VolumeId]struct{}
readonlyVolumes *volumesBinaryState // readonly volumes
oversizedVolumes *volumesBinaryState // oversized volumes
vacuumedVolumes map[needle.VolumeId]time.Time
volumeSizeLimit uint64
replicationAsMin bool
accessLock sync.RWMutex
}
type VolumeLayoutStats struct {
TotalSize uint64
UsedSize uint64
FileCount uint64
}
func NewVolumeLayout(rp *super_block.ReplicaPlacement, ttl *needle.TTL, diskType types.DiskType, volumeSizeLimit uint64, replicationAsMin bool) *VolumeLayout {
return &VolumeLayout{
rp: rp,
ttl: ttl,
diskType: diskType,
vid2location: make(map[needle.VolumeId]*VolumeLocationList),
writables: *new([]needle.VolumeId),
crowded: make(map[needle.VolumeId]struct{}),
readonlyVolumes: NewVolumesBinaryState(readOnlyState, rp, ExistCopies()),
oversizedVolumes: NewVolumesBinaryState(oversizedState, rp, ExistCopies()),
vacuumedVolumes: make(map[needle.VolumeId]time.Time),
volumeSizeLimit: volumeSizeLimit,
replicationAsMin: replicationAsMin,
}
}
func (vl *VolumeLayout) String() string {
return fmt.Sprintf("rp:%v, ttl:%v, writables:%v, volumeSizeLimit:%v", vl.rp, vl.ttl, vl.writables, vl.volumeSizeLimit)
}
func (vl *VolumeLayout) RegisterVolume(v *storage.VolumeInfo, dn *DataNode) {
vl.accessLock.Lock()
defer vl.accessLock.Unlock()
defer vl.rememberOversizedVolume(v, dn)
if _, ok := vl.vid2location[v.Id]; !ok {
vl.vid2location[v.Id] = NewVolumeLocationList()
}
vl.vid2location[v.Id].Set(dn)
// glog.V(4).Infof("volume %d added to %s len %d copy %d", v.Id, dn.Id(), vl.vid2location[v.Id].Length(), v.ReplicaPlacement.GetCopyCount())
for _, dn := range vl.vid2location[v.Id].list {
if vInfo, err := dn.GetVolumesById(v.Id); err == nil {
if vInfo.ReadOnly {
glog.V(1).Infof("vid %d removed from writable", v.Id)
vl.removeFromWritable(v.Id)
vl.readonlyVolumes.Add(v.Id, dn)
return
} else {
vl.readonlyVolumes.Remove(v.Id, dn)
}
} else {
glog.V(1).Infof("vid %d removed from writable", v.Id)
vl.removeFromWritable(v.Id)
vl.readonlyVolumes.Remove(v.Id, dn)
return
}
}
}
func (vl *VolumeLayout) rememberOversizedVolume(v *storage.VolumeInfo, dn *DataNode) {
if vl.isOversized(v) {
vl.oversizedVolumes.Add(v.Id, dn)
} else {
vl.oversizedVolumes.Remove(v.Id, dn)
}
}
func (vl *VolumeLayout) UnRegisterVolume(v *storage.VolumeInfo, dn *DataNode) {
vl.accessLock.Lock()
defer vl.accessLock.Unlock()
// remove from vid2location map
location, ok := vl.vid2location[v.Id]
if !ok {
return
}
if location.Remove(dn) {
vl.readonlyVolumes.Remove(v.Id, dn)
vl.oversizedVolumes.Remove(v.Id, dn)
vl.ensureCorrectWritables(v.Id)
if location.Length() == 0 {
delete(vl.vid2location, v.Id)
}
}
}
func (vl *VolumeLayout) EnsureCorrectWritables(v *storage.VolumeInfo) {
vl.accessLock.Lock()
defer vl.accessLock.Unlock()
vl.ensureCorrectWritables(v.Id)
}
func (vl *VolumeLayout) ensureCorrectWritables(vid needle.VolumeId) {
isEnoughCopies := vl.enoughCopies(vid)
isAllWritable := vl.isAllWritable(vid)
isOversizedVolume := vl.oversizedVolumes.IsTrue(vid)
if isEnoughCopies && isAllWritable && !isOversizedVolume {
vl.setVolumeWritable(vid)
} else {
if !isEnoughCopies {
glog.V(0).Infof("volume %d does not have enough copies", vid)
}
if !isAllWritable {
glog.V(0).Infof("volume %d are not all writable", vid)
}
if isOversizedVolume {
glog.V(1).Infof("volume %d are oversized", vid)
}
glog.V(0).Infof("volume %d remove from writable", vid)
vl.removeFromWritable(vid)
}
}
func (vl *VolumeLayout) isAllWritable(vid needle.VolumeId) bool {
if location, ok := vl.vid2location[vid]; ok {
for _, dn := range location.list {
if v, getError := dn.GetVolumesById(vid); getError == nil {
if v.ReadOnly {
return false
}
}
}
} else {
return false
}
return true
}
func (vl *VolumeLayout) isOversized(v *storage.VolumeInfo) bool {
return uint64(v.Size) >= vl.volumeSizeLimit
}
func (vl *VolumeLayout) isCrowdedVolume(v *storage.VolumeInfo) bool {
return float64(v.Size) > float64(vl.volumeSizeLimit)*VolumeGrowStrategy.Threshold
}
func (vl *VolumeLayout) isWritable(v *storage.VolumeInfo) bool {
return !vl.isOversized(v) &&
v.Version == needle.CurrentVersion &&
!v.ReadOnly
}
func (vl *VolumeLayout) isEmpty() bool {
vl.accessLock.RLock()
defer vl.accessLock.RUnlock()
return len(vl.vid2location) == 0
}
func (vl *VolumeLayout) Lookup(vid needle.VolumeId) []*DataNode {
vl.accessLock.RLock()
defer vl.accessLock.RUnlock()
if location := vl.vid2location[vid]; location != nil {
return location.list
}
return nil
}
func (vl *VolumeLayout) ListVolumeServers() (nodes []*DataNode) {
vl.accessLock.RLock()
defer vl.accessLock.RUnlock()
for _, location := range vl.vid2location {
nodes = append(nodes, location.list...)
}
return
}
func (vl *VolumeLayout) PickForWrite(count uint64, option *VolumeGrowOption) (vid needle.VolumeId, counter uint64, locationList *VolumeLocationList, shouldGrow bool, err error) {
vl.accessLock.RLock()
defer vl.accessLock.RUnlock()
lenWriters := len(vl.writables)
if lenWriters <= 0 {
return 0, 0, nil, true, fmt.Errorf("%s", noWritableVolumes)
}
if option.DataCenter == "" && option.Rack == "" && option.DataNode == "" {
vid := vl.writables[rand.Intn(lenWriters)]
locationList = vl.vid2location[vid]
if locationList == nil || len(locationList.list) == 0 {
return 0, 0, nil, false, fmt.Errorf("Strangely vid %s is on no machine!", vid.String())
}
return vid, count, locationList.Copy(), false, nil
}
// clone vl.writables
writables := make([]needle.VolumeId, len(vl.writables))
copy(writables, vl.writables)
// randomize the writables
rand.Shuffle(len(writables), func(i, j int) {
writables[i], writables[j] = writables[j], writables[i]
})
for _, writableVolumeId := range writables {
volumeLocationList := vl.vid2location[writableVolumeId]
for _, dn := range volumeLocationList.list {
if option.DataCenter != "" && dn.GetDataCenter().Id() != NodeId(option.DataCenter) {
continue
}
if option.Rack != "" && dn.GetRack().Id() != NodeId(option.Rack) {
continue
}
if option.DataNode != "" && dn.Id() != NodeId(option.DataNode) {
continue
}
vid, locationList, counter = writableVolumeId, volumeLocationList.Copy(), count
return
}
}
return vid, count, locationList, true, fmt.Errorf("%s in DataCenter:%v Rack:%v DataNode:%v", noWritableVolumes, option.DataCenter, option.Rack, option.DataNode)
}
func (vl *VolumeLayout) HasGrowRequest() bool {
return vl.growRequest.Load()
}
func (vl *VolumeLayout) AddGrowRequest() {
vl.growRequest.Store(true)
}
func (vl *VolumeLayout) DoneGrowRequest() {
vl.growRequest.Store(false)
}
func (vl *VolumeLayout) SetLastGrowCount(count uint32) {
if vl.lastGrowCount.Load() != count && count != 0 {
vl.lastGrowCount.Store(count)
}
}
func (vl *VolumeLayout) GetLastGrowCount() uint32 {
return vl.lastGrowCount.Load()
}
func (vl *VolumeLayout) ShouldGrowVolumes() bool {
writable, crowded := vl.GetWritableVolumeCount()
return writable <= crowded
}
func (vl *VolumeLayout) ShouldGrowVolumesByDataNode(nodeType string, dataNode string) bool {
vl.accessLock.RLock()
writables := make([]needle.VolumeId, len(vl.writables))
copy(writables, vl.writables)
vl.accessLock.RUnlock()
dataNodeId := NodeId(dataNode)
for _, v := range writables {
for _, dn := range vl.vid2location[v].list {
dataNodeFound := false
switch nodeType {
case "DataCenter":
dataNodeFound = dn.GetDataCenter().Id() == dataNodeId
case "Rack":
dataNodeFound = dn.GetRack().Id() == dataNodeId
case "DataNode":
dataNodeFound = dn.Id() == dataNodeId
}
if dataNodeFound {
if info, err := dn.GetVolumesById(v); err == nil && !vl.isCrowdedVolume(&info) {
return false
}
}
}
}
return true
}
func (vl *VolumeLayout) GetWritableVolumeCount() (active, crowded int) {
vl.accessLock.RLock()
defer vl.accessLock.RUnlock()
return len(vl.writables), len(vl.crowded)
}
func (vl *VolumeLayout) removeFromWritable(vid needle.VolumeId) bool {
toDeleteIndex := -1
for k, id := range vl.writables {
if id == vid {
toDeleteIndex = k
break
}
}
if toDeleteIndex >= 0 {
glog.V(0).Infoln("Volume", vid, "becomes unwritable")
vl.writables = append(vl.writables[0:toDeleteIndex], vl.writables[toDeleteIndex+1:]...)
vl.removeFromCrowded(vid)
return true
}
return false
}
func (vl *VolumeLayout) setVolumeWritable(vid needle.VolumeId) bool {
for _, v := range vl.writables {
if v == vid {
return false
}
}
glog.V(0).Infoln("Volume", vid, "becomes writable")
vl.writables = append(vl.writables, vid)
return true
}
func (vl *VolumeLayout) SetVolumeReadOnly(dn *DataNode, vid needle.VolumeId) bool {
vl.accessLock.Lock()
defer vl.accessLock.Unlock()
if _, ok := vl.vid2location[vid]; ok {
vl.readonlyVolumes.Add(vid, dn)
return vl.removeFromWritable(vid)
}
return true
}
func (vl *VolumeLayout) SetVolumeWritable(dn *DataNode, vid needle.VolumeId) bool {
vl.accessLock.Lock()
defer vl.accessLock.Unlock()
if _, ok := vl.vid2location[vid]; ok {
vl.readonlyVolumes.Remove(vid, dn)
}
if vl.enoughCopies(vid) {
return vl.setVolumeWritable(vid)
}
return false
}
func (vl *VolumeLayout) SetVolumeUnavailable(dn *DataNode, vid needle.VolumeId) bool {
vl.accessLock.Lock()
defer vl.accessLock.Unlock()
if location, ok := vl.vid2location[vid]; ok {
if location.Remove(dn) {
vl.readonlyVolumes.Remove(vid, dn)
vl.oversizedVolumes.Remove(vid, dn)
if location.Length() < vl.rp.GetCopyCount() {
glog.V(0).Infoln("Volume", vid, "has", location.Length(), "replica, less than required", vl.rp.GetCopyCount())
return vl.removeFromWritable(vid)
}
}
}
return false
}
func (vl *VolumeLayout) SetVolumeAvailable(dn *DataNode, vid needle.VolumeId, isReadOnly, isFullCapacity bool) bool {
vl.accessLock.Lock()
defer vl.accessLock.Unlock()
vInfo, err := dn.GetVolumesById(vid)
if err != nil {
return false
}
vl.vid2location[vid].Set(dn)
if vInfo.ReadOnly || isReadOnly || isFullCapacity {
return false
}
if vl.enoughCopies(vid) {
return vl.setVolumeWritable(vid)
}
return false
}
func (vl *VolumeLayout) enoughCopies(vid needle.VolumeId) bool {
locations := vl.vid2location[vid].Length()
desired := vl.rp.GetCopyCount()
return locations == desired || (vl.replicationAsMin && locations > desired)
}
func (vl *VolumeLayout) SetVolumeCapacityFull(vid needle.VolumeId) bool {
vl.accessLock.Lock()
defer vl.accessLock.Unlock()
wasWritable := vl.removeFromWritable(vid)
if wasWritable {
glog.V(0).Infof("Volume %d reaches full capacity.", vid)
}
return wasWritable
}
func (vl *VolumeLayout) removeFromCrowded(vid needle.VolumeId) {
delete(vl.crowded, vid)
}
func (vl *VolumeLayout) setVolumeCrowded(vid needle.VolumeId) {
if _, ok := vl.crowded[vid]; !ok {
vl.crowded[vid] = struct{}{}
glog.V(0).Infoln("Volume", vid, "becomes crowded")
}
}
func (vl *VolumeLayout) SetVolumeCrowded(vid needle.VolumeId) {
// since delete is guarded by accessLock.Lock(),
// and is always called in sequential order,
// RLock() should be safe enough
vl.accessLock.RLock()
defer vl.accessLock.RUnlock()
vl.setVolumeCrowded(vid)
}
type VolumeLayoutInfo struct {
Replication string `json:"replication"`
TTL string `json:"ttl"`
Writables []needle.VolumeId `json:"writables"`
Collection string `json:"collection"`
DiskType string `json:"diskType"`
}
func (vl *VolumeLayout) ToInfo() (info VolumeLayoutInfo) {
info.Replication = vl.rp.String()
info.TTL = vl.ttl.String()
info.Writables = vl.writables
info.DiskType = vl.diskType.ReadableString()
//m["locations"] = vl.vid2location
return
}
func (vlc *VolumeLayoutCollection) ToVolumeGrowRequest() *master_pb.VolumeGrowRequest {
return &master_pb.VolumeGrowRequest{
Collection: vlc.Collection,
Replication: vlc.VolumeLayout.rp.String(),
Ttl: vlc.VolumeLayout.ttl.String(),
DiskType: vlc.VolumeLayout.diskType.String(),
}
}
func (vl *VolumeLayout) Stats() *VolumeLayoutStats {
vl.accessLock.RLock()
defer vl.accessLock.RUnlock()
ret := &VolumeLayoutStats{}
freshThreshold := time.Now().Unix() - 60
for vid, vll := range vl.vid2location {
size, fileCount := vll.Stats(vid, freshThreshold)
ret.FileCount += uint64(fileCount)
ret.UsedSize += size * uint64(vll.Length())
if vl.readonlyVolumes.IsTrue(vid) {
ret.TotalSize += size * uint64(vll.Length())
} else {
ret.TotalSize += vl.volumeSizeLimit * uint64(vll.Length())
}
}
return ret
}