You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
383 lines
14 KiB
383 lines
14 KiB
#!/usr/bin/env python3
|
|
"""
|
|
Test script for PyArrow's NATIVE S3 filesystem with SeaweedFS.
|
|
|
|
This test uses PyArrow's built-in S3FileSystem (pyarrow.fs.S3FileSystem)
|
|
instead of s3fs, providing a pure PyArrow solution for reading and writing
|
|
Parquet files to S3-compatible storage.
|
|
|
|
Requirements:
|
|
- pyarrow>=10.0.0
|
|
|
|
Environment Variables:
|
|
S3_ENDPOINT_URL: S3 endpoint (default: localhost:8333)
|
|
S3_ACCESS_KEY: S3 access key (default: some_access_key1)
|
|
S3_SECRET_KEY: S3 secret key (default: some_secret_key1)
|
|
BUCKET_NAME: S3 bucket name (default: test-parquet-bucket)
|
|
TEST_QUICK: Run only small/quick tests (default: 0, set to 1 for quick mode)
|
|
|
|
Usage:
|
|
# Run with default environment variables
|
|
python3 test_pyarrow_native_s3.py
|
|
|
|
# Run with custom environment variables
|
|
S3_ENDPOINT_URL=localhost:8333 \
|
|
S3_ACCESS_KEY=mykey \
|
|
S3_SECRET_KEY=mysecret \
|
|
BUCKET_NAME=mybucket \
|
|
python3 test_pyarrow_native_s3.py
|
|
"""
|
|
|
|
import os
|
|
import secrets
|
|
import sys
|
|
import logging
|
|
from typing import Optional
|
|
|
|
import pyarrow as pa
|
|
import pyarrow.dataset as pads
|
|
import pyarrow.fs as pafs
|
|
import pyarrow.parquet as pq
|
|
|
|
try:
|
|
import boto3
|
|
from botocore.exceptions import ClientError
|
|
HAS_BOTO3 = True
|
|
except ImportError:
|
|
HAS_BOTO3 = False
|
|
|
|
from parquet_test_utils import create_sample_table
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(message)s")
|
|
|
|
# Configuration from environment variables with defaults
|
|
S3_ENDPOINT_URL = os.environ.get("S3_ENDPOINT_URL", "localhost:8333")
|
|
S3_ACCESS_KEY = os.environ.get("S3_ACCESS_KEY", "some_access_key1")
|
|
S3_SECRET_KEY = os.environ.get("S3_SECRET_KEY", "some_secret_key1")
|
|
BUCKET_NAME = os.getenv("BUCKET_NAME", "test-parquet-bucket")
|
|
TEST_QUICK = os.getenv("TEST_QUICK", "0") == "1"
|
|
|
|
# Create randomized test directory
|
|
TEST_RUN_ID = secrets.token_hex(8)
|
|
TEST_DIR = f"parquet-native-tests/{TEST_RUN_ID}"
|
|
|
|
# Test file sizes
|
|
TEST_SIZES = {
|
|
"small": 5,
|
|
"large": 200_000, # This will create multiple row groups
|
|
}
|
|
|
|
# Filter to only small tests if quick mode is enabled
|
|
if TEST_QUICK:
|
|
TEST_SIZES = {"small": TEST_SIZES["small"]}
|
|
logging.info("Quick test mode enabled - running only small tests")
|
|
|
|
|
|
def init_s3_filesystem() -> tuple[Optional[pafs.S3FileSystem], str, str]:
|
|
"""Initialize PyArrow's native S3 filesystem.
|
|
|
|
Returns:
|
|
tuple: (S3FileSystem instance, scheme, endpoint)
|
|
"""
|
|
try:
|
|
logging.info("Initializing PyArrow S3FileSystem...")
|
|
logging.info(f" Endpoint: {S3_ENDPOINT_URL}")
|
|
logging.info(f" Bucket: {BUCKET_NAME}")
|
|
|
|
# Determine scheme from endpoint
|
|
if S3_ENDPOINT_URL.startswith("http://"):
|
|
scheme = "http"
|
|
endpoint = S3_ENDPOINT_URL[7:] # Remove http://
|
|
elif S3_ENDPOINT_URL.startswith("https://"):
|
|
scheme = "https"
|
|
endpoint = S3_ENDPOINT_URL[8:] # Remove https://
|
|
else:
|
|
# Default to http for localhost
|
|
scheme = "http"
|
|
endpoint = S3_ENDPOINT_URL
|
|
|
|
# Enable bucket creation and deletion for testing
|
|
s3 = pafs.S3FileSystem(
|
|
access_key=S3_ACCESS_KEY,
|
|
secret_key=S3_SECRET_KEY,
|
|
endpoint_override=endpoint,
|
|
scheme=scheme,
|
|
allow_bucket_creation=True,
|
|
allow_bucket_deletion=True,
|
|
)
|
|
|
|
logging.info("✓ PyArrow S3FileSystem initialized successfully\n")
|
|
return s3, scheme, endpoint
|
|
except Exception:
|
|
logging.exception("✗ Failed to initialize PyArrow S3FileSystem")
|
|
return None, "", ""
|
|
|
|
|
|
def ensure_bucket_exists_boto3(scheme: str, endpoint: str) -> bool:
|
|
"""Ensure the test bucket exists using boto3."""
|
|
if not HAS_BOTO3:
|
|
logging.error("boto3 is required for bucket creation")
|
|
return False
|
|
|
|
try:
|
|
# Create boto3 client
|
|
endpoint_url = f"{scheme}://{endpoint}"
|
|
s3_client = boto3.client(
|
|
's3',
|
|
endpoint_url=endpoint_url,
|
|
aws_access_key_id=S3_ACCESS_KEY,
|
|
aws_secret_access_key=S3_SECRET_KEY,
|
|
region_name='us-east-1',
|
|
)
|
|
|
|
# Check if bucket exists
|
|
try:
|
|
s3_client.head_bucket(Bucket=BUCKET_NAME)
|
|
logging.info(f"✓ Bucket exists: {BUCKET_NAME}")
|
|
return True
|
|
except ClientError as e:
|
|
error_code = e.response['Error']['Code']
|
|
if error_code == '404':
|
|
# Bucket doesn't exist, create it
|
|
logging.info(f"Creating bucket: {BUCKET_NAME}")
|
|
s3_client.create_bucket(Bucket=BUCKET_NAME)
|
|
logging.info(f"✓ Bucket created: {BUCKET_NAME}")
|
|
return True
|
|
else:
|
|
raise
|
|
except Exception:
|
|
logging.exception("✗ Failed to create/check bucket")
|
|
return False
|
|
|
|
|
|
def ensure_bucket_exists(s3: pafs.S3FileSystem) -> bool:
|
|
"""Ensure the test bucket exists using PyArrow's native S3FileSystem."""
|
|
try:
|
|
# Check if bucket exists by trying to list it
|
|
try:
|
|
file_info = s3.get_file_info(BUCKET_NAME)
|
|
if file_info.type == pafs.FileType.Directory:
|
|
logging.info(f"✓ Bucket exists: {BUCKET_NAME}")
|
|
return True
|
|
except OSError as e:
|
|
# OSError typically means bucket not found or network/permission issues
|
|
error_msg = str(e).lower()
|
|
if "not found" in error_msg or "does not exist" in error_msg or "nosuchbucket" in error_msg:
|
|
logging.debug(f"Bucket '{BUCKET_NAME}' not found, will attempt creation: {e}")
|
|
else:
|
|
# Log other OSErrors (network, auth, etc.) for debugging
|
|
logging.debug(f"Error checking bucket '{BUCKET_NAME}', will attempt creation anyway: {type(e).__name__}: {e}")
|
|
except Exception as e:
|
|
# Catch any other unexpected exceptions and log them
|
|
logging.debug(f"Unexpected error checking bucket '{BUCKET_NAME}', will attempt creation: {type(e).__name__}: {e}")
|
|
|
|
# Try to create the bucket
|
|
logging.info(f"Creating bucket: {BUCKET_NAME}")
|
|
s3.create_dir(BUCKET_NAME)
|
|
logging.info(f"✓ Bucket created: {BUCKET_NAME}")
|
|
return True
|
|
except Exception:
|
|
logging.exception(f"✗ Failed to create/check bucket '{BUCKET_NAME}' with PyArrow")
|
|
return False
|
|
|
|
|
|
def test_write_and_read(s3: pafs.S3FileSystem, test_name: str, num_rows: int) -> tuple[bool, str]:
|
|
"""Test writing and reading a Parquet dataset using PyArrow's native S3 filesystem."""
|
|
try:
|
|
table = create_sample_table(num_rows)
|
|
|
|
# Write using pads.write_dataset
|
|
filename = f"{BUCKET_NAME}/{TEST_DIR}/{test_name}/data.parquet"
|
|
logging.info(f" Writing {num_rows:,} rows to {filename}...")
|
|
|
|
pads.write_dataset(
|
|
table,
|
|
filename,
|
|
filesystem=s3,
|
|
format="parquet",
|
|
)
|
|
logging.info(" ✓ Write completed")
|
|
|
|
# Test Method 1: Read with pq.read_table
|
|
logging.info(" Reading with pq.read_table...")
|
|
table_read = pq.read_table(filename, filesystem=s3)
|
|
if table_read.num_rows != num_rows:
|
|
return False, f"pq.read_table: Row count mismatch (expected {num_rows}, got {table_read.num_rows})"
|
|
|
|
# Check schema first
|
|
if not table_read.schema.equals(table.schema):
|
|
return False, f"pq.read_table: Schema mismatch (expected {table.schema}, got {table_read.schema})"
|
|
|
|
# Sort both tables by 'id' column before comparison to handle potential row order differences
|
|
table_sorted = table.sort_by([('id', 'ascending')])
|
|
table_read_sorted = table_read.sort_by([('id', 'ascending')])
|
|
|
|
if not table_read_sorted.equals(table_sorted):
|
|
# Provide more detailed error information
|
|
error_details = []
|
|
for col_name in table.column_names:
|
|
col_original = table_sorted.column(col_name)
|
|
col_read = table_read_sorted.column(col_name)
|
|
if not col_original.equals(col_read):
|
|
error_details.append(f"column '{col_name}' differs")
|
|
return False, f"pq.read_table: Table contents mismatch ({', '.join(error_details)})"
|
|
logging.info(f" ✓ pq.read_table: {table_read.num_rows:,} rows")
|
|
|
|
# Test Method 2: Read with pq.ParquetDataset
|
|
logging.info(" Reading with pq.ParquetDataset...")
|
|
dataset = pq.ParquetDataset(filename, filesystem=s3)
|
|
table_dataset = dataset.read()
|
|
if table_dataset.num_rows != num_rows:
|
|
return False, f"pq.ParquetDataset: Row count mismatch (expected {num_rows}, got {table_dataset.num_rows})"
|
|
|
|
# Sort before comparison
|
|
table_dataset_sorted = table_dataset.sort_by([('id', 'ascending')])
|
|
if not table_dataset_sorted.equals(table_sorted):
|
|
error_details = []
|
|
for col_name in table.column_names:
|
|
col_original = table_sorted.column(col_name)
|
|
col_read = table_dataset_sorted.column(col_name)
|
|
if not col_original.equals(col_read):
|
|
error_details.append(f"column '{col_name}' differs")
|
|
return False, f"pq.ParquetDataset: Table contents mismatch ({', '.join(error_details)})"
|
|
logging.info(f" ✓ pq.ParquetDataset: {table_dataset.num_rows:,} rows")
|
|
|
|
# Test Method 3: Read with pads.dataset
|
|
logging.info(" Reading with pads.dataset...")
|
|
dataset_pads = pads.dataset(filename, filesystem=s3)
|
|
table_pads = dataset_pads.to_table()
|
|
if table_pads.num_rows != num_rows:
|
|
return False, f"pads.dataset: Row count mismatch (expected {num_rows}, got {table_pads.num_rows})"
|
|
|
|
# Sort before comparison
|
|
table_pads_sorted = table_pads.sort_by([('id', 'ascending')])
|
|
if not table_pads_sorted.equals(table_sorted):
|
|
error_details = []
|
|
for col_name in table.column_names:
|
|
col_original = table_sorted.column(col_name)
|
|
col_read = table_pads_sorted.column(col_name)
|
|
if not col_original.equals(col_read):
|
|
error_details.append(f"column '{col_name}' differs")
|
|
return False, f"pads.dataset: Table contents mismatch ({', '.join(error_details)})"
|
|
logging.info(f" ✓ pads.dataset: {table_pads.num_rows:,} rows")
|
|
|
|
return True, "All read methods passed"
|
|
|
|
except Exception as exc:
|
|
logging.exception(" ✗ Test failed")
|
|
return False, f"{type(exc).__name__}: {exc}"
|
|
|
|
|
|
def cleanup_test_files(s3: pafs.S3FileSystem) -> None:
|
|
"""Clean up test files from S3.
|
|
|
|
Note: We cannot use s3.delete_dir() directly because SeaweedFS uses implicit
|
|
directories (path prefixes without physical directory objects). PyArrow's
|
|
delete_dir() attempts to delete the directory marker itself, which fails with
|
|
"INTERNAL_FAILURE" on SeaweedFS. Instead, we list and delete files individually,
|
|
letting implicit directories disappear automatically.
|
|
"""
|
|
try:
|
|
test_path = f"{BUCKET_NAME}/{TEST_DIR}"
|
|
logging.info(f"Cleaning up test directory: {test_path}")
|
|
|
|
# List and delete files individually to handle implicit directories
|
|
try:
|
|
file_selector = pafs.FileSelector(test_path, recursive=True)
|
|
files = s3.get_file_info(file_selector)
|
|
|
|
# Delete files first (not directories)
|
|
for file_info in files:
|
|
if file_info.type == pafs.FileType.File:
|
|
s3.delete_file(file_info.path)
|
|
logging.debug(f" Deleted file: {file_info.path}")
|
|
|
|
logging.info("✓ Test directory cleaned up")
|
|
except OSError as e:
|
|
# Handle the case where the path doesn't exist or is inaccessible
|
|
if "does not exist" in str(e).lower() or "not found" in str(e).lower():
|
|
logging.info("✓ Test directory already clean or doesn't exist")
|
|
else:
|
|
raise
|
|
except Exception:
|
|
logging.exception("Failed to cleanup test directory")
|
|
|
|
|
|
def main():
|
|
"""Run all tests with PyArrow's native S3 filesystem."""
|
|
print("=" * 80)
|
|
print("PyArrow Native S3 Filesystem Tests for SeaweedFS")
|
|
print("Testing Parquet Files with Multiple Row Groups")
|
|
if TEST_QUICK:
|
|
print("*** QUICK TEST MODE - Small files only ***")
|
|
print("=" * 80 + "\n")
|
|
|
|
print("Configuration:")
|
|
print(f" S3 Endpoint: {S3_ENDPOINT_URL}")
|
|
print(f" Access Key: {S3_ACCESS_KEY}")
|
|
print(f" Bucket: {BUCKET_NAME}")
|
|
print(f" Test Directory: {TEST_DIR}")
|
|
print(f" Quick Mode: {'Yes (small files only)' if TEST_QUICK else 'No (all file sizes)'}")
|
|
print(f" PyArrow Version: {pa.__version__}")
|
|
print()
|
|
|
|
# Initialize S3 filesystem
|
|
s3, scheme, endpoint = init_s3_filesystem()
|
|
if s3 is None:
|
|
print("Cannot proceed without S3 connection")
|
|
return 1
|
|
|
|
# Ensure bucket exists - try PyArrow first, fall back to boto3
|
|
bucket_created = ensure_bucket_exists(s3)
|
|
if not bucket_created:
|
|
logging.info("Trying to create bucket with boto3...")
|
|
bucket_created = ensure_bucket_exists_boto3(scheme, endpoint)
|
|
|
|
if not bucket_created:
|
|
print("Cannot proceed without bucket")
|
|
return 1
|
|
|
|
results = []
|
|
|
|
# Test all file sizes
|
|
for size_name, num_rows in TEST_SIZES.items():
|
|
print(f"\n{'='*80}")
|
|
print(f"Testing with {size_name} files ({num_rows:,} rows)")
|
|
print(f"{'='*80}\n")
|
|
|
|
test_name = f"{size_name}_test"
|
|
success, message = test_write_and_read(s3, test_name, num_rows)
|
|
results.append((test_name, success, message))
|
|
|
|
status = "✓ PASS" if success else "✗ FAIL"
|
|
print(f"\n{status}: {message}\n")
|
|
|
|
# Summary
|
|
print("\n" + "=" * 80)
|
|
print("SUMMARY")
|
|
print("=" * 80)
|
|
passed = sum(1 for _, success, _ in results if success)
|
|
total = len(results)
|
|
print(f"\nTotal: {passed}/{total} passed\n")
|
|
|
|
for test_name, success, message in results:
|
|
status = "✓" if success else "✗"
|
|
print(f" {status} {test_name}: {message}")
|
|
|
|
print("\n" + "=" * 80)
|
|
if passed == total:
|
|
print("✓ ALL TESTS PASSED!")
|
|
else:
|
|
print(f"✗ {total - passed} test(s) failed")
|
|
|
|
print("=" * 80 + "\n")
|
|
|
|
# Cleanup
|
|
cleanup_test_files(s3)
|
|
|
|
return 0 if passed == total else 1
|
|
|
|
|
|
if __name__ == "__main__":
|
|
sys.exit(main())
|
|
|