You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Tree:
814e0bb233
add-admin-and-worker-to-helm-charts
add-ec-vacuum
add_fasthttp_client
add_remote_storage
adding-message-queue-integration-tests
also-delete-parent-directory-if-empty
avoid_releasing_temp_file_on_write
changing-to-zap
collect-public-metrics
copilot/fix-helm-chart-installation
copilot/fix-s3-object-tagging-issue
create-table-snapshot-api-design
data_query_pushdown
dependabot/maven/other/java/client/com.google.protobuf-protobuf-java-3.25.5
dependabot/maven/other/java/examples/org.apache.hadoop-hadoop-common-3.4.0
detect-and-plan-ec-tasks
do-not-retry-if-error-is-NotFound
ec-disk-type-support
enhance-erasure-coding
fasthttp
feature/tus-protocol
filer1_maintenance_branch
fix-GetObjectLockConfigurationHandler
fix-mount-http-parallelism
fix-s3-object-tagging-issue-7589
fix-versioning-listing-only
ftp
gh-pages
improve-fuse-mount
improve-fuse-mount2
logrus
master
message_send
mount2
mq-subscribe
mq2
optimize-delete-lock-check
optimize-delete-lookups
original_weed_mount
pr-7412
random_access_file
refactor-needle-read-operations
refactor-volume-write
remote_overlay
revert-5134-patch-1
revert-5819-patch-1
revert-6434-bugfix-missing-s3-audit
s3-select
sub
tcp_read
test-reverting-lock-table
test_udp
testing
testing-sdx-generation
tikv
track-mount-e2e
upgrade-versions-to-4.00
volume_buffered_writes
worker-execute-ec-tasks
0.72
0.72.release
0.73
0.74
0.75
0.76
0.77
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.11
1.12
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.61RC
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.70
1.71
1.72
1.73
1.74
1.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.88
1.90
1.91
1.92
1.93
1.94
1.95
1.96
1.97
1.98
1.99
1;70
2.00
2.01
2.02
2.03
2.04
2.05
2.06
2.07
2.08
2.09
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
2.41
2.42
2.43
2.47
2.48
2.49
2.50
2.51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59
2.60
2.61
2.62
2.63
2.64
2.65
2.66
2.67
2.68
2.69
2.70
2.71
2.72
2.73
2.74
2.75
2.76
2.77
2.78
2.79
2.80
2.81
2.82
2.83
2.84
2.85
2.86
2.87
2.88
2.89
2.90
2.91
2.92
2.93
2.94
2.95
2.96
2.97
2.98
2.99
3.00
3.01
3.02
3.03
3.04
3.05
3.06
3.07
3.08
3.09
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.71
3.72
3.73
3.74
3.75
3.76
3.77
3.78
3.79
3.80
3.81
3.82
3.83
3.84
3.85
3.86
3.87
3.88
3.89
3.90
3.91
3.92
3.93
3.94
3.95
3.96
3.97
3.98
3.99
4.00
4.01
dev
helm-3.65.1
v0.69
v0.70beta
v3.33
${ noResults }
🚀 Transform SeaweedFS ML optimizations from hard-coded framework-specific code
to a flexible, configuration-driven system using YAML/JSON rules and templates.
## Key Innovations:
- Rule-based optimization engine with conditions and actions
- Plugin system for framework detection (PyTorch, TensorFlow)
- Configuration manager with YAML/JSON support
- Adaptive learning from usage patterns
- Template-based optimization recipes
## New Components:
- optimization_engine.go: Core rule evaluation and application
- config_manager.go: Configuration loading and validation
- plugins/pytorch_plugin.go: PyTorch-specific optimizations
- plugins/tensorflow_plugin.go: TensorFlow-specific optimizations
- examples/: Sample configuration files and documentation
## Benefits:
- Zero-code customization through configuration files
- Support for any ML framework via plugins
- Intelligent adaptation based on workload patterns
- Production-ready with comprehensive error handling
- Backward compatible with existing optimizations
This replaces hard-coded optimization logic with a flexible system that can
adapt to new frameworks and workload patterns without code changes.
|
3 months ago | |
|---|---|---|
| .. | ||
| custom_ml_optimization.yaml | Phase 4: Revolutionary Recipe-Based ML Optimization Engine | 3 months ago |
| pytorch_optimized.yaml | Phase 4: Revolutionary Recipe-Based ML Optimization Engine | 3 months ago |