You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

234 lines
7.7 KiB

package protocol
import (
"encoding/binary"
"fmt"
"time"
)
func (h *Handler) handleProduce(correlationID uint32, requestBody []byte) ([]byte, error) {
// Parse minimal Produce request
// Request format: client_id + acks(2) + timeout(4) + topics_array
if len(requestBody) < 8 { // client_id_size(2) + acks(2) + timeout(4)
return nil, fmt.Errorf("Produce request too short")
}
// Skip client_id
clientIDSize := binary.BigEndian.Uint16(requestBody[0:2])
offset := 2 + int(clientIDSize)
if len(requestBody) < offset+10 { // acks(2) + timeout(4) + topics_count(4)
return nil, fmt.Errorf("Produce request missing data")
}
// Parse acks and timeout
acks := int16(binary.BigEndian.Uint16(requestBody[offset : offset+2]))
offset += 2
timeout := binary.BigEndian.Uint32(requestBody[offset : offset+4])
offset += 4
_ = timeout // unused for now
topicsCount := binary.BigEndian.Uint32(requestBody[offset : offset+4])
offset += 4
response := make([]byte, 0, 1024)
// Correlation ID
correlationIDBytes := make([]byte, 4)
binary.BigEndian.PutUint32(correlationIDBytes, correlationID)
response = append(response, correlationIDBytes...)
// Topics count (same as request)
topicsCountBytes := make([]byte, 4)
binary.BigEndian.PutUint32(topicsCountBytes, topicsCount)
response = append(response, topicsCountBytes...)
// Process each topic
for i := uint32(0); i < topicsCount && offset < len(requestBody); i++ {
if len(requestBody) < offset+2 {
break
}
// Parse topic name
topicNameSize := binary.BigEndian.Uint16(requestBody[offset : offset+2])
offset += 2
if len(requestBody) < offset+int(topicNameSize)+4 {
break
}
topicName := string(requestBody[offset : offset+int(topicNameSize)])
offset += int(topicNameSize)
// Parse partitions count
partitionsCount := binary.BigEndian.Uint32(requestBody[offset : offset+4])
offset += 4
// Check if topic exists
h.topicsMu.RLock()
_, topicExists := h.topics[topicName]
h.topicsMu.RUnlock()
// Response: topic_name_size(2) + topic_name + partitions_array
response = append(response, byte(topicNameSize>>8), byte(topicNameSize))
response = append(response, []byte(topicName)...)
partitionsCountBytes := make([]byte, 4)
binary.BigEndian.PutUint32(partitionsCountBytes, partitionsCount)
response = append(response, partitionsCountBytes...)
// Process each partition
for j := uint32(0); j < partitionsCount && offset < len(requestBody); j++ {
if len(requestBody) < offset+8 {
break
}
// Parse partition: partition_id(4) + record_set_size(4) + record_set
partitionID := binary.BigEndian.Uint32(requestBody[offset : offset+4])
offset += 4
recordSetSize := binary.BigEndian.Uint32(requestBody[offset : offset+4])
offset += 4
if len(requestBody) < offset+int(recordSetSize) {
break
}
recordSetData := requestBody[offset : offset+int(recordSetSize)]
offset += int(recordSetSize)
// Response: partition_id(4) + error_code(2) + base_offset(8) + log_append_time(8) + log_start_offset(8)
partitionIDBytes := make([]byte, 4)
binary.BigEndian.PutUint32(partitionIDBytes, partitionID)
response = append(response, partitionIDBytes...)
var errorCode uint16 = 0
var baseOffset int64 = 0
currentTime := time.Now().UnixNano()
if !topicExists {
errorCode = 3 // UNKNOWN_TOPIC_OR_PARTITION
} else {
// Process the record set
recordCount, totalSize, parseErr := h.parseRecordSet(recordSetData)
if parseErr != nil {
errorCode = 42 // INVALID_RECORD
} else if recordCount > 0 {
if h.useSeaweedMQ {
// Use SeaweedMQ integration for production
offset, err := h.produceToSeaweedMQ(topicName, int32(partitionID), recordSetData)
if err != nil {
errorCode = 1 // UNKNOWN_SERVER_ERROR
} else {
baseOffset = offset
}
} else {
// Use legacy in-memory mode for tests
ledger := h.GetOrCreateLedger(topicName, int32(partitionID))
baseOffset = ledger.AssignOffsets(int64(recordCount))
// Append each record to the ledger
avgSize := totalSize / recordCount
for k := int64(0); k < int64(recordCount); k++ {
ledger.AppendRecord(baseOffset+k, currentTime+k*1000, avgSize)
}
}
}
}
// Error code
response = append(response, byte(errorCode>>8), byte(errorCode))
// Base offset (8 bytes)
baseOffsetBytes := make([]byte, 8)
binary.BigEndian.PutUint64(baseOffsetBytes, uint64(baseOffset))
response = append(response, baseOffsetBytes...)
// Log append time (8 bytes) - timestamp when appended
logAppendTimeBytes := make([]byte, 8)
binary.BigEndian.PutUint64(logAppendTimeBytes, uint64(currentTime))
response = append(response, logAppendTimeBytes...)
// Log start offset (8 bytes) - same as base for now
logStartOffsetBytes := make([]byte, 8)
binary.BigEndian.PutUint64(logStartOffsetBytes, uint64(baseOffset))
response = append(response, logStartOffsetBytes...)
}
}
// Add throttle time at the end (4 bytes)
response = append(response, 0, 0, 0, 0)
// If acks=0, return empty response (fire and forget)
if acks == 0 {
return []byte{}, nil
}
return response, nil
}
// parseRecordSet parses a Kafka record set and returns the number of records and total size
// This is a simplified parser for Phase 1 - just counts valid records
func (h *Handler) parseRecordSet(recordSetData []byte) (recordCount int32, totalSize int32, err error) {
if len(recordSetData) < 12 { // minimum record set size
return 0, 0, fmt.Errorf("record set too small")
}
// For Phase 1, we'll do a very basic parse to count records
// In a full implementation, this would parse the record batch format properly
// Record batch header: base_offset(8) + length(4) + partition_leader_epoch(4) + magic(1) + ...
if len(recordSetData) < 17 {
return 0, 0, fmt.Errorf("invalid record batch header")
}
// Skip to record count (at offset 16 in record batch)
if len(recordSetData) < 20 {
// Assume single record for very small batches
return 1, int32(len(recordSetData)), nil
}
// Try to read record count from the batch header
recordCount = int32(binary.BigEndian.Uint32(recordSetData[16:20]))
// Validate record count is reasonable
if recordCount <= 0 || recordCount > 1000000 { // sanity check
// Fallback to estimating based on size
estimatedCount := int32(len(recordSetData)) / 32 // rough estimate
if estimatedCount <= 0 {
estimatedCount = 1
}
return estimatedCount, int32(len(recordSetData)), nil
}
return recordCount, int32(len(recordSetData)), nil
}
// produceToSeaweedMQ publishes a single record to SeaweedMQ (simplified for Phase 2)
func (h *Handler) produceToSeaweedMQ(topic string, partition int32, recordSetData []byte) (int64, error) {
// For Phase 2, we'll extract a simple key-value from the record set
// In a full implementation, this would parse the entire batch properly
// Extract first record from record set (simplified)
key, value := h.extractFirstRecord(recordSetData)
// Publish to SeaweedMQ
return h.seaweedMQHandler.ProduceRecord(topic, partition, key, value)
}
// extractFirstRecord extracts the first record from a Kafka record set (simplified)
func (h *Handler) extractFirstRecord(recordSetData []byte) ([]byte, []byte) {
// For Phase 2, create a simple placeholder record
// This represents what would be extracted from the actual Kafka record batch
key := []byte("kafka-key")
value := fmt.Sprintf("kafka-message-data-%d", time.Now().UnixNano())
// In a real implementation, this would:
// 1. Parse the record batch header
// 2. Extract individual records with proper key/value/timestamp
// 3. Handle compression, transaction markers, etc.
return key, []byte(value)
}