You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

598 lines
20 KiB

package shell
import (
"cmp"
"flag"
"fmt"
"io"
"os"
"regexp"
"strings"
"time"
"slices"
"github.com/seaweedfs/seaweedfs/weed/pb"
"github.com/seaweedfs/seaweedfs/weed/storage/erasure_coding"
"github.com/seaweedfs/seaweedfs/weed/storage/super_block"
"github.com/seaweedfs/seaweedfs/weed/storage/types"
"github.com/seaweedfs/seaweedfs/weed/util"
"github.com/seaweedfs/seaweedfs/weed/pb/master_pb"
"github.com/seaweedfs/seaweedfs/weed/storage/needle"
)
func init() {
Commands = append(Commands, &commandVolumeBalance{})
}
const thresholdVolumeSize = 1.01
type commandVolumeBalance struct {
commandEnv *CommandEnv
capacityByFunc CapacityByFunc
volumeByActive *bool
applyBalancing bool
volumeSizeLimitMb uint64
}
func (c *commandVolumeBalance) Name() string {
return "volume.balance"
}
func (c *commandVolumeBalance) Help() string {
return `balance all volumes among volume servers
volume.balance [-collection ALL_COLLECTIONS|EACH_COLLECTION|<collection_name>] [-apply] [-dataCenter=<data_center_name>] [-racks=rack_name_one,rack_name_two] [-nodes=192.168.0.1:8080,192.168.0.2:8080]
The -collection parameter supports:
- ALL_COLLECTIONS: balance across all collections
- EACH_COLLECTION: balance each collection separately
- Regular expressions for pattern matching:
* Use exact match: volume.balance -collection="^mybucket$"
* Match multiple buckets: volume.balance -collection="bucket.*"
* Match all user collections: volume.balance -collection="user-.*"
Algorithm:
For each type of volume server (different max volume count limit){
for each collection {
balanceWritableVolumes()
balanceReadOnlyVolumes()
}
}
func balanceWritableVolumes(){
idealWritableVolumeRatio = totalWritableVolumes / totalNumberOfMaxVolumes
for hasMovedOneVolume {
sort all volume servers ordered by the localWritableVolumeRatio = localWritableVolumes to localVolumeMax
pick the volume server B with the highest localWritableVolumeRatio y
for any the volume server A with the number of writable volumes x + 1 <= idealWritableVolumeRatio * localVolumeMax {
if y > localWritableVolumeRatio {
if B has a writable volume id v that A does not have, and satisfy v replication requirements {
move writable volume v from A to B
}
}
}
}
}
func balanceReadOnlyVolumes(){
//similar to balanceWritableVolumes
}
`
}
func (c *commandVolumeBalance) HasTag(CommandTag) bool {
return false
}
func (c *commandVolumeBalance) Do(args []string, commandEnv *CommandEnv, writer io.Writer) (err error) {
allowedCapacityBy := map[string]CapacityByFunc{
"MAX_VOLUME_COUNT": capacityByMaxVolumeCount,
"FREE_VOLUME_COUNT": capacityByFreeVolumeCount,
"MIN_VOLUME_DENSITY": capacityByMinVolumeDensity,
}
allowedVolumeBy := map[string]*bool{
"ALL": nil,
"ACTIVE": new(bool),
"FULL": new(bool),
}
*allowedVolumeBy["ACTIVE"] = true
balanceCommand := flag.NewFlagSet(c.Name(), flag.ContinueOnError)
verbose := balanceCommand.Bool("v", false, "verbose mode")
collection := balanceCommand.String("collection", "ALL_COLLECTIONS", "collection name, or use \"ALL_COLLECTIONS\" across collections, \"EACH_COLLECTION\" for each collection")
dc := balanceCommand.String("dataCenter", "", "only apply the balancing for this dataCenter")
racks := balanceCommand.String("racks", "", "only apply the balancing for this racks")
nodes := balanceCommand.String("nodes", "", "only apply the balancing for this nodes")
noLock := balanceCommand.Bool("noLock", false, "do not lock the admin shell at one's own risk")
applyBalancing := balanceCommand.Bool("apply", false, "apply the balancing plan.")
// TODO: remove this alias
applyBalancingAlias := balanceCommand.Bool("force", false, "apply the balancing plan (alias for -apply)")
balanceCommand.Func("volumeBy", "only apply the balancing for ALL volumes and ACTIVE or FULL", func(flagValue string) error {
if flagValue == "" {
return nil
}
for allowed, volumeBy := range allowedVolumeBy {
if flagValue == allowed {
c.volumeByActive = volumeBy
return nil
}
}
return fmt.Errorf("use \"ALL\", \"ACTIVE\" or \"FULL\"")
})
balanceCommand.Func("capacityBy", "capacityBy function name use \"MAX_VOLUME_COUNT\", \"FREE_VOLUME_COUNT\" and \"MIN_VOLUME_DENSITY\"", func(flagValue string) error {
if flagValue == "" {
c.capacityByFunc = capacityByMaxVolumeCount
return nil
}
for allowed, allowedCapacityByFunc := range allowedCapacityBy {
if flagValue == allowed {
c.capacityByFunc = allowedCapacityByFunc
return nil
}
}
return fmt.Errorf("use \"MAX_VOLUME_COUNT\", \"FREE_VOLUME_COUNT\" or \"MIN_VOLUME_DENSITY\"")
})
if err = balanceCommand.Parse(args); err != nil {
return nil
}
handleDeprecatedForceFlag(writer, balanceCommand, applyBalancingAlias, applyBalancing)
c.applyBalancing = *applyBalancing
infoAboutSimulationMode(writer, c.applyBalancing, "-apply")
if *noLock {
commandEnv.noLock = true
} else {
if err = commandEnv.confirmIsLocked(args); err != nil {
return
}
}
commandEnv.verbose = *verbose
c.commandEnv = commandEnv
// collect topology information
var topologyInfo *master_pb.TopologyInfo
topologyInfo, c.volumeSizeLimitMb, err = collectTopologyInfo(commandEnv, 5*time.Second)
if err != nil {
return err
}
volumeServers := collectVolumeServersByDcRackNode(topologyInfo, *dc, *racks, *nodes)
volumeReplicas, _ := collectVolumeReplicaLocations(topologyInfo)
diskTypes := collectVolumeDiskTypes(topologyInfo)
if *collection == "EACH_COLLECTION" {
collections, err := ListCollectionNames(commandEnv, true, false)
if err != nil {
return err
}
for _, col := range collections {
// Use direct string comparison for exact match (more efficient than regex)
if err = c.balanceVolumeServers(diskTypes, volumeReplicas, volumeServers, nil, col); err != nil {
return err
}
}
} else if *collection == "ALL_COLLECTIONS" {
// Pass nil pattern for all collections
if err = c.balanceVolumeServers(diskTypes, volumeReplicas, volumeServers, nil, *collection); err != nil {
return err
}
} else {
// Compile user-provided pattern
collectionPattern, err := compileCollectionPattern(*collection)
if err != nil {
return fmt.Errorf("invalid collection pattern '%s': %v", *collection, err)
}
if err = c.balanceVolumeServers(diskTypes, volumeReplicas, volumeServers, collectionPattern, *collection); err != nil {
return err
}
}
return nil
}
func (c *commandVolumeBalance) balanceVolumeServers(diskTypes []types.DiskType, volumeReplicas map[uint32][]*VolumeReplica, nodes []*Node, collectionPattern *regexp.Regexp, collectionName string) error {
for _, diskType := range diskTypes {
if err := c.balanceVolumeServersByDiskType(diskType, volumeReplicas, nodes, collectionPattern, collectionName); err != nil {
return err
}
}
return nil
}
func (c *commandVolumeBalance) balanceVolumeServersByDiskType(diskType types.DiskType, volumeReplicas map[uint32][]*VolumeReplica, nodes []*Node, collectionPattern *regexp.Regexp, collectionName string) error {
for _, n := range nodes {
n.selectVolumes(func(v *master_pb.VolumeInformationMessage) bool {
if collectionName != "ALL_COLLECTIONS" {
if collectionPattern != nil {
// Use regex pattern matching
if !collectionPattern.MatchString(v.Collection) {
return false
}
} else {
// Use exact string matching (for EACH_COLLECTION)
if v.Collection != collectionName {
return false
}
}
}
if v.DiskType != string(diskType) {
return false
}
return selectVolumesByActive(v.Size, c.volumeByActive, c.volumeSizeLimitMb)
})
}
if err := balanceSelectedVolume(c.commandEnv, diskType, volumeReplicas, nodes, sortWritableVolumes, c.applyBalancing, c.volumeSizeLimitMb, c.capacityByFunc); err != nil {
return err
}
return nil
}
func collectVolumeServersByDcRackNode(t *master_pb.TopologyInfo, selectedDataCenter string, selectedRacks string, selectedNodes string) (nodes []*Node) {
for _, dc := range t.DataCenterInfos {
if selectedDataCenter != "" && dc.Id != selectedDataCenter {
continue
}
for _, r := range dc.RackInfos {
if selectedRacks != "" && !strings.Contains(selectedRacks, r.Id) {
continue
}
for _, dn := range r.DataNodeInfos {
if selectedNodes != "" && !strings.Contains(selectedNodes, dn.Id) {
continue
}
nodes = append(nodes, &Node{
info: dn,
dc: dc.Id,
rack: r.Id,
})
}
}
}
return
}
func collectVolumeDiskTypes(t *master_pb.TopologyInfo) (diskTypes []types.DiskType) {
knownTypes := make(map[string]bool)
for _, dc := range t.DataCenterInfos {
for _, r := range dc.RackInfos {
for _, dn := range r.DataNodeInfos {
for diskType := range dn.DiskInfos {
if _, found := knownTypes[diskType]; !found {
knownTypes[diskType] = true
}
}
}
}
}
for diskType := range knownTypes {
diskTypes = append(diskTypes, types.ToDiskType(diskType))
}
return
}
type Node struct {
info *master_pb.DataNodeInfo
selectedVolumes map[uint32]*master_pb.VolumeInformationMessage
dc string
rack string
}
type CapacityFunc func(*master_pb.DataNodeInfo) (float64, uint64, bool)
type CapacityByFunc func(diskType types.DiskType, volumeSizeLimitMb uint64) CapacityFunc
func capacityByMaxVolumeCount(diskType types.DiskType, volumeSizeLimitMb uint64) CapacityFunc {
return func(info *master_pb.DataNodeInfo) (float64, uint64, bool) {
diskInfo, found := info.DiskInfos[string(diskType)]
if !found {
return 0, 0, false
}
var volumeSizes uint64
for _, volumeInfo := range diskInfo.VolumeInfos {
volumeSizes += volumeInfo.Size
}
var ecShardCount int
for _, ecShardInfo := range diskInfo.EcShardInfos {
ecShardCount += erasure_coding.GetShardCount(ecShardInfo)
}
if volumeSizeLimitMb == 0 {
volumeSizeLimitMb = util.VolumeSizeLimitGB * util.KiByte
}
usedVolumeCount := volumeSizes / (volumeSizeLimitMb * util.MiByte)
return float64(diskInfo.MaxVolumeCount) - float64(ecShardCount)/erasure_coding.DataShardsCount, usedVolumeCount, false
}
}
func capacityByMinVolumeDensity(diskType types.DiskType, volumeSizeLimitMb uint64) CapacityFunc {
return func(info *master_pb.DataNodeInfo) (float64, uint64, bool) {
diskInfo, found := info.DiskInfos[string(diskType)]
if !found {
return 0, 0, true
}
var volumeSizes uint64
for _, volumeInfo := range diskInfo.VolumeInfos {
volumeSizes += volumeInfo.Size
}
if volumeSizeLimitMb == 0 {
volumeSizeLimitMb = util.VolumeSizeLimitGB * util.KiByte
}
usedVolumeCount := volumeSizes / (volumeSizeLimitMb * util.MiByte)
return float64(uint64(diskInfo.MaxVolumeCount) - usedVolumeCount), usedVolumeCount, true
}
}
func capacityByFreeVolumeCount(diskType types.DiskType, volumeSizeLimitMb uint64) CapacityFunc {
return func(info *master_pb.DataNodeInfo) (float64, uint64, bool) {
diskInfo, found := info.DiskInfos[string(diskType)]
if !found {
return 0, 0, false
}
var volumeSizes uint64
for _, volumeInfo := range diskInfo.VolumeInfos {
volumeSizes += volumeInfo.Size
}
var ecShardCount int
for _, ecShardInfo := range diskInfo.EcShardInfos {
ecShardCount += erasure_coding.GetShardCount(ecShardInfo)
}
if volumeSizeLimitMb == 0 {
volumeSizeLimitMb = util.VolumeSizeLimitGB * util.KiByte
}
usedVolumeCount := volumeSizes / (volumeSizeLimitMb * util.MiByte)
return float64(diskInfo.MaxVolumeCount-diskInfo.VolumeCount) - float64(ecShardCount)/erasure_coding.DataShardsCount, usedVolumeCount, false
}
}
func (n *Node) localVolumeRatio(capacityFunc CapacityFunc) float64 {
capacity, used, isDensityBased := capacityFunc(n.info)
if capacity == 0 {
return 0
}
if isDensityBased {
return float64(used) / capacity
}
return float64(len(n.selectedVolumes)) / capacity
}
func (n *Node) localVolumeNextRatio(capacityFunc CapacityFunc) float64 {
capacity, used, isDensityBased := capacityFunc(n.info)
if capacity == 0 {
return 0
}
if isDensityBased {
return float64(used+1) / capacity
}
return float64(len(n.selectedVolumes)+1) / capacity
}
func (n *Node) isOneVolumeOnly() bool {
if len(n.selectedVolumes) != 1 {
return false
}
for _, disk := range n.info.DiskInfos {
if disk.VolumeCount == 1 && disk.MaxVolumeCount == 1 {
return true
}
}
return false
}
func (n *Node) selectVolumes(fn func(v *master_pb.VolumeInformationMessage) bool) {
n.selectedVolumes = make(map[uint32]*master_pb.VolumeInformationMessage)
for _, diskInfo := range n.info.DiskInfos {
for _, v := range diskInfo.VolumeInfos {
if fn(v) {
n.selectedVolumes[v.Id] = v
}
}
}
}
func sortWritableVolumes(volumes []*master_pb.VolumeInformationMessage) {
slices.SortFunc(volumes, func(a, b *master_pb.VolumeInformationMessage) int {
return cmp.Compare(a.Size, b.Size)
})
}
func selectVolumesByActive(volumeSize uint64, volumeByActive *bool, volumeSizeLimitMb uint64) bool {
if volumeByActive == nil {
return true
}
if uint64(float64(volumeSize)*thresholdVolumeSize) < volumeSizeLimitMb*util.MiByte {
return *volumeByActive
} else {
return !(*volumeByActive)
}
}
func balanceSelectedVolume(commandEnv *CommandEnv, diskType types.DiskType, volumeReplicas map[uint32][]*VolumeReplica, nodes []*Node, sortCandidatesFn func(volumes []*master_pb.VolumeInformationMessage), applyBalancing bool, volumeSizeLimitMb uint64, capacityByFunc CapacityByFunc) (err error) {
ratioVolumeCount, volumeCapacities, idealVolumeRatio := uint64(0), float64(0), float64(0)
var nodesWithCapacity []*Node
capacityFunc := capacityByFunc(diskType, volumeSizeLimitMb)
for _, dn := range nodes {
capacity, volumeUsed, isDensityBased := capacityFunc(dn.info)
if capacity > 0 {
nodesWithCapacity = append(nodesWithCapacity, dn)
}
if isDensityBased {
ratioVolumeCount += volumeUsed
} else {
ratioVolumeCount += uint64(len(dn.selectedVolumes))
}
volumeCapacities += capacity
}
if volumeCapacities > 0 {
idealVolumeRatio = float64(ratioVolumeCount) / volumeCapacities
}
hasMoved := true
if commandEnv != nil && commandEnv.verbose {
fmt.Fprintf(os.Stdout, "selected nodes %d, volumes:%d, max:%d, idealVolumeRatio %f\n", len(nodesWithCapacity), ratioVolumeCount, int64(volumeCapacities), idealVolumeRatio)
}
for hasMoved {
hasMoved = false
slices.SortFunc(nodesWithCapacity, func(a, b *Node) int {
return cmp.Compare(a.localVolumeRatio(capacityFunc), b.localVolumeRatio(capacityFunc))
})
if len(nodesWithCapacity) == 0 {
if commandEnv != nil && commandEnv.verbose {
fmt.Fprintf(os.Stdout, "no volume server found with capacity for %s", diskType.ReadableString())
}
return nil
}
var fullNode *Node
var fullNodeIndex int
for fullNodeIndex = len(nodesWithCapacity) - 1; fullNodeIndex >= 0; fullNodeIndex-- {
fullNode = nodesWithCapacity[fullNodeIndex]
if len(fullNode.selectedVolumes) == 0 {
continue
}
if !fullNode.isOneVolumeOnly() {
break
}
}
var candidateVolumes []*master_pb.VolumeInformationMessage
for _, v := range fullNode.selectedVolumes {
candidateVolumes = append(candidateVolumes, v)
}
sortCandidatesFn(candidateVolumes)
for _, emptyNode := range nodesWithCapacity[:fullNodeIndex] {
if !(fullNode.localVolumeRatio(capacityFunc) > idealVolumeRatio && emptyNode.localVolumeNextRatio(capacityFunc) <= idealVolumeRatio) {
if commandEnv != nil && commandEnv.verbose {
fmt.Printf("no more volume servers with empty slots %s, idealVolumeRatio %f\n", emptyNode.info.Id, idealVolumeRatio)
}
break
}
if commandEnv != nil && commandEnv.verbose {
fmt.Fprintf(os.Stdout, "%s %.2f %.2f:%.2f\t", diskType.ReadableString(), idealVolumeRatio, fullNode.localVolumeRatio(capacityFunc), emptyNode.localVolumeNextRatio(capacityFunc))
}
hasMoved, err = attemptToMoveOneVolume(commandEnv, volumeReplicas, fullNode, candidateVolumes, emptyNode, applyBalancing)
if err != nil {
if commandEnv != nil && commandEnv.verbose {
fmt.Fprintf(os.Stdout, "attempt to move one volume error %+v\n", err)
}
return
}
if hasMoved {
// moved one volume
break
}
}
}
return nil
}
func attemptToMoveOneVolume(commandEnv *CommandEnv, volumeReplicas map[uint32][]*VolumeReplica, fullNode *Node, candidateVolumes []*master_pb.VolumeInformationMessage, emptyNode *Node, applyBalancing bool) (hasMoved bool, err error) {
for _, v := range candidateVolumes {
hasMoved, err = maybeMoveOneVolume(commandEnv, volumeReplicas, fullNode, v, emptyNode, applyBalancing)
if err != nil {
return
}
if hasMoved {
break
}
}
return
}
func maybeMoveOneVolume(commandEnv *CommandEnv, volumeReplicas map[uint32][]*VolumeReplica, fullNode *Node, candidateVolume *master_pb.VolumeInformationMessage, emptyNode *Node, applyChange bool) (hasMoved bool, err error) {
if !commandEnv.isLocked() {
return false, fmt.Errorf("lock is lost")
}
if candidateVolume.RemoteStorageName != "" {
return false, fmt.Errorf("does not move volume in remove storage")
}
if candidateVolume.ReplicaPlacement > 0 {
replicaPlacement, _ := super_block.NewReplicaPlacementFromByte(byte(candidateVolume.ReplicaPlacement))
if !isGoodMove(replicaPlacement, volumeReplicas[candidateVolume.Id], fullNode, emptyNode) {
return false, nil
}
}
if _, found := emptyNode.selectedVolumes[candidateVolume.Id]; !found {
if err = moveVolume(commandEnv, candidateVolume, fullNode, emptyNode, applyChange); err == nil {
adjustAfterMove(candidateVolume, volumeReplicas, fullNode, emptyNode)
return true, nil
} else {
return
}
}
return
}
func moveVolume(commandEnv *CommandEnv, v *master_pb.VolumeInformationMessage, fullNode *Node, emptyNode *Node, applyChange bool) error {
collectionPrefix := v.Collection + "_"
if v.Collection == "" {
collectionPrefix = ""
}
fmt.Fprintf(os.Stdout, " moving %s volume %s%d %s => %s\n", v.DiskType, collectionPrefix, v.Id, fullNode.info.Id, emptyNode.info.Id)
if applyChange {
return LiveMoveVolume(commandEnv.option.GrpcDialOption, os.Stderr, needle.VolumeId(v.Id), pb.NewServerAddressFromDataNode(fullNode.info), pb.NewServerAddressFromDataNode(emptyNode.info), 5*time.Second, v.DiskType, 0, false)
}
return nil
}
func isGoodMove(placement *super_block.ReplicaPlacement, existingReplicas []*VolumeReplica, sourceNode, targetNode *Node) bool {
for _, replica := range existingReplicas {
if replica.location.dataNode.Id == targetNode.info.Id &&
replica.location.rack == targetNode.rack &&
replica.location.dc == targetNode.dc {
// never move to existing nodes
return false
}
}
// existing replicas except the one on sourceNode
existingReplicasExceptSourceNode := make([]*VolumeReplica, 0)
for _, replica := range existingReplicas {
if replica.location.dataNode.Id != sourceNode.info.Id {
existingReplicasExceptSourceNode = append(existingReplicasExceptSourceNode, replica)
}
}
// target location
targetLocation := location{
dc: targetNode.dc,
rack: targetNode.rack,
dataNode: targetNode.info,
}
// check if this satisfies replication requirements
return satisfyReplicaPlacement(placement, existingReplicasExceptSourceNode, targetLocation)
}
func adjustAfterMove(v *master_pb.VolumeInformationMessage, volumeReplicas map[uint32][]*VolumeReplica, fullNode *Node, emptyNode *Node) {
delete(fullNode.selectedVolumes, v.Id)
if emptyNode.selectedVolumes != nil {
emptyNode.selectedVolumes[v.Id] = v
}
existingReplicas := volumeReplicas[v.Id]
for _, replica := range existingReplicas {
if replica.location.dataNode.Id == fullNode.info.Id &&
replica.location.rack == fullNode.rack &&
replica.location.dc == fullNode.dc {
loc := newLocation(emptyNode.dc, emptyNode.rack, emptyNode.info)
replica.location = &loc
for diskType, diskInfo := range fullNode.info.DiskInfos {
if diskType == v.DiskType {
addVolumeCount(diskInfo, -1)
}
}
for diskType, diskInfo := range emptyNode.info.DiskInfos {
if diskType == v.DiskType {
addVolumeCount(diskInfo, 1)
}
}
return
}
}
}