You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

5.9 KiB

EC Distribution Package

This package provides erasure coding (EC) shard distribution algorithms that are:

  • Configurable: Works with any EC ratio (e.g., 10+4, 8+4, 6+3)
  • Reusable: Used by shell commands, worker tasks, and seaweed-enterprise
  • Topology-aware: Distributes shards across data centers, racks, and nodes proportionally

Usage

Basic Usage with Default 10+4 EC

import (
    "github.com/seaweedfs/seaweedfs/weed/storage/erasure_coding/distribution"
)

// Parse replication policy
rep, _ := distribution.NewReplicationConfigFromString("110")

// Use default 10+4 EC configuration
ec := distribution.DefaultECConfig()

// Calculate distribution plan
dist := distribution.CalculateDistribution(ec, rep)

fmt.Println(dist.Summary())
// Output:
// EC Configuration: 10+4 (total: 14, can lose: 4)
// Replication: replication=110 (DCs:2, Racks/DC:2, Nodes/Rack:1)
// Distribution Plan:
//   Data Centers: 2 (target 7 shards each, max 9)
//   Racks per DC: 2 (target 4 shards each, max 6)
//   Nodes per Rack: 1 (target 4 shards each, max 6)

Custom EC Ratios (seaweed-enterprise)

// Create custom 8+4 EC configuration
ec, err := distribution.NewECConfig(8, 4)
if err != nil {
    log.Fatal(err)
}

rep, _ := distribution.NewReplicationConfigFromString("200")
dist := distribution.CalculateDistribution(ec, rep)

// Check fault tolerance
fmt.Println(dist.FaultToleranceAnalysis())
// Output:
// Fault Tolerance Analysis for 8+4:
//   DC Failure: SURVIVABLE ✓
//     - Losing one DC loses ~4 shards
//     - Remaining: 8 shards (need 8)

Planning Shard Moves

// Build topology analysis
analysis := distribution.NewTopologyAnalysis()

// Add nodes and their shard locations
for _, node := range nodes {
    analysis.AddNode(&distribution.TopologyNode{
        NodeID:     node.ID,
        DataCenter: node.DC,
        Rack:       node.Rack,
        FreeSlots:  node.FreeSlots,
    })
    for _, shardID := range node.ShardIDs {
        analysis.AddShardLocation(distribution.ShardLocation{
            ShardID:    shardID,
            NodeID:     node.ID,
            DataCenter: node.DC,
            Rack:       node.Rack,
        })
    }
}
analysis.Finalize()

// Create rebalancer and plan moves
rebalancer := distribution.NewRebalancer(ec, rep)
plan, err := rebalancer.PlanRebalance(analysis)

for _, move := range plan.Moves {
    fmt.Printf("Move shard %d from %s to %s\n", 
        move.ShardID, move.SourceNode.NodeID, move.DestNode.NodeID)
}

Algorithm

Proportional Distribution

The replication policy XYZ is interpreted as a ratio:

Replication DCs Racks/DC Nodes/Rack 14 Shards Distribution
000 1 1 1 All in one place
001 1 1 2 7 per node
010 1 2 1 7 per rack
100 2 1 1 7 per DC
110 2 2 1 7/DC, 4/rack
200 3 1 1 5 per DC

Rebalancing Process

  1. DC-level balancing: Move shards to achieve target shards per DC
  2. Rack-level balancing: Within each DC, balance across racks
  3. Node-level balancing: Within each rack, balance across nodes

Shard Priority: Data First, Parity Moves First

When rebalancing, the algorithm prioritizes keeping data shards spread out:

  • Data shards (0 to DataShards-1): Serve read requests directly
  • Parity shards (DataShards to TotalShards-1): Only used for reconstruction

Rebalancing Strategy:

  • When moving shards FROM an overloaded node, parity shards are moved first
  • This keeps data shards in place on well-distributed nodes
  • Result: Data shards remain spread out for optimal read performance
// Check shard type
if ec.IsDataShard(shardID) {
    // Shard serves read requests
}
if ec.IsParityShard(shardID) {
    // Shard only used for reconstruction
}

// Sort shards for placement (data first for initial distribution)
sorted := ec.SortShardsDataFirst(shards)

// Sort shards for rebalancing (parity first to move them away)
sorted := ec.SortShardsParityFirst(shards)

Fault Tolerance

The package provides fault tolerance analysis:

  • DC Failure: Can the data survive complete DC loss?
  • Rack Failure: Can the data survive complete rack loss?
  • Node Failure: Can the data survive single node loss?

For example, with 10+4 EC (can lose 4 shards):

  • Need 4+ DCs for DC-level fault tolerance
  • Need 4+ racks for rack-level fault tolerance
  • Usually survivable at node level

API Reference

Types

  • ECConfig: EC configuration (data shards, parity shards)
  • ReplicationConfig: Parsed replication policy
  • ECDistribution: Calculated distribution plan
  • TopologyAnalysis: Current shard distribution analysis
  • Rebalancer: Plans shard moves
  • RebalancePlan: List of planned moves
  • ShardMove: Single shard move operation

Key Functions

  • NewECConfig(data, parity int): Create EC configuration
  • DefaultECConfig(): Returns 10+4 configuration
  • CalculateDistribution(ec, rep): Calculate distribution plan
  • NewRebalancer(ec, rep): Create rebalancer
  • PlanRebalance(analysis): Generate rebalancing plan

Integration

Shell Commands

The shell package wraps this distribution package for ec.balance:

import "github.com/seaweedfs/seaweedfs/weed/shell"

rebalancer := shell.NewProportionalECRebalancer(nodes, rp, diskType)
moves, _ := rebalancer.PlanMoves(volumeId, locations)

Worker Tasks

Worker tasks can use the distribution package directly:

import "github.com/seaweedfs/seaweedfs/weed/storage/erasure_coding/distribution"

ec := distribution.ECConfig{DataShards: 8, ParityShards: 4}
rep := distribution.NewReplicationConfig(rp)
dist := distribution.CalculateDistribution(ec, rep)

seaweed-enterprise

Enterprise features can provide custom EC configurations:

// Custom EC ratio from license/config
ec, _ := distribution.NewECConfig(customData, customParity)
rebalancer := distribution.NewRebalancer(ec, rep)