You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

482 lines
16 KiB

package storage
import (
"fmt"
"os"
"path"
"regexp"
"strconv"
"strings"
"slices"
"github.com/seaweedfs/seaweedfs/weed/glog"
"github.com/seaweedfs/seaweedfs/weed/storage/erasure_coding"
"github.com/seaweedfs/seaweedfs/weed/storage/needle"
)
var (
// Match .ec00 through .ec999 (currently only .ec00-.ec31 are used)
// Using \d{2,3} for future-proofing if MaxShardCount is ever increased beyond 99
re = regexp.MustCompile(`\.ec\d{2,3}`)
)
func (l *DiskLocation) FindEcVolume(vid needle.VolumeId) (*erasure_coding.EcVolume, bool) {
l.ecVolumesLock.RLock()
defer l.ecVolumesLock.RUnlock()
ecVolume, ok := l.ecVolumes[vid]
if ok {
return ecVolume, true
}
return nil, false
}
func (l *DiskLocation) DestroyEcVolume(vid needle.VolumeId) {
l.ecVolumesLock.Lock()
defer l.ecVolumesLock.Unlock()
ecVolume, found := l.ecVolumes[vid]
if found {
ecVolume.Destroy()
delete(l.ecVolumes, vid)
}
}
// unloadEcVolume removes an EC volume from memory without deleting its files on disk.
// This is useful for distributed EC volumes where shards may be on other servers.
func (l *DiskLocation) unloadEcVolume(vid needle.VolumeId) {
var toClose *erasure_coding.EcVolume
l.ecVolumesLock.Lock()
if ecVolume, found := l.ecVolumes[vid]; found {
toClose = ecVolume
delete(l.ecVolumes, vid)
}
l.ecVolumesLock.Unlock()
// Close outside the lock to avoid holding write lock during I/O
if toClose != nil {
toClose.Close()
}
}
func (l *DiskLocation) CollectEcShards(vid needle.VolumeId, shardFileNames []string) (ecVolume *erasure_coding.EcVolume, found bool) {
l.ecVolumesLock.RLock()
defer l.ecVolumesLock.RUnlock()
ecVolume, found = l.ecVolumes[vid]
if !found {
return
}
for _, ecShard := range ecVolume.Shards {
if ecShard.ShardId < erasure_coding.ShardId(len(shardFileNames)) {
shardFileNames[ecShard.ShardId] = erasure_coding.EcShardFileName(ecVolume.Collection, l.Directory, int(ecVolume.VolumeId)) + erasure_coding.ToExt(int(ecShard.ShardId))
}
}
return
}
func (l *DiskLocation) FindEcShard(vid needle.VolumeId, shardId erasure_coding.ShardId) (*erasure_coding.EcVolumeShard, bool) {
l.ecVolumesLock.RLock()
defer l.ecVolumesLock.RUnlock()
ecVolume, ok := l.ecVolumes[vid]
if !ok {
return nil, false
}
for _, ecShard := range ecVolume.Shards {
if ecShard.ShardId == shardId {
return ecShard, true
}
}
return nil, false
}
func (l *DiskLocation) LoadEcShard(collection string, vid needle.VolumeId, shardId erasure_coding.ShardId) (*erasure_coding.EcVolume, error) {
ecVolumeShard, err := erasure_coding.NewEcVolumeShard(l.DiskType, l.Directory, collection, vid, shardId)
if err != nil {
if err == os.ErrNotExist {
return nil, os.ErrNotExist
}
return nil, fmt.Errorf("failed to create ec shard %d.%d: %v", vid, shardId, err)
}
l.ecVolumesLock.Lock()
defer l.ecVolumesLock.Unlock()
ecVolume, found := l.ecVolumes[vid]
if !found {
ecVolume, err = erasure_coding.NewEcVolume(l.DiskType, l.Directory, l.IdxDirectory, collection, vid)
if err != nil {
return nil, fmt.Errorf("failed to create ec volume %d: %v", vid, err)
}
l.ecVolumes[vid] = ecVolume
}
ecVolume.AddEcVolumeShard(ecVolumeShard)
return ecVolume, nil
}
func (l *DiskLocation) UnloadEcShard(vid needle.VolumeId, shardId erasure_coding.ShardId) bool {
l.ecVolumesLock.Lock()
defer l.ecVolumesLock.Unlock()
ecVolume, found := l.ecVolumes[vid]
if !found {
return false
}
if _, deleted := ecVolume.DeleteEcVolumeShard(shardId); deleted {
if len(ecVolume.Shards) == 0 {
delete(l.ecVolumes, vid)
ecVolume.Close()
}
return true
}
return true
}
func (l *DiskLocation) loadEcShards(shards []string, collection string, vid needle.VolumeId) (err error) {
for _, shard := range shards {
shardId, err := strconv.ParseInt(path.Ext(shard)[3:], 10, 64)
if err != nil {
return fmt.Errorf("failed to parse ec shard name %v: %w", shard, err)
}
// Validate shardId range before converting to uint8
if shardId < 0 || shardId > 255 {
return fmt.Errorf("shard ID out of range: %d", shardId)
}
_, err = l.LoadEcShard(collection, vid, erasure_coding.ShardId(shardId))
if err != nil {
return fmt.Errorf("failed to load ec shard %v: %w", shard, err)
}
}
return nil
}
func (l *DiskLocation) loadAllEcShards() (err error) {
dirEntries, err := os.ReadDir(l.Directory)
if err != nil {
return fmt.Errorf("load all ec shards in dir %s: %v", l.Directory, err)
}
if l.IdxDirectory != l.Directory {
indexDirEntries, err := os.ReadDir(l.IdxDirectory)
if err != nil {
return fmt.Errorf("load all ec shards in dir %s: %v", l.IdxDirectory, err)
}
dirEntries = append(dirEntries, indexDirEntries...)
}
slices.SortFunc(dirEntries, func(a, b os.DirEntry) int {
return strings.Compare(a.Name(), b.Name())
})
var sameVolumeShards []string
var prevVolumeId needle.VolumeId
var prevCollection string
// Helper to reset state between volume processing
reset := func() {
sameVolumeShards = nil
prevVolumeId = 0
prevCollection = ""
}
for _, fileInfo := range dirEntries {
if fileInfo.IsDir() {
continue
}
ext := path.Ext(fileInfo.Name())
name := fileInfo.Name()
baseName := name[:len(name)-len(ext)]
collection, volumeId, err := parseCollectionVolumeId(baseName)
if err != nil {
continue
}
info, err := fileInfo.Info()
if err != nil {
continue
}
// 0 byte files should be only appearing erroneously for ec data files
// so we ignore them
if re.MatchString(ext) && info.Size() > 0 {
// Group shards by both collection and volumeId to avoid mixing collections
if prevVolumeId == 0 || (volumeId == prevVolumeId && collection == prevCollection) {
sameVolumeShards = append(sameVolumeShards, fileInfo.Name())
} else {
// Before starting a new group, check if previous group had orphaned shards
l.checkOrphanedShards(sameVolumeShards, prevCollection, prevVolumeId)
sameVolumeShards = []string{fileInfo.Name()}
}
prevVolumeId = volumeId
prevCollection = collection
continue
}
if ext == ".ecx" && volumeId == prevVolumeId && collection == prevCollection {
l.handleFoundEcxFile(sameVolumeShards, collection, volumeId)
reset()
continue
}
}
// Check for orphaned EC shards without .ecx file at the end of the directory scan
// This handles the last group of shards in the directory
l.checkOrphanedShards(sameVolumeShards, prevCollection, prevVolumeId)
return nil
}
func (l *DiskLocation) deleteEcVolumeById(vid needle.VolumeId) (e error) {
// Add write lock since we're modifying the ecVolumes map
l.ecVolumesLock.Lock()
defer l.ecVolumesLock.Unlock()
ecVolume, ok := l.ecVolumes[vid]
if !ok {
return
}
ecVolume.Destroy()
delete(l.ecVolumes, vid)
return
}
func (l *DiskLocation) unmountEcVolumeByCollection(collectionName string) map[needle.VolumeId]*erasure_coding.EcVolume {
deltaVols := make(map[needle.VolumeId]*erasure_coding.EcVolume, 0)
for k, v := range l.ecVolumes {
if v.Collection == collectionName {
deltaVols[k] = v
}
}
for k, _ := range deltaVols {
delete(l.ecVolumes, k)
}
return deltaVols
}
func (l *DiskLocation) EcShardCount() int {
l.ecVolumesLock.RLock()
defer l.ecVolumesLock.RUnlock()
shardCount := 0
for _, ecVolume := range l.ecVolumes {
shardCount += len(ecVolume.Shards)
}
return shardCount
}
// handleFoundEcxFile processes a complete group of EC shards when their .ecx file is found.
// This includes validation, loading, and cleanup of incomplete/invalid EC volumes.
func (l *DiskLocation) handleFoundEcxFile(shards []string, collection string, volumeId needle.VolumeId) {
// Check if this is an incomplete EC encoding (not a distributed EC volume)
// Key distinction: if .dat file still exists, EC encoding may have failed
// If .dat file is gone, this is likely a distributed EC volume with shards on multiple servers
baseFileName := erasure_coding.EcShardFileName(collection, l.Directory, int(volumeId))
datFileName := baseFileName + ".dat"
// Determine .dat presence robustly; unexpected errors are treated as "exists"
datExists := l.checkDatFileExists(datFileName)
// Validate EC volume if .dat file exists (incomplete EC encoding scenario)
// This checks shard count, shard size consistency, and expected size vs .dat file
// If .dat is gone, EC encoding completed and shards are distributed across servers
if datExists && !l.validateEcVolume(collection, volumeId) {
glog.Warningf("Incomplete or invalid EC volume %d: .dat exists but validation failed, cleaning up EC files...", volumeId)
l.removeEcVolumeFiles(collection, volumeId)
return
}
// Attempt to load the EC shards
if err := l.loadEcShards(shards, collection, volumeId); err != nil {
// If EC shards failed to load and .dat still exists, clean up EC files to allow .dat file to be used
// If .dat is gone, log error but don't clean up (may be waiting for shards from other servers)
if datExists {
glog.Warningf("Failed to load EC shards for volume %d and .dat exists: %v, cleaning up EC files to use .dat...", volumeId, err)
// Unload first to release FDs, then remove files
l.unloadEcVolume(volumeId)
l.removeEcVolumeFiles(collection, volumeId)
} else {
glog.Warningf("Failed to load EC shards for volume %d: %v (this may be normal for distributed EC volumes)", volumeId, err)
// Clean up any partially loaded in-memory state. This does not delete files.
l.unloadEcVolume(volumeId)
}
return
}
}
// checkDatFileExists checks if .dat file exists with robust error handling.
// Unexpected errors (permission, I/O) are treated as "exists" to avoid misclassifying
// local EC as distributed EC, which is the safer fallback.
func (l *DiskLocation) checkDatFileExists(datFileName string) bool {
if _, err := os.Stat(datFileName); err == nil {
return true
} else if !os.IsNotExist(err) {
glog.Warningf("Failed to stat .dat file %s: %v", datFileName, err)
// Safer to assume local .dat exists to avoid misclassifying as distributed EC
return true
}
return false
}
// checkOrphanedShards checks if the given shards are orphaned (no .ecx file) and cleans them up if needed.
// Returns true if orphaned shards were found and cleaned up.
// This handles the case where EC encoding was interrupted before creating the .ecx file.
func (l *DiskLocation) checkOrphanedShards(shards []string, collection string, volumeId needle.VolumeId) bool {
if len(shards) == 0 || volumeId == 0 {
return false
}
// Check if .dat file exists (incomplete encoding, not distributed EC)
baseFileName := erasure_coding.EcShardFileName(collection, l.Directory, int(volumeId))
datFileName := baseFileName + ".dat"
if l.checkDatFileExists(datFileName) {
glog.Warningf("Found %d EC shards without .ecx file for volume %d (incomplete encoding interrupted before .ecx creation), cleaning up...",
len(shards), volumeId)
l.removeEcVolumeFiles(collection, volumeId)
return true
}
return false
}
// calculateExpectedShardSize computes the exact expected shard size based on .dat file size
// The EC encoding process is deterministic:
// 1. Data is processed in batches of (LargeBlockSize * DataShardsCount) for large blocks
// 2. Remaining data is processed in batches of (SmallBlockSize * DataShardsCount) for small blocks
// 3. Each shard gets exactly its portion, with zero-padding applied to incomplete blocks
func calculateExpectedShardSize(datFileSize int64) int64 {
var shardSize int64
// Process large blocks (1GB * 10 = 10GB batches)
largeBatchSize := int64(erasure_coding.ErasureCodingLargeBlockSize) * int64(erasure_coding.DataShardsCount)
numLargeBatches := datFileSize / largeBatchSize
shardSize = numLargeBatches * int64(erasure_coding.ErasureCodingLargeBlockSize)
remainingSize := datFileSize - (numLargeBatches * largeBatchSize)
// Process remaining data in small blocks (1MB * 10 = 10MB batches)
if remainingSize > 0 {
smallBatchSize := int64(erasure_coding.ErasureCodingSmallBlockSize) * int64(erasure_coding.DataShardsCount)
numSmallBatches := (remainingSize + smallBatchSize - 1) / smallBatchSize // Ceiling division
shardSize += numSmallBatches * int64(erasure_coding.ErasureCodingSmallBlockSize)
}
return shardSize
}
// validateEcVolume checks if EC volume has enough shards to be functional
// For distributed EC volumes (where .dat is deleted), any number of shards is valid
// For incomplete EC encoding (where .dat still exists), we need at least DataShardsCount shards
// Also validates that all shards have the same size (required for Reed-Solomon EC)
// If .dat exists, it also validates shards match the expected size based on .dat file size
func (l *DiskLocation) validateEcVolume(collection string, vid needle.VolumeId) bool {
baseFileName := erasure_coding.EcShardFileName(collection, l.Directory, int(vid))
datFileName := baseFileName + ".dat"
var expectedShardSize int64 = -1
datExists := false
// If .dat file exists, compute exact expected shard size from it
if datFileInfo, err := os.Stat(datFileName); err == nil {
datExists = true
expectedShardSize = calculateExpectedShardSize(datFileInfo.Size())
} else if !os.IsNotExist(err) {
// If stat fails with unexpected error (permission, I/O), fail validation
// Don't treat this as "distributed EC" - it could be a temporary error
glog.Warningf("Failed to stat .dat file %s: %v", datFileName, err)
return false
}
shardCount := 0
var actualShardSize int64 = -1
// Count shards and validate they all have the same size (required for Reed-Solomon EC)
// Check up to MaxShardCount (32) to support custom EC ratios
for i := 0; i < erasure_coding.MaxShardCount; i++ {
shardFileName := baseFileName + erasure_coding.ToExt(i)
fi, err := os.Stat(shardFileName)
if err == nil {
// Check if file has non-zero size
if fi.Size() > 0 {
// Validate all shards are the same size (required for Reed-Solomon EC)
if actualShardSize == -1 {
actualShardSize = fi.Size()
} else if fi.Size() != actualShardSize {
glog.Warningf("EC volume %d shard %d has size %d, expected %d (all EC shards must be same size)",
vid, i, fi.Size(), actualShardSize)
return false
}
shardCount++
}
} else if !os.IsNotExist(err) {
// If stat fails with unexpected error (permission, I/O), fail validation
// This is consistent with .dat file error handling
glog.Warningf("Failed to stat shard file %s: %v", shardFileName, err)
return false
}
}
// If .dat file exists, validate shard size matches expected size
if datExists && actualShardSize > 0 && expectedShardSize > 0 {
if actualShardSize != expectedShardSize {
glog.Warningf("EC volume %d: shard size %d doesn't match expected size %d (based on .dat file size)",
vid, actualShardSize, expectedShardSize)
return false
}
}
// If .dat file is gone, this is a distributed EC volume - any shard count is valid
if !datExists {
glog.V(1).Infof("EC volume %d: distributed EC (.dat removed) with %d shards", vid, shardCount)
return true
}
// If .dat file exists, we need at least DataShardsCount shards locally
// Otherwise it's an incomplete EC encoding that should be cleaned up
if shardCount < erasure_coding.DataShardsCount {
glog.Warningf("EC volume %d has .dat file but only %d shards (need at least %d for local EC)",
vid, shardCount, erasure_coding.DataShardsCount)
return false
}
return true
}
// removeEcVolumeFiles removes all EC-related files for a volume
func (l *DiskLocation) removeEcVolumeFiles(collection string, vid needle.VolumeId) {
baseFileName := erasure_coding.EcShardFileName(collection, l.Directory, int(vid))
indexBaseFileName := erasure_coding.EcShardFileName(collection, l.IdxDirectory, int(vid))
// Helper to remove a file with consistent error handling
removeFile := func(filePath, description string) {
if err := os.Remove(filePath); err != nil {
if !os.IsNotExist(err) {
glog.Warningf("Failed to remove incomplete %s %s: %v", description, filePath, err)
}
} else {
glog.V(2).Infof("Removed incomplete %s: %s", description, filePath)
}
}
// Remove index files first (.ecx, .ecj) before shard files
// This ensures that if cleanup is interrupted, the .ecx file won't trigger
// EC loading for incomplete/missing shards on next startup
removeFile(indexBaseFileName+".ecx", "EC index file")
removeFile(indexBaseFileName+".ecj", "EC journal file")
// Remove all EC shard files (.ec00 ~ .ec31) from data directory
// Use MaxShardCount (32) to support custom EC ratios
for i := 0; i < erasure_coding.MaxShardCount; i++ {
removeFile(baseFileName+erasure_coding.ToExt(i), "EC shard file")
}
}