You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

253 lines
6.9 KiB

package topology
import (
"fmt"
"time"
"github.com/seaweedfs/seaweedfs/weed/glog"
"github.com/seaweedfs/seaweedfs/weed/pb/master_pb"
)
// UpdateTopology updates the topology information from master
func (at *ActiveTopology) UpdateTopology(topologyInfo *master_pb.TopologyInfo) error {
at.mutex.Lock()
defer at.mutex.Unlock()
at.topologyInfo = topologyInfo
at.lastUpdated = time.Now()
// Rebuild structured topology
at.nodes = make(map[string]*activeNode)
at.disks = make(map[string]*activeDisk)
for _, dc := range topologyInfo.DataCenterInfos {
for _, rack := range dc.RackInfos {
for _, nodeInfo := range rack.DataNodeInfos {
node := &activeNode{
nodeID: nodeInfo.Id,
dataCenter: dc.Id,
rack: rack.Id,
nodeInfo: nodeInfo,
disks: make(map[uint32]*activeDisk),
}
// Add disks for this node
for diskType, diskInfo := range nodeInfo.DiskInfos {
disk := &activeDisk{
DiskInfo: &DiskInfo{
NodeID: nodeInfo.Id,
DiskID: diskInfo.DiskId,
DiskType: diskType,
DataCenter: dc.Id,
Rack: rack.Id,
DiskInfo: diskInfo,
},
}
diskKey := fmt.Sprintf("%s:%d", nodeInfo.Id, diskInfo.DiskId)
node.disks[diskInfo.DiskId] = disk
at.disks[diskKey] = disk
}
at.nodes[nodeInfo.Id] = node
}
}
}
// Rebuild performance indexes for O(1) lookups
at.rebuildIndexes()
// Reassign task states to updated topology
at.reassignTaskStates()
glog.V(1).Infof("ActiveTopology updated: %d nodes, %d disks, %d volume entries, %d EC shard entries",
len(at.nodes), len(at.disks), len(at.volumeIndex), len(at.ecShardIndex))
return nil
}
// GetAvailableDisks returns disks that can accept new tasks of the given type
// NOTE: For capacity-aware operations, prefer GetDisksWithEffectiveCapacity
func (at *ActiveTopology) GetAvailableDisks(taskType TaskType, excludeNodeID string) []*DiskInfo {
at.mutex.RLock()
defer at.mutex.RUnlock()
var available []*DiskInfo
for _, disk := range at.disks {
if disk.NodeID == excludeNodeID {
continue // Skip excluded node
}
if at.isDiskAvailable(disk, taskType) {
// Create a copy with current load count and effective capacity
diskCopy := *disk.DiskInfo
diskCopy.LoadCount = len(disk.pendingTasks) + len(disk.assignedTasks)
available = append(available, &diskCopy)
}
}
return available
}
// HasRecentTaskForVolume checks if a volume had a recent task (to avoid immediate re-detection)
func (at *ActiveTopology) HasRecentTaskForVolume(volumeID uint32, taskType TaskType) bool {
at.mutex.RLock()
defer at.mutex.RUnlock()
for _, task := range at.recentTasks {
if task.VolumeID == volumeID && task.TaskType == taskType {
return true
}
}
return false
}
// GetAllNodes returns information about all nodes (public interface)
func (at *ActiveTopology) GetAllNodes() map[string]*master_pb.DataNodeInfo {
at.mutex.RLock()
defer at.mutex.RUnlock()
result := make(map[string]*master_pb.DataNodeInfo)
for nodeID, node := range at.nodes {
result[nodeID] = node.nodeInfo
}
return result
}
// GetTopologyInfo returns the current topology information (read-only access)
func (at *ActiveTopology) GetTopologyInfo() *master_pb.TopologyInfo {
at.mutex.RLock()
defer at.mutex.RUnlock()
return at.topologyInfo
}
// GetNodeDisks returns all disks for a specific node
func (at *ActiveTopology) GetNodeDisks(nodeID string) []*DiskInfo {
at.mutex.RLock()
defer at.mutex.RUnlock()
node, exists := at.nodes[nodeID]
if !exists {
return nil
}
var disks []*DiskInfo
for _, disk := range node.disks {
diskCopy := *disk.DiskInfo
diskCopy.LoadCount = len(disk.pendingTasks) + len(disk.assignedTasks)
disks = append(disks, &diskCopy)
}
return disks
}
// rebuildIndexes rebuilds the volume and EC shard indexes for O(1) lookups
func (at *ActiveTopology) rebuildIndexes() {
// Clear existing indexes
at.volumeIndex = make(map[uint32][]string)
at.ecShardIndex = make(map[uint32][]string)
// Rebuild indexes from current topology
for _, dc := range at.topologyInfo.DataCenterInfos {
for _, rack := range dc.RackInfos {
for _, nodeInfo := range rack.DataNodeInfos {
for _, diskInfo := range nodeInfo.DiskInfos {
diskKey := fmt.Sprintf("%s:%d", nodeInfo.Id, diskInfo.DiskId)
// Index volumes
for _, volumeInfo := range diskInfo.VolumeInfos {
volumeID := volumeInfo.Id
at.volumeIndex[volumeID] = append(at.volumeIndex[volumeID], diskKey)
}
// Index EC shards
for _, ecShardInfo := range diskInfo.EcShardInfos {
volumeID := ecShardInfo.Id
at.ecShardIndex[volumeID] = append(at.ecShardIndex[volumeID], diskKey)
}
}
}
}
}
}
// GetVolumeLocations returns the disk locations for a volume using O(1) lookup
func (at *ActiveTopology) GetVolumeLocations(volumeID uint32, collection string) []VolumeReplica {
at.mutex.RLock()
defer at.mutex.RUnlock()
diskKeys, exists := at.volumeIndex[volumeID]
if !exists {
return []VolumeReplica{}
}
var replicas []VolumeReplica
for _, diskKey := range diskKeys {
if disk, diskExists := at.disks[diskKey]; diskExists {
// Verify collection matches (since index doesn't include collection)
if at.volumeMatchesCollection(disk, volumeID, collection) {
replicas = append(replicas, VolumeReplica{
ServerID: disk.NodeID,
DiskID: disk.DiskID,
})
}
}
}
return replicas
}
// GetECShardLocations returns the disk locations for EC shards using O(1) lookup
func (at *ActiveTopology) GetECShardLocations(volumeID uint32, collection string) []VolumeReplica {
at.mutex.RLock()
defer at.mutex.RUnlock()
diskKeys, exists := at.ecShardIndex[volumeID]
if !exists {
return []VolumeReplica{}
}
var ecShards []VolumeReplica
for _, diskKey := range diskKeys {
if disk, diskExists := at.disks[diskKey]; diskExists {
// Verify collection matches (since index doesn't include collection)
if at.ecShardMatchesCollection(disk, volumeID, collection) {
ecShards = append(ecShards, VolumeReplica{
ServerID: disk.NodeID,
DiskID: disk.DiskID,
})
}
}
}
return ecShards
}
// volumeMatchesCollection checks if a volume on a disk matches the given collection
func (at *ActiveTopology) volumeMatchesCollection(disk *activeDisk, volumeID uint32, collection string) bool {
if disk.DiskInfo == nil || disk.DiskInfo.DiskInfo == nil {
return false
}
for _, volumeInfo := range disk.DiskInfo.DiskInfo.VolumeInfos {
if volumeInfo.Id == volumeID && volumeInfo.Collection == collection {
return true
}
}
return false
}
// ecShardMatchesCollection checks if EC shards on a disk match the given collection
func (at *ActiveTopology) ecShardMatchesCollection(disk *activeDisk, volumeID uint32, collection string) bool {
if disk.DiskInfo == nil || disk.DiskInfo.DiskInfo == nil {
return false
}
for _, ecShardInfo := range disk.DiskInfo.DiskInfo.EcShardInfos {
if ecShardInfo.Id == volumeID && ecShardInfo.Collection == collection {
return true
}
}
return false
}