You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

14 KiB

SeaweedFS FUSE ML Optimization Plan

Analysis Summary

Based on examination of JuiceFS's recent 600 commits and current SeaweedFS FUSE implementation, this plan identifies key ML-focused optimizations that can be ported to SeaweedFS.

Key JuiceFS Optimizations for ML Workloads:

  1. Smart Prefetching System (pkg/chunk/prefetch.go)

    • Concurrent prefetch workers (configurable parallelism)
    • Duplicate request deduplication
    • Background chunk fetching
  2. Advanced Caching Architecture

    • Multi-tiered caching (memory + disk with size-based tiers)
    • Open file cache with chunk-level caching (pkg/meta/openfile.go)
    • Intelligent cache eviction based on access patterns
  3. Performance Optimizations

    • Support for writeback cache mode
    • Memory cache optimization with separate allocation
    • Better cache hit detection and metrics

Current SeaweedFS Limitations:

  1. Basic Caching: Simple tiered cache without smart prefetching
  2. No Sequential Access Detection: Missing readahead optimizations
  3. Limited Concurrency Control: Basic reader cache without pattern detection
  4. No ML-Specific Optimizations: Missing batch processing awareness

Implementation Plan

Phase 1: Smart Prefetching System (Priority: High)

1.1 Create Prefetch Worker Pool

// Location: weed/mount/prefetch.go (new file)
type PrefetchManager struct {
    workers     chan *PrefetchRequest
    activeJobs  map[string]*PrefetchJob
    maxWorkers  int
    jobTimeout  time.Duration
}

type PrefetchRequest struct {
    FileId      string
    ChunkIndex  uint32
    Priority    int
    Callback    func([]byte, error)
}

1.2 Sequential Access Detection

// Location: weed/mount/access_pattern.go (new file)
type AccessPatternDetector struct {
    recentAccesses []AccessInfo
    sequentialThreshold int
    readaheadSize       int64
}

// Integration in weedfs_file_read.go
func (fh *FileHandle) detectSequentialAccess(offset int64, size int) bool {
    // Detect if current read follows sequential pattern
    // Trigger prefetch for next chunks if sequential
}

1.3 Enhanced Reader Cache with Prefetching

// Location: weed/filer/reader_cache.go (enhancement)
func (rc *ReaderCache) MaybePrefetch(chunkViews *Interval[*ChunkView]) {
    // Enhanced version with sequential detection
    // Prefetch multiple chunks ahead for sequential reads
    // Use ML-aware heuristics for prefetch distance
}

Phase 2: Enhanced Caching (Priority: High)

2.1 Open File Cache with Chunk Metadata

// Location: weed/mount/open_file_cache.go (new file)
type OpenFileCache struct {
    files    map[uint64]*OpenFile // inode -> OpenFile
    mutex    sync.RWMutex
    maxFiles int
    ttl      time.Duration
}

type OpenFile struct {
    Inode       uint64
    ChunkCache  map[uint32]*ChunkMetadata
    AccessTime  time.Time
    ReadPattern AccessPattern
}

type ChunkMetadata struct {
    Offset     uint64
    Size       uint64
    CacheLevel int // 0=memory, 1=disk, 2=not cached
    LastAccess time.Time
}

2.2 ML-Aware Cache Eviction Policy

// Location: weed/util/chunk_cache/ml_cache_policy.go (new file)
type MLCachePolicy struct {
    // Factors in:
    // - File access recency
    // - Sequential vs random access patterns
    // - File size (prefer caching smaller frequently accessed files)
    // - Training vs inference workload detection
}

func (policy *MLCachePolicy) ShouldEvict(chunk *CacheEntry) bool {
    // ML-specific eviction logic
    // Keep chunks that are part of training datasets longer
    // Prioritize model checkpoints during inference
}

2.3 Writeback Cache Support

// Location: weed/mount/weedfs.go (enhancement)
func (wfs *WFS) configureFuseOptions() {
    // Add support for FOPEN_KEEP_CACHE
    // Implement writeback cache similar to JuiceFS
    // Enable kernel caching for read-heavy ML workloads
}

Phase 3: ML Pattern Detection (Priority: Medium)

3.1 Training Data Access Pattern Detection

// Location: weed/mount/ml_patterns.go (new file)
type MLWorkloadDetector struct {
    accessHistory []AccessEvent
    patterns      []AccessPattern
}

type AccessPattern int
const (
    RandomAccess AccessPattern = iota
    SequentialAccess
    StridedAccess    // Common in image datasets
    BatchAccess      // Multiple files accessed together
    EpochAccess      // Dataset restart patterns
)

func (detector *MLWorkloadDetector) DetectPattern(accesses []AccessEvent) AccessPattern {
    // Analyze access patterns to detect:
    // - Image dataset traversal (often sequential with restarts)
    // - Model checkpoint loading (large sequential reads)
    // - Tensor file access patterns
}

3.2 Dataset Traversal Optimization

// Location: weed/mount/dataset_optimizer.go (new file)
func (opt *DatasetOptimizer) OptimizeForTraining() {
    // Pre-load dataset metadata
    // Prefetch next batch of files during current batch processing
    // Implement epoch boundary detection and cache warming
}

Phase 4: Batch Optimization (Priority: Medium)

4.1 Batch Read Aggregation

// Location: weed/mount/batch_reader.go (new file)
type BatchReader struct {
    pendingReads []ReadRequest
    batchSize    int
    timeout      time.Duration
}

func (br *BatchReader) AggregateReads() {
    // Combine multiple small reads into larger requests
    // Optimize for common ML access patterns
    // Reduce network overhead for distributed training
}

4.2 Tensor File Optimization

// Location: weed/mount/tensor_optimizer.go (new file)
func (to *TensorOptimizer) OptimizeForTensorFlow() {
    // Detect TFRecord, PyTorch .pt files
    // Optimize chunk sizes for tensor data
    // Implement tensor-aware prefetching
}

Phase 5: Configuration and Monitoring (Priority: Low)

5.1 ML-Specific Mount Options

// Location: weed/command/mount.go (enhancement)
var mlOptions = struct {
    enableMLOptimization *bool
    prefetchWorkers      *int
    mlCacheSize         *int64
    trainingMode        *bool
    datasetPath         *string
}

// New mount flags:
// -ml.optimization=true
// -ml.prefetchWorkers=8  
// -ml.cacheSize=1GB
// -ml.trainingMode=true
// -ml.datasetPath=/datasets

5.2 Performance Metrics

// Location: weed/mount/ml_metrics.go (new file)
type MLMetrics struct {
    PrefetchHitRate     float64
    SequentialDetected  int64
    CacheHitsByPattern  map[AccessPattern]int64
    BatchEfficiency     float64
}

func (metrics *MLMetrics) Export() {
    // Export to Prometheus/Grafana for monitoring
    // Track ML-specific performance indicators
}

Testing Plan

Unit Testing Strategy

Phase 1 Tests

  1. Prefetch Manager Tests

    // Location: weed/mount/prefetch_test.go
    func TestPrefetchManager_WorkerPool(t *testing.T)
    func TestPrefetchManager_DuplicateRequests(t *testing.T)
    func TestPrefetchManager_PriorityQueue(t *testing.T)
    func TestPrefetchManager_Timeout(t *testing.T)
    
  2. Access Pattern Detection Tests

    // Location: weed/mount/access_pattern_test.go
    func TestSequentialDetection(t *testing.T)
    func TestRandomAccessDetection(t *testing.T)
    func TestStridedAccessDetection(t *testing.T)
    func TestPatternTransition(t *testing.T)
    

Phase 2 Tests

  1. Open File Cache Tests

    // Location: weed/mount/open_file_cache_test.go
    func TestOpenFileCache_Basic(t *testing.T)
    func TestOpenFileCache_Eviction(t *testing.T)
    func TestOpenFileCache_ChunkMetadata(t *testing.T)
    func TestOpenFileCache_Concurrent(t *testing.T)
    
  2. ML Cache Policy Tests

    // Location: weed/util/chunk_cache/ml_cache_policy_test.go
    func TestMLCachePolicy_TrainingWorkload(t *testing.T)
    func TestMLCachePolicy_InferenceWorkload(t *testing.T)
    func TestMLCachePolicy_EvictionHeuristics(t *testing.T)
    

Phase 3 Tests

  1. ML Pattern Detection Tests
    // Location: weed/mount/ml_patterns_test.go
    func TestMLWorkloadDetector_ImageDataset(t *testing.T)
    func TestMLWorkloadDetector_TextDataset(t *testing.T)
    func TestMLWorkloadDetector_ModelCheckpoints(t *testing.T)
    func TestMLWorkloadDetector_EpochBoundary(t *testing.T)
    

Phase 4 Tests

  1. Batch Optimization Tests
    // Location: weed/mount/batch_reader_test.go
    func TestBatchReader_Aggregation(t *testing.T)
    func TestBatchReader_Timeout(t *testing.T)
    func TestBatchReader_TensorFiles(t *testing.T)
    

Integration Testing

Test Environment Setup

#!/bin/bash
# test/ml_integration/setup.sh

# Setup SeaweedFS cluster for ML testing
make clean
make

# Start master server
./weed master &
sleep 2

# Start volume servers
./weed volume -dir=./vol1 -mserver=localhost:9333 -port=8080 &
./weed volume -dir=./vol2 -mserver=localhost:9333 -port=8081 &
sleep 2

# Start filer
./weed filer -master=localhost:9333 &
sleep 2

ML Workload Simulation

// Location: test/ml_integration/ml_workload_test.go
func TestMLWorkloadSimulation(t *testing.T) {
    // Simulate PyTorch DataLoader access patterns
    // Test with ImageNet-style dataset structure
    // Measure cache hit rates and throughput
}

func TestSequentialDatasetTraversal(t *testing.T) {
    // Test epoch-based dataset iteration
    // Verify prefetch effectiveness
    // Check memory usage patterns
}

func TestConcurrentTrainingWorkers(t *testing.T) {
    // Simulate multiple training processes
    // Test batch read aggregation
    // Verify no cache conflicts
}

Performance Benchmarks

// Location: test/ml_integration/benchmark_test.go
func BenchmarkSequentialRead(b *testing.B) {
    // Compare before/after optimization
    // Measure throughput improvements
}

func BenchmarkRandomRead(b *testing.B) {
    // Test cache effectiveness for random access
}

func BenchmarkConcurrentReads(b *testing.B) {
    // Test scalability with multiple readers
}

Load Testing

Test Datasets

  1. Image Dataset: 100K images, 224x224 RGB (common CNN input)
  2. Text Dataset: 10M text samples (NLP training data)
  3. Model Checkpoints: Large PyTorch/TensorFlow model files
  4. Mixed Workload: Combination of training and inference access patterns

Load Test Scenarios

// Location: test/ml_load/scenarios.go

type LoadTestScenario struct {
    Name            string
    Workers         int
    Duration        time.Duration
    AccessPattern   AccessPattern
    DatasetType     string
    ExpectedMetrics PerformanceMetrics
}

var scenarios = []LoadTestScenario{
    {
        Name:          "CNN Training",
        Workers:       4,
        Duration:      5 * time.Minute,
        AccessPattern: SequentialAccess,
        DatasetType:   "ImageDataset",
    },
    {
        Name:          "NLP Training", 
        Workers:       8,
        Duration:      10 * time.Minute,
        AccessPattern: BatchAccess,
        DatasetType:   "TextDataset",
    },
    // More scenarios...
}

Continuous Integration Tests

GitHub Actions Workflow

# Location: .github/workflows/ml-optimization-test.yml
name: ML Optimization Tests

on: [push, pull_request]

jobs:
  ml-unit-tests:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - uses: actions/setup-go@v2
        with:
          go-version: 1.21
      - run: go test ./weed/mount/... -tags=ml_optimization
      
  ml-integration-tests:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - run: make
      - run: ./test/ml_integration/run_tests.sh
      
  ml-performance-tests:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - run: go test -bench=. ./test/ml_integration/

Implementation Timeline

Week 1-2: Foundation + Testing Setup

  • Implement basic prefetch worker pool
  • Add sequential access detection
  • Create access pattern detector
  • Testing: Unit tests for prefetch manager and access pattern detection
  • Commit: "Phase 1: Add smart prefetching foundation with tests"

Week 3-4: Enhanced Caching + Integration Tests

  • Implement open file cache with chunk metadata
  • Add ML-aware cache eviction policies
  • Enable writeback cache support
  • Testing: Integration tests for caching system
  • Commit: "Phase 2: Enhanced ML-aware caching with comprehensive tests"

Week 5-6: ML Patterns + Load Testing

  • Create ML workload detector
  • Implement dataset traversal optimization
  • Add training-specific optimizations
  • Testing: ML pattern detection tests and load testing setup
  • Commit: "Phase 3: ML pattern detection with load testing framework"

Week 7-8: Batch Optimization + Performance Testing

  • Implement batch read aggregation
  • Add tensor file optimizations
  • Integration testing and performance tuning
  • Testing: Performance benchmarks and optimization verification
  • Commit: "Phase 4: Batch optimization with performance benchmarks"

Week 9-10: Configuration, Monitoring & CI

  • Add ML-specific mount options
  • Implement performance metrics
  • Documentation and final testing
  • Testing: End-to-end testing and CI pipeline setup
  • Commit: "Phase 5: ML monitoring and configuration with full test suite"

Expected Performance Improvements

  1. Sequential Read Throughput: 3-5x improvement for large file streaming
  2. Training Data Loading: 2-3x faster dataset iteration
  3. Cache Hit Rate: 40-60% improvement with ML-aware caching
  4. Memory Efficiency: 20-30% reduction in memory usage through better eviction
  5. Network Overhead: 50% reduction through batch aggregation

Testing Success Criteria

Performance Benchmarks

  • Sequential read throughput >= 3x baseline
  • Cache hit rate >= 60% for training workloads
  • Memory usage increase <= 20% despite additional caching
  • Prefetch accuracy >= 80% for sequential access

Functional Tests

  • All unit tests pass with >= 90% code coverage
  • Integration tests pass for common ML frameworks
  • Load tests complete without memory leaks
  • Concurrent access tests show no data corruption

Compatibility Tests

  • Existing FUSE functionality unaffected
  • No performance regression for non-ML workloads
  • Works with PyTorch, TensorFlow, and generic file access
  • Cross-platform compatibility (Linux, macOS)