14 KiB
SeaweedFS FUSE ML Optimization Plan
Analysis Summary
Based on examination of JuiceFS's recent 600 commits and current SeaweedFS FUSE implementation, this plan identifies key ML-focused optimizations that can be ported to SeaweedFS.
Key JuiceFS Optimizations for ML Workloads:
-
Smart Prefetching System (
pkg/chunk/prefetch.go)- Concurrent prefetch workers (configurable parallelism)
- Duplicate request deduplication
- Background chunk fetching
-
Advanced Caching Architecture
- Multi-tiered caching (memory + disk with size-based tiers)
- Open file cache with chunk-level caching (
pkg/meta/openfile.go) - Intelligent cache eviction based on access patterns
-
Performance Optimizations
- Support for writeback cache mode
- Memory cache optimization with separate allocation
- Better cache hit detection and metrics
Current SeaweedFS Limitations:
- Basic Caching: Simple tiered cache without smart prefetching
- No Sequential Access Detection: Missing readahead optimizations
- Limited Concurrency Control: Basic reader cache without pattern detection
- No ML-Specific Optimizations: Missing batch processing awareness
Implementation Plan
Phase 1: Smart Prefetching System (Priority: High)
1.1 Create Prefetch Worker Pool
// Location: weed/mount/prefetch.go (new file)
type PrefetchManager struct {
workers chan *PrefetchRequest
activeJobs map[string]*PrefetchJob
maxWorkers int
jobTimeout time.Duration
}
type PrefetchRequest struct {
FileId string
ChunkIndex uint32
Priority int
Callback func([]byte, error)
}
1.2 Sequential Access Detection
// Location: weed/mount/access_pattern.go (new file)
type AccessPatternDetector struct {
recentAccesses []AccessInfo
sequentialThreshold int
readaheadSize int64
}
// Integration in weedfs_file_read.go
func (fh *FileHandle) detectSequentialAccess(offset int64, size int) bool {
// Detect if current read follows sequential pattern
// Trigger prefetch for next chunks if sequential
}
1.3 Enhanced Reader Cache with Prefetching
// Location: weed/filer/reader_cache.go (enhancement)
func (rc *ReaderCache) MaybePrefetch(chunkViews *Interval[*ChunkView]) {
// Enhanced version with sequential detection
// Prefetch multiple chunks ahead for sequential reads
// Use ML-aware heuristics for prefetch distance
}
Phase 2: Enhanced Caching (Priority: High)
2.1 Open File Cache with Chunk Metadata
// Location: weed/mount/open_file_cache.go (new file)
type OpenFileCache struct {
files map[uint64]*OpenFile // inode -> OpenFile
mutex sync.RWMutex
maxFiles int
ttl time.Duration
}
type OpenFile struct {
Inode uint64
ChunkCache map[uint32]*ChunkMetadata
AccessTime time.Time
ReadPattern AccessPattern
}
type ChunkMetadata struct {
Offset uint64
Size uint64
CacheLevel int // 0=memory, 1=disk, 2=not cached
LastAccess time.Time
}
2.2 ML-Aware Cache Eviction Policy
// Location: weed/util/chunk_cache/ml_cache_policy.go (new file)
type MLCachePolicy struct {
// Factors in:
// - File access recency
// - Sequential vs random access patterns
// - File size (prefer caching smaller frequently accessed files)
// - Training vs inference workload detection
}
func (policy *MLCachePolicy) ShouldEvict(chunk *CacheEntry) bool {
// ML-specific eviction logic
// Keep chunks that are part of training datasets longer
// Prioritize model checkpoints during inference
}
2.3 Writeback Cache Support
// Location: weed/mount/weedfs.go (enhancement)
func (wfs *WFS) configureFuseOptions() {
// Add support for FOPEN_KEEP_CACHE
// Implement writeback cache similar to JuiceFS
// Enable kernel caching for read-heavy ML workloads
}
Phase 3: ML Pattern Detection (Priority: Medium)
3.1 Training Data Access Pattern Detection
// Location: weed/mount/ml_patterns.go (new file)
type MLWorkloadDetector struct {
accessHistory []AccessEvent
patterns []AccessPattern
}
type AccessPattern int
const (
RandomAccess AccessPattern = iota
SequentialAccess
StridedAccess // Common in image datasets
BatchAccess // Multiple files accessed together
EpochAccess // Dataset restart patterns
)
func (detector *MLWorkloadDetector) DetectPattern(accesses []AccessEvent) AccessPattern {
// Analyze access patterns to detect:
// - Image dataset traversal (often sequential with restarts)
// - Model checkpoint loading (large sequential reads)
// - Tensor file access patterns
}
3.2 Dataset Traversal Optimization
// Location: weed/mount/dataset_optimizer.go (new file)
func (opt *DatasetOptimizer) OptimizeForTraining() {
// Pre-load dataset metadata
// Prefetch next batch of files during current batch processing
// Implement epoch boundary detection and cache warming
}
Phase 4: Batch Optimization (Priority: Medium)
4.1 Batch Read Aggregation
// Location: weed/mount/batch_reader.go (new file)
type BatchReader struct {
pendingReads []ReadRequest
batchSize int
timeout time.Duration
}
func (br *BatchReader) AggregateReads() {
// Combine multiple small reads into larger requests
// Optimize for common ML access patterns
// Reduce network overhead for distributed training
}
4.2 Tensor File Optimization
// Location: weed/mount/tensor_optimizer.go (new file)
func (to *TensorOptimizer) OptimizeForTensorFlow() {
// Detect TFRecord, PyTorch .pt files
// Optimize chunk sizes for tensor data
// Implement tensor-aware prefetching
}
Phase 5: Configuration and Monitoring (Priority: Low)
5.1 ML-Specific Mount Options
// Location: weed/command/mount.go (enhancement)
var mlOptions = struct {
enableMLOptimization *bool
prefetchWorkers *int
mlCacheSize *int64
trainingMode *bool
datasetPath *string
}
// New mount flags:
// -ml.optimization=true
// -ml.prefetchWorkers=8
// -ml.cacheSize=1GB
// -ml.trainingMode=true
// -ml.datasetPath=/datasets
5.2 Performance Metrics
// Location: weed/mount/ml_metrics.go (new file)
type MLMetrics struct {
PrefetchHitRate float64
SequentialDetected int64
CacheHitsByPattern map[AccessPattern]int64
BatchEfficiency float64
}
func (metrics *MLMetrics) Export() {
// Export to Prometheus/Grafana for monitoring
// Track ML-specific performance indicators
}
Testing Plan
Unit Testing Strategy
Phase 1 Tests
-
Prefetch Manager Tests
// Location: weed/mount/prefetch_test.go func TestPrefetchManager_WorkerPool(t *testing.T) func TestPrefetchManager_DuplicateRequests(t *testing.T) func TestPrefetchManager_PriorityQueue(t *testing.T) func TestPrefetchManager_Timeout(t *testing.T) -
Access Pattern Detection Tests
// Location: weed/mount/access_pattern_test.go func TestSequentialDetection(t *testing.T) func TestRandomAccessDetection(t *testing.T) func TestStridedAccessDetection(t *testing.T) func TestPatternTransition(t *testing.T)
Phase 2 Tests
-
Open File Cache Tests
// Location: weed/mount/open_file_cache_test.go func TestOpenFileCache_Basic(t *testing.T) func TestOpenFileCache_Eviction(t *testing.T) func TestOpenFileCache_ChunkMetadata(t *testing.T) func TestOpenFileCache_Concurrent(t *testing.T) -
ML Cache Policy Tests
// Location: weed/util/chunk_cache/ml_cache_policy_test.go func TestMLCachePolicy_TrainingWorkload(t *testing.T) func TestMLCachePolicy_InferenceWorkload(t *testing.T) func TestMLCachePolicy_EvictionHeuristics(t *testing.T)
Phase 3 Tests
- ML Pattern Detection Tests
// Location: weed/mount/ml_patterns_test.go func TestMLWorkloadDetector_ImageDataset(t *testing.T) func TestMLWorkloadDetector_TextDataset(t *testing.T) func TestMLWorkloadDetector_ModelCheckpoints(t *testing.T) func TestMLWorkloadDetector_EpochBoundary(t *testing.T)
Phase 4 Tests
- Batch Optimization Tests
// Location: weed/mount/batch_reader_test.go func TestBatchReader_Aggregation(t *testing.T) func TestBatchReader_Timeout(t *testing.T) func TestBatchReader_TensorFiles(t *testing.T)
Integration Testing
Test Environment Setup
#!/bin/bash
# test/ml_integration/setup.sh
# Setup SeaweedFS cluster for ML testing
make clean
make
# Start master server
./weed master &
sleep 2
# Start volume servers
./weed volume -dir=./vol1 -mserver=localhost:9333 -port=8080 &
./weed volume -dir=./vol2 -mserver=localhost:9333 -port=8081 &
sleep 2
# Start filer
./weed filer -master=localhost:9333 &
sleep 2
ML Workload Simulation
// Location: test/ml_integration/ml_workload_test.go
func TestMLWorkloadSimulation(t *testing.T) {
// Simulate PyTorch DataLoader access patterns
// Test with ImageNet-style dataset structure
// Measure cache hit rates and throughput
}
func TestSequentialDatasetTraversal(t *testing.T) {
// Test epoch-based dataset iteration
// Verify prefetch effectiveness
// Check memory usage patterns
}
func TestConcurrentTrainingWorkers(t *testing.T) {
// Simulate multiple training processes
// Test batch read aggregation
// Verify no cache conflicts
}
Performance Benchmarks
// Location: test/ml_integration/benchmark_test.go
func BenchmarkSequentialRead(b *testing.B) {
// Compare before/after optimization
// Measure throughput improvements
}
func BenchmarkRandomRead(b *testing.B) {
// Test cache effectiveness for random access
}
func BenchmarkConcurrentReads(b *testing.B) {
// Test scalability with multiple readers
}
Load Testing
Test Datasets
- Image Dataset: 100K images, 224x224 RGB (common CNN input)
- Text Dataset: 10M text samples (NLP training data)
- Model Checkpoints: Large PyTorch/TensorFlow model files
- Mixed Workload: Combination of training and inference access patterns
Load Test Scenarios
// Location: test/ml_load/scenarios.go
type LoadTestScenario struct {
Name string
Workers int
Duration time.Duration
AccessPattern AccessPattern
DatasetType string
ExpectedMetrics PerformanceMetrics
}
var scenarios = []LoadTestScenario{
{
Name: "CNN Training",
Workers: 4,
Duration: 5 * time.Minute,
AccessPattern: SequentialAccess,
DatasetType: "ImageDataset",
},
{
Name: "NLP Training",
Workers: 8,
Duration: 10 * time.Minute,
AccessPattern: BatchAccess,
DatasetType: "TextDataset",
},
// More scenarios...
}
Continuous Integration Tests
GitHub Actions Workflow
# Location: .github/workflows/ml-optimization-test.yml
name: ML Optimization Tests
on: [push, pull_request]
jobs:
ml-unit-tests:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/setup-go@v2
with:
go-version: 1.21
- run: go test ./weed/mount/... -tags=ml_optimization
ml-integration-tests:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- run: make
- run: ./test/ml_integration/run_tests.sh
ml-performance-tests:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- run: go test -bench=. ./test/ml_integration/
Implementation Timeline
Week 1-2: Foundation + Testing Setup
- Implement basic prefetch worker pool
- Add sequential access detection
- Create access pattern detector
- Testing: Unit tests for prefetch manager and access pattern detection
- Commit: "Phase 1: Add smart prefetching foundation with tests"
Week 3-4: Enhanced Caching + Integration Tests
- Implement open file cache with chunk metadata
- Add ML-aware cache eviction policies
- Enable writeback cache support
- Testing: Integration tests for caching system
- Commit: "Phase 2: Enhanced ML-aware caching with comprehensive tests"
Week 5-6: ML Patterns + Load Testing
- Create ML workload detector
- Implement dataset traversal optimization
- Add training-specific optimizations
- Testing: ML pattern detection tests and load testing setup
- Commit: "Phase 3: ML pattern detection with load testing framework"
Week 7-8: Batch Optimization + Performance Testing
- Implement batch read aggregation
- Add tensor file optimizations
- Integration testing and performance tuning
- Testing: Performance benchmarks and optimization verification
- Commit: "Phase 4: Batch optimization with performance benchmarks"
Week 9-10: Configuration, Monitoring & CI
- Add ML-specific mount options
- Implement performance metrics
- Documentation and final testing
- Testing: End-to-end testing and CI pipeline setup
- Commit: "Phase 5: ML monitoring and configuration with full test suite"
Expected Performance Improvements
- Sequential Read Throughput: 3-5x improvement for large file streaming
- Training Data Loading: 2-3x faster dataset iteration
- Cache Hit Rate: 40-60% improvement with ML-aware caching
- Memory Efficiency: 20-30% reduction in memory usage through better eviction
- Network Overhead: 50% reduction through batch aggregation
Testing Success Criteria
Performance Benchmarks
- Sequential read throughput >= 3x baseline
- Cache hit rate >= 60% for training workloads
- Memory usage increase <= 20% despite additional caching
- Prefetch accuracy >= 80% for sequential access
Functional Tests
- All unit tests pass with >= 90% code coverage
- Integration tests pass for common ML frameworks
- Load tests complete without memory leaks
- Concurrent access tests show no data corruption
Compatibility Tests
- Existing FUSE functionality unaffected
- No performance regression for non-ML workloads
- Works with PyTorch, TensorFlow, and generic file access
- Cross-platform compatibility (Linux, macOS)