|
5 hours ago | |
---|---|---|
.. | ||
config | 5 days ago | |
.dockerignore | 5 days ago | |
Dockerfile.client | 3 days ago | |
Dockerfile.producer | 5 days ago | |
Dockerfile.seaweedfs | 4 days ago | |
Makefile | 2 days ago | |
README.md | 9 hours ago | |
SETUP_OVERVIEW.md | 9 hours ago | |
client.go | 4 days ago | |
docker-compose.yml | 4 days ago | |
producer.go | 4 days ago | |
run-tests.sh | 3 days ago | |
validate-setup.sh | 5 days ago |
README.md
SeaweedFS PostgreSQL Protocol Test Suite
This directory contains a comprehensive Docker Compose test setup for the SeaweedFS PostgreSQL wire protocol implementation.
Overview
The test suite includes:
- SeaweedFS Cluster: Full SeaweedFS server with MQ broker and agent
- PostgreSQL Server: SeaweedFS PostgreSQL wire protocol server
- MQ Data Producer: Creates realistic test data across multiple topics and namespaces
- PostgreSQL Test Client: Comprehensive Go client testing all functionality
- Interactive Tools: psql CLI access for manual testing
Quick Start
1. Run Complete Test Suite (Automated)
./run-tests.sh all
This will automatically:
- Start SeaweedFS and PostgreSQL servers
- Create test data in multiple MQ topics
- Run comprehensive PostgreSQL client tests
- Show results
2. Manual Step-by-Step Testing
# Start the services
./run-tests.sh start
# Create test data
./run-tests.sh produce
# Run automated tests
./run-tests.sh test
# Connect with psql for interactive testing
./run-tests.sh psql
3. Interactive PostgreSQL Testing
# Connect with psql
./run-tests.sh psql
# Inside psql session:
postgres=> SHOW DATABASES;
postgres=> \c analytics;
postgres=> SHOW TABLES;
postgres=> SELECT COUNT(*) FROM user_events;
postgres=> SELECT COUNT(*) FROM user_events;
postgres=> \q
Test Data Structure
The producer creates realistic test data across multiple namespaces:
Analytics Namespace
-
user_events
(1000 records): User interaction events- Fields: id, user_id, user_type, action, status, amount, timestamp, metadata
- User types: premium, standard, trial, enterprise
- Actions: login, logout, purchase, view, search, click, download
-
system_logs
(500 records): System operation logs- Fields: id, level, service, message, error_code, timestamp
- Levels: debug, info, warning, error, critical
- Services: auth-service, payment-service, user-service, etc.
-
metrics
(800 records): System metrics- Fields: id, name, value, tags, timestamp
- Metrics: cpu_usage, memory_usage, disk_usage, request_latency, etc.
E-commerce Namespace
-
product_views
(1200 records): Product interaction data- Fields: id, product_id, user_id, category, price, view_count, timestamp
- Categories: electronics, books, clothing, home, sports, automotive
-
user_events
(600 records): E-commerce specific user events
Logs Namespace
application_logs
(2000 records): Application logserror_logs
(300 records): Error-specific logs with 4xx/5xx error codes
Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ PostgreSQL │ │ PostgreSQL │ │ SeaweedFS │
│ Clients │◄──►│ Wire Protocol │◄──►│ SQL Engine │
│ (psql, Go) │ │ Server │ │ │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ │
▼ ▼
┌──────────────────┐ ┌─────────────────┐
│ Session │ │ MQ Broker │
│ Management │ │ & Topics │
└──────────────────┘ └─────────────────┘
Services
SeaweedFS Server
- Ports: 9333 (master), 8888 (filer), 8333 (S3), 8085 (volume), 9533 (metrics), 26777→16777 (MQ agent), 27777→17777 (MQ broker)
- Features: Full MQ broker, S3 API, filer, volume server
- Data: Persistent storage in Docker volume
- Health Check: Cluster status endpoint
PostgreSQL Server
- Port: 5432 (standard PostgreSQL port)
- Protocol: Full PostgreSQL 3.0 wire protocol
- Authentication: Trust mode (no password for testing)
- Features: Real-time MQ topic discovery, database context switching
MQ Producer
- Purpose: Creates realistic test data
- Topics: 7 topics across 3 namespaces
- Data Types: JSON messages with varied schemas
- Volume: ~4,400 total records with realistic distributions
Test Client
- Language: Go with standard
lib/pq
PostgreSQL driver - Tests: 8 comprehensive test categories
- Coverage: System info, discovery, queries, aggregations, context switching
Available Commands
./run-tests.sh start # Start services
./run-tests.sh produce # Create test data
./run-tests.sh test # Run client tests
./run-tests.sh psql # Interactive psql
./run-tests.sh logs # Show service logs
./run-tests.sh status # Service status
./run-tests.sh stop # Stop services
./run-tests.sh clean # Complete cleanup
./run-tests.sh all # Full automated test
Test Categories
1. System Information
- PostgreSQL version compatibility
- Current user and database
- Server settings and encoding
2. Database Discovery
SHOW DATABASES
- List MQ namespaces- Dynamic namespace discovery from filer
3. Table Discovery
SHOW TABLES
- List topics in current namespace- Real-time topic discovery
4. Data Queries
- Basic
SELECT * FROM table
queries - Sample data retrieval and display
- Column information
5. Aggregation Queries
COUNT(*)
,SUM()
,AVG()
,MIN()
,MAX()
- Aggregation operations
- Statistical analysis
6. Database Context Switching
USE database
commands- Session isolation testing
- Cross-namespace queries
7. System Columns
_timestamp_ns
,_key
,_source
access- MQ metadata exposure
8. Complex Queries
WHERE
clauses with comparisonsLIMIT
- Multi-condition filtering
Expected Results
After running the complete test suite, you should see:
=== Test Results ===
✅ Test PASSED: System Information
✅ Test PASSED: Database Discovery
✅ Test PASSED: Table Discovery
✅ Test PASSED: Data Queries
✅ Test PASSED: Aggregation Queries
✅ Test PASSED: Database Context Switching
✅ Test PASSED: System Columns
✅ Test PASSED: Complex Queries
Test Results: 8/8 tests passed
🎉 All tests passed!
Manual Testing Examples
Connect with psql
./run-tests.sh psql
Basic Exploration
-- Check system information
SELECT version();
SELECT current_user, current_database();
-- Discover data structure
SHOW DATABASES;
\c analytics;
SHOW TABLES;
DESCRIBE user_events;
Data Analysis
-- Basic queries
SELECT COUNT(*) FROM user_events;
SELECT * FROM user_events LIMIT 5;
-- Aggregations
SELECT
COUNT(*) as events,
AVG(amount) as avg_amount
FROM user_events
WHERE amount IS NOT NULL;
-- Time-based analysis
SELECT
COUNT(*) as count
FROM user_events
WHERE status = 'active';
Cross-Namespace Analysis
-- Switch between namespaces
USE ecommerce;
SELECT COUNT(*) FROM product_views;
USE logs;
SELECT COUNT(*) FROM application_logs;
Troubleshooting
Services Not Starting
# Check service status
./run-tests.sh status
# View logs
./run-tests.sh logs seaweedfs
./run-tests.sh logs postgres-server
No Test Data
# Recreate test data
./run-tests.sh produce
# Check producer logs
./run-tests.sh logs mq-producer
Connection Issues
# Test PostgreSQL server health
docker-compose exec postgres-server nc -z localhost 5432
# Test SeaweedFS health
curl http://localhost:9333/cluster/status
Clean Restart
# Complete cleanup and restart
./run-tests.sh clean
./run-tests.sh all
Development
Modifying Test Data
Edit producer.go
to change:
- Data schemas and volume
- Topic names and namespaces
- Record generation logic
Adding Tests
Edit client.go
to add new test functions:
func testNewFeature(db *sql.DB) error {
// Your test implementation
return nil
}
// Add to tests slice in main()
{"New Feature", testNewFeature},
Custom Queries
Use the interactive psql session:
./run-tests.sh psql
Production Considerations
This test setup demonstrates:
- Real MQ Integration: Actual topic discovery and data access
- Universal PostgreSQL Compatibility: Works with any PostgreSQL client
- Production-Ready Features: Authentication, session management, error handling
- Scalable Architecture: Direct SQL engine integration, no translation overhead
The test validates that SeaweedFS can serve as a drop-in PostgreSQL replacement for read-only analytics workloads on MQ data.