6 changed files with 1036 additions and 170 deletions
-
551weed/query/engine/aggregations.go
-
217weed/query/engine/data_conversion.go
-
170weed/query/engine/engine.go
-
36weed/query/engine/errors.go
-
170weed/query/engine/system_columns.go
-
62weed/query/engine/types.go
@ -0,0 +1,551 @@ |
|||
package engine |
|||
|
|||
import ( |
|||
"context" |
|||
"fmt" |
|||
"strings" |
|||
|
|||
"github.com/seaweedfs/seaweedfs/weed/pb/schema_pb" |
|||
"github.com/seaweedfs/seaweedfs/weed/query/sqltypes" |
|||
"github.com/xwb1989/sqlparser" |
|||
) |
|||
|
|||
// AggregationSpec defines an aggregation function to be computed
|
|||
type AggregationSpec struct { |
|||
Function string // COUNT, SUM, AVG, MIN, MAX
|
|||
Column string // Column name, or "*" for COUNT(*)
|
|||
Alias string // Optional alias for the result column
|
|||
Distinct bool // Support for DISTINCT keyword
|
|||
} |
|||
|
|||
// AggregationResult holds the computed result of an aggregation
|
|||
type AggregationResult struct { |
|||
Count int64 |
|||
Sum float64 |
|||
Min interface{} |
|||
Max interface{} |
|||
} |
|||
|
|||
// AggregationStrategy represents the strategy for executing aggregations
|
|||
type AggregationStrategy struct { |
|||
CanUseFastPath bool |
|||
Reason string |
|||
UnsupportedSpecs []AggregationSpec |
|||
} |
|||
|
|||
// TopicDataSources represents the data sources available for a topic
|
|||
type TopicDataSources struct { |
|||
ParquetFiles map[string][]*ParquetFileStats // partitionPath -> parquet file stats
|
|||
ParquetRowCount int64 |
|||
LiveLogRowCount int64 |
|||
PartitionsCount int |
|||
} |
|||
|
|||
// FastPathOptimizer handles fast path aggregation optimization decisions
|
|||
type FastPathOptimizer struct { |
|||
engine *SQLEngine |
|||
} |
|||
|
|||
// NewFastPathOptimizer creates a new fast path optimizer
|
|||
func NewFastPathOptimizer(engine *SQLEngine) *FastPathOptimizer { |
|||
return &FastPathOptimizer{engine: engine} |
|||
} |
|||
|
|||
// DetermineStrategy analyzes aggregations and determines if fast path can be used
|
|||
func (opt *FastPathOptimizer) DetermineStrategy(aggregations []AggregationSpec) AggregationStrategy { |
|||
strategy := AggregationStrategy{ |
|||
CanUseFastPath: true, |
|||
Reason: "all_aggregations_supported", |
|||
UnsupportedSpecs: []AggregationSpec{}, |
|||
} |
|||
|
|||
for _, spec := range aggregations { |
|||
if !opt.engine.canUseParquetStatsForAggregation(spec) { |
|||
strategy.CanUseFastPath = false |
|||
strategy.Reason = "unsupported_aggregation_functions" |
|||
strategy.UnsupportedSpecs = append(strategy.UnsupportedSpecs, spec) |
|||
} |
|||
} |
|||
|
|||
return strategy |
|||
} |
|||
|
|||
// CollectDataSources gathers information about available data sources for a topic
|
|||
func (opt *FastPathOptimizer) CollectDataSources(ctx context.Context, hybridScanner *HybridMessageScanner) (*TopicDataSources, error) { |
|||
dataSources := &TopicDataSources{ |
|||
ParquetFiles: make(map[string][]*ParquetFileStats), |
|||
ParquetRowCount: 0, |
|||
LiveLogRowCount: 0, |
|||
PartitionsCount: 0, |
|||
} |
|||
|
|||
// Discover partitions for the topic
|
|||
relativePartitions, err := opt.engine.discoverTopicPartitions(hybridScanner.topic.Namespace, hybridScanner.topic.Name) |
|||
if err != nil { |
|||
return dataSources, DataSourceError{ |
|||
Source: "partition_discovery", |
|||
Cause: err, |
|||
} |
|||
} |
|||
|
|||
topicBasePath := fmt.Sprintf("/topics/%s/%s", hybridScanner.topic.Namespace, hybridScanner.topic.Name) |
|||
|
|||
// Collect stats from each partition
|
|||
for _, relPartition := range relativePartitions { |
|||
partitionPath := fmt.Sprintf("%s/%s", topicBasePath, relPartition) |
|||
|
|||
// Read parquet file statistics
|
|||
parquetStats, err := hybridScanner.ReadParquetStatistics(partitionPath) |
|||
if err == nil && len(parquetStats) > 0 { |
|||
dataSources.ParquetFiles[partitionPath] = parquetStats |
|||
for _, stat := range parquetStats { |
|||
dataSources.ParquetRowCount += stat.RowCount |
|||
} |
|||
} |
|||
|
|||
// Count live log files
|
|||
liveLogCount, _ := opt.engine.countLiveLogFiles(partitionPath, dataSources.ParquetFiles[partitionPath]) |
|||
dataSources.LiveLogRowCount += liveLogCount |
|||
} |
|||
|
|||
dataSources.PartitionsCount = len(relativePartitions) |
|||
|
|||
return dataSources, nil |
|||
} |
|||
|
|||
// AggregationComputer handles the computation of aggregations using fast path
|
|||
type AggregationComputer struct { |
|||
engine *SQLEngine |
|||
} |
|||
|
|||
// NewAggregationComputer creates a new aggregation computer
|
|||
func NewAggregationComputer(engine *SQLEngine) *AggregationComputer { |
|||
return &AggregationComputer{engine: engine} |
|||
} |
|||
|
|||
// ComputeFastPathAggregations computes aggregations using parquet statistics and live log data
|
|||
func (comp *AggregationComputer) ComputeFastPathAggregations( |
|||
ctx context.Context, |
|||
aggregations []AggregationSpec, |
|||
dataSources *TopicDataSources, |
|||
partitions []string, |
|||
) ([]AggregationResult, error) { |
|||
|
|||
aggResults := make([]AggregationResult, len(aggregations)) |
|||
|
|||
for i, spec := range aggregations { |
|||
switch spec.Function { |
|||
case "COUNT": |
|||
if spec.Column == "*" { |
|||
aggResults[i].Count = dataSources.ParquetRowCount + dataSources.LiveLogRowCount |
|||
} else { |
|||
// For specific columns, we might need to account for NULLs in the future
|
|||
aggResults[i].Count = dataSources.ParquetRowCount + dataSources.LiveLogRowCount |
|||
} |
|||
|
|||
case "MIN": |
|||
globalMin, err := comp.computeGlobalMin(spec, dataSources, partitions) |
|||
if err != nil { |
|||
return nil, AggregationError{ |
|||
Operation: spec.Function, |
|||
Column: spec.Column, |
|||
Cause: err, |
|||
} |
|||
} |
|||
aggResults[i].Min = globalMin |
|||
|
|||
case "MAX": |
|||
globalMax, err := comp.computeGlobalMax(spec, dataSources, partitions) |
|||
if err != nil { |
|||
return nil, AggregationError{ |
|||
Operation: spec.Function, |
|||
Column: spec.Column, |
|||
Cause: err, |
|||
} |
|||
} |
|||
aggResults[i].Max = globalMax |
|||
|
|||
default: |
|||
return nil, OptimizationError{ |
|||
Strategy: "fast_path_aggregation", |
|||
Reason: fmt.Sprintf("unsupported aggregation function: %s", spec.Function), |
|||
} |
|||
} |
|||
} |
|||
|
|||
return aggResults, nil |
|||
} |
|||
|
|||
// computeGlobalMin computes the global minimum value across all data sources
|
|||
func (comp *AggregationComputer) computeGlobalMin(spec AggregationSpec, dataSources *TopicDataSources, partitions []string) (interface{}, error) { |
|||
var globalMin interface{} |
|||
var globalMinValue *schema_pb.Value |
|||
hasParquetStats := false |
|||
|
|||
// Step 1: Get minimum from parquet statistics
|
|||
for _, fileStats := range dataSources.ParquetFiles { |
|||
for _, fileStat := range fileStats { |
|||
// Try case-insensitive column lookup
|
|||
var colStats *ParquetColumnStats |
|||
var found bool |
|||
|
|||
// First try exact match
|
|||
if stats, exists := fileStat.ColumnStats[spec.Column]; exists { |
|||
colStats = stats |
|||
found = true |
|||
} else { |
|||
// Try case-insensitive lookup
|
|||
for colName, stats := range fileStat.ColumnStats { |
|||
if strings.EqualFold(colName, spec.Column) { |
|||
colStats = stats |
|||
found = true |
|||
break |
|||
} |
|||
} |
|||
} |
|||
|
|||
if found && colStats != nil && colStats.MinValue != nil { |
|||
if globalMinValue == nil || comp.engine.compareValues(colStats.MinValue, globalMinValue) < 0 { |
|||
globalMinValue = colStats.MinValue |
|||
extractedValue := comp.engine.extractRawValue(colStats.MinValue) |
|||
if extractedValue != nil { |
|||
globalMin = extractedValue |
|||
hasParquetStats = true |
|||
} |
|||
} |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Step 2: Get minimum from live log data (only if no live logs or if we need to compare)
|
|||
if dataSources.LiveLogRowCount > 0 { |
|||
for _, partition := range partitions { |
|||
partitionParquetSources := make(map[string]bool) |
|||
if partitionFileStats, exists := dataSources.ParquetFiles[partition]; exists { |
|||
partitionParquetSources = comp.engine.extractParquetSourceFiles(partitionFileStats) |
|||
} |
|||
|
|||
liveLogMin, _, err := comp.engine.computeLiveLogMinMax(partition, spec.Column, partitionParquetSources) |
|||
if err != nil { |
|||
continue // Skip partitions with errors
|
|||
} |
|||
|
|||
if liveLogMin != nil { |
|||
if globalMin == nil { |
|||
globalMin = liveLogMin |
|||
} else { |
|||
liveLogSchemaValue := comp.engine.convertRawValueToSchemaValue(liveLogMin) |
|||
if liveLogSchemaValue != nil && comp.engine.compareValues(liveLogSchemaValue, globalMinValue) < 0 { |
|||
globalMin = liveLogMin |
|||
globalMinValue = liveLogSchemaValue |
|||
} |
|||
} |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Step 3: Handle system columns if no regular data found
|
|||
if globalMin == nil && !hasParquetStats { |
|||
globalMin = comp.engine.getSystemColumnGlobalMin(spec.Column, dataSources.ParquetFiles) |
|||
} |
|||
|
|||
return globalMin, nil |
|||
} |
|||
|
|||
// computeGlobalMax computes the global maximum value across all data sources
|
|||
func (comp *AggregationComputer) computeGlobalMax(spec AggregationSpec, dataSources *TopicDataSources, partitions []string) (interface{}, error) { |
|||
var globalMax interface{} |
|||
var globalMaxValue *schema_pb.Value |
|||
hasParquetStats := false |
|||
|
|||
// Step 1: Get maximum from parquet statistics
|
|||
for _, fileStats := range dataSources.ParquetFiles { |
|||
for _, fileStat := range fileStats { |
|||
// Try case-insensitive column lookup
|
|||
var colStats *ParquetColumnStats |
|||
var found bool |
|||
|
|||
// First try exact match
|
|||
if stats, exists := fileStat.ColumnStats[spec.Column]; exists { |
|||
colStats = stats |
|||
found = true |
|||
} else { |
|||
// Try case-insensitive lookup
|
|||
for colName, stats := range fileStat.ColumnStats { |
|||
if strings.EqualFold(colName, spec.Column) { |
|||
colStats = stats |
|||
found = true |
|||
break |
|||
} |
|||
} |
|||
} |
|||
|
|||
if found && colStats != nil && colStats.MaxValue != nil { |
|||
if globalMaxValue == nil || comp.engine.compareValues(colStats.MaxValue, globalMaxValue) > 0 { |
|||
globalMaxValue = colStats.MaxValue |
|||
extractedValue := comp.engine.extractRawValue(colStats.MaxValue) |
|||
if extractedValue != nil { |
|||
globalMax = extractedValue |
|||
hasParquetStats = true |
|||
} |
|||
} |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Step 2: Get maximum from live log data (only if live logs exist)
|
|||
if dataSources.LiveLogRowCount > 0 { |
|||
for _, partition := range partitions { |
|||
partitionParquetSources := make(map[string]bool) |
|||
if partitionFileStats, exists := dataSources.ParquetFiles[partition]; exists { |
|||
partitionParquetSources = comp.engine.extractParquetSourceFiles(partitionFileStats) |
|||
} |
|||
|
|||
_, liveLogMax, err := comp.engine.computeLiveLogMinMax(partition, spec.Column, partitionParquetSources) |
|||
if err != nil { |
|||
continue // Skip partitions with errors
|
|||
} |
|||
|
|||
if liveLogMax != nil { |
|||
if globalMax == nil { |
|||
globalMax = liveLogMax |
|||
} else { |
|||
liveLogSchemaValue := comp.engine.convertRawValueToSchemaValue(liveLogMax) |
|||
if liveLogSchemaValue != nil && comp.engine.compareValues(liveLogSchemaValue, globalMaxValue) > 0 { |
|||
globalMax = liveLogMax |
|||
globalMaxValue = liveLogSchemaValue |
|||
} |
|||
} |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Step 3: Handle system columns if no regular data found
|
|||
if globalMax == nil && !hasParquetStats { |
|||
globalMax = comp.engine.getSystemColumnGlobalMax(spec.Column, dataSources.ParquetFiles) |
|||
} |
|||
|
|||
return globalMax, nil |
|||
} |
|||
|
|||
// executeAggregationQuery handles SELECT queries with aggregation functions
|
|||
func (e *SQLEngine) executeAggregationQuery(ctx context.Context, hybridScanner *HybridMessageScanner, aggregations []AggregationSpec, stmt *sqlparser.Select) (*QueryResult, error) { |
|||
// Parse WHERE clause for filtering
|
|||
var predicate func(*schema_pb.RecordValue) bool |
|||
var err error |
|||
if stmt.Where != nil { |
|||
predicate, err = e.buildPredicate(stmt.Where.Expr) |
|||
if err != nil { |
|||
return &QueryResult{Error: err}, err |
|||
} |
|||
} |
|||
|
|||
// Extract time filters for optimization
|
|||
startTimeNs, stopTimeNs := int64(0), int64(0) |
|||
if stmt.Where != nil { |
|||
startTimeNs, stopTimeNs = e.extractTimeFilters(stmt.Where.Expr) |
|||
} |
|||
|
|||
// FAST PATH: Try to use parquet statistics for optimization
|
|||
// This can be ~130x faster than scanning all data
|
|||
if stmt.Where == nil { // Only optimize when no complex WHERE clause
|
|||
fastResult, canOptimize := e.tryFastParquetAggregation(ctx, hybridScanner, aggregations) |
|||
if canOptimize { |
|||
fmt.Printf("Using fast hybrid statistics for aggregation (parquet stats + live log counts)\n") |
|||
return fastResult, nil |
|||
} |
|||
} |
|||
|
|||
// SLOW PATH: Fall back to full table scan
|
|||
fmt.Printf("Using full table scan for aggregation (parquet optimization not applicable)\n") |
|||
|
|||
// Build scan options for full table scan (aggregations need all data)
|
|||
hybridScanOptions := HybridScanOptions{ |
|||
StartTimeNs: startTimeNs, |
|||
StopTimeNs: stopTimeNs, |
|||
Limit: 0, // No limit for aggregations - need all data
|
|||
Predicate: predicate, |
|||
} |
|||
|
|||
// Execute the hybrid scan to get all matching records
|
|||
results, err := hybridScanner.Scan(ctx, hybridScanOptions) |
|||
if err != nil { |
|||
return &QueryResult{Error: err}, err |
|||
} |
|||
|
|||
// Compute aggregations
|
|||
aggResults := e.computeAggregations(results, aggregations) |
|||
|
|||
// Build result set
|
|||
columns := make([]string, len(aggregations)) |
|||
row := make([]sqltypes.Value, len(aggregations)) |
|||
|
|||
for i, spec := range aggregations { |
|||
columns[i] = spec.Alias |
|||
row[i] = e.formatAggregationResult(spec, aggResults[i]) |
|||
} |
|||
|
|||
return &QueryResult{ |
|||
Columns: columns, |
|||
Rows: [][]sqltypes.Value{row}, |
|||
}, nil |
|||
} |
|||
|
|||
// tryFastParquetAggregation attempts to compute aggregations using hybrid approach:
|
|||
// - Use parquet metadata for parquet files
|
|||
// - Count live log files for live data
|
|||
// - Combine both for accurate results per partition
|
|||
// Returns (result, canOptimize) where canOptimize=true means the hybrid fast path was used
|
|||
func (e *SQLEngine) tryFastParquetAggregation(ctx context.Context, hybridScanner *HybridMessageScanner, aggregations []AggregationSpec) (*QueryResult, bool) { |
|||
// Use the new modular components
|
|||
optimizer := NewFastPathOptimizer(e) |
|||
computer := NewAggregationComputer(e) |
|||
|
|||
// Step 1: Determine strategy
|
|||
strategy := optimizer.DetermineStrategy(aggregations) |
|||
if !strategy.CanUseFastPath { |
|||
return nil, false |
|||
} |
|||
|
|||
// Step 2: Collect data sources
|
|||
dataSources, err := optimizer.CollectDataSources(ctx, hybridScanner) |
|||
if err != nil { |
|||
return nil, false |
|||
} |
|||
|
|||
// Build partition list for aggregation computer
|
|||
relativePartitions, err := e.discoverTopicPartitions(hybridScanner.topic.Namespace, hybridScanner.topic.Name) |
|||
if err != nil { |
|||
return nil, false |
|||
} |
|||
|
|||
topicBasePath := fmt.Sprintf("/topics/%s/%s", hybridScanner.topic.Namespace, hybridScanner.topic.Name) |
|||
partitions := make([]string, len(relativePartitions)) |
|||
for i, relPartition := range relativePartitions { |
|||
partitions[i] = fmt.Sprintf("%s/%s", topicBasePath, relPartition) |
|||
} |
|||
|
|||
// Debug: Show the hybrid optimization results
|
|||
if dataSources.ParquetRowCount > 0 || dataSources.LiveLogRowCount > 0 { |
|||
partitionsWithLiveLogs := 0 |
|||
if dataSources.LiveLogRowCount > 0 { |
|||
partitionsWithLiveLogs = 1 // Simplified for now
|
|||
} |
|||
fmt.Printf("Hybrid fast aggregation with deduplication: %d parquet rows + %d deduplicated live log rows from %d partitions\n", |
|||
dataSources.ParquetRowCount, dataSources.LiveLogRowCount, partitionsWithLiveLogs) |
|||
} |
|||
|
|||
// Step 3: Compute aggregations using fast path
|
|||
aggResults, err := computer.ComputeFastPathAggregations(ctx, aggregations, dataSources, partitions) |
|||
if err != nil { |
|||
return nil, false |
|||
} |
|||
|
|||
// Step 4: Build final query result
|
|||
columns := make([]string, len(aggregations)) |
|||
row := make([]sqltypes.Value, len(aggregations)) |
|||
|
|||
for i, spec := range aggregations { |
|||
columns[i] = spec.Alias |
|||
row[i] = e.formatAggregationResult(spec, aggResults[i]) |
|||
} |
|||
|
|||
result := &QueryResult{ |
|||
Columns: columns, |
|||
Rows: [][]sqltypes.Value{row}, |
|||
} |
|||
|
|||
return result, true |
|||
} |
|||
|
|||
// computeAggregations computes aggregation results from a full table scan
|
|||
func (e *SQLEngine) computeAggregations(results []HybridScanResult, aggregations []AggregationSpec) []AggregationResult { |
|||
aggResults := make([]AggregationResult, len(aggregations)) |
|||
|
|||
for i, spec := range aggregations { |
|||
switch spec.Function { |
|||
case "COUNT": |
|||
if spec.Column == "*" { |
|||
aggResults[i].Count = int64(len(results)) |
|||
} else { |
|||
count := int64(0) |
|||
for _, result := range results { |
|||
if value := e.findColumnValue(result, spec.Column); value != nil && !e.isNullValue(value) { |
|||
count++ |
|||
} |
|||
} |
|||
aggResults[i].Count = count |
|||
} |
|||
|
|||
case "SUM": |
|||
sum := float64(0) |
|||
for _, result := range results { |
|||
if value := e.findColumnValue(result, spec.Column); value != nil { |
|||
if numValue := e.convertToNumber(value); numValue != nil { |
|||
sum += *numValue |
|||
} |
|||
} |
|||
} |
|||
aggResults[i].Sum = sum |
|||
|
|||
case "AVG": |
|||
sum := float64(0) |
|||
count := int64(0) |
|||
for _, result := range results { |
|||
if value := e.findColumnValue(result, spec.Column); value != nil { |
|||
if numValue := e.convertToNumber(value); numValue != nil { |
|||
sum += *numValue |
|||
count++ |
|||
} |
|||
} |
|||
} |
|||
if count > 0 { |
|||
aggResults[i].Sum = sum / float64(count) // Store average in Sum field
|
|||
aggResults[i].Count = count |
|||
} |
|||
|
|||
case "MIN": |
|||
var min interface{} |
|||
var minValue *schema_pb.Value |
|||
for _, result := range results { |
|||
if value := e.findColumnValue(result, spec.Column); value != nil { |
|||
if minValue == nil || e.compareValues(value, minValue) < 0 { |
|||
minValue = value |
|||
min = e.extractRawValue(value) |
|||
} |
|||
} |
|||
} |
|||
aggResults[i].Min = min |
|||
|
|||
case "MAX": |
|||
var max interface{} |
|||
var maxValue *schema_pb.Value |
|||
for _, result := range results { |
|||
if value := e.findColumnValue(result, spec.Column); value != nil { |
|||
if maxValue == nil || e.compareValues(value, maxValue) > 0 { |
|||
maxValue = value |
|||
max = e.extractRawValue(value) |
|||
} |
|||
} |
|||
} |
|||
aggResults[i].Max = max |
|||
} |
|||
} |
|||
|
|||
return aggResults |
|||
} |
|||
|
|||
// canUseParquetStatsForAggregation determines if an aggregation can be optimized with parquet stats
|
|||
func (e *SQLEngine) canUseParquetStatsForAggregation(spec AggregationSpec) bool { |
|||
switch spec.Function { |
|||
case "COUNT": |
|||
return spec.Column == "*" || e.isSystemColumn(spec.Column) || e.isRegularColumn(spec.Column) |
|||
case "MIN", "MAX": |
|||
return e.isSystemColumn(spec.Column) || e.isRegularColumn(spec.Column) |
|||
case "SUM", "AVG": |
|||
// These require scanning actual values, not just min/max
|
|||
return false |
|||
default: |
|||
return false |
|||
} |
|||
} |
@ -0,0 +1,217 @@ |
|||
package engine |
|||
|
|||
import ( |
|||
"fmt" |
|||
|
|||
"github.com/seaweedfs/seaweedfs/weed/pb/schema_pb" |
|||
"github.com/seaweedfs/seaweedfs/weed/query/sqltypes" |
|||
) |
|||
|
|||
// formatAggregationResult formats an aggregation result into a SQL value
|
|||
func (e *SQLEngine) formatAggregationResult(spec AggregationSpec, result AggregationResult) sqltypes.Value { |
|||
switch spec.Function { |
|||
case "COUNT": |
|||
return sqltypes.NewInt64(result.Count) |
|||
case "SUM": |
|||
return sqltypes.NewFloat64(result.Sum) |
|||
case "AVG": |
|||
return sqltypes.NewFloat64(result.Sum) // Sum contains the average for AVG
|
|||
case "MIN": |
|||
if result.Min != nil { |
|||
return e.convertRawValueToSQL(result.Min) |
|||
} |
|||
return sqltypes.NULL |
|||
case "MAX": |
|||
if result.Max != nil { |
|||
return e.convertRawValueToSQL(result.Max) |
|||
} |
|||
return sqltypes.NULL |
|||
} |
|||
return sqltypes.NULL |
|||
} |
|||
|
|||
// convertRawValueToSQL converts a raw Go value to a SQL value
|
|||
func (e *SQLEngine) convertRawValueToSQL(value interface{}) sqltypes.Value { |
|||
switch v := value.(type) { |
|||
case int32: |
|||
return sqltypes.NewInt32(v) |
|||
case int64: |
|||
return sqltypes.NewInt64(v) |
|||
case float32: |
|||
return sqltypes.NewFloat32(v) |
|||
case float64: |
|||
return sqltypes.NewFloat64(v) |
|||
case string: |
|||
return sqltypes.NewVarChar(v) |
|||
case bool: |
|||
if v { |
|||
return sqltypes.NewVarChar("1") |
|||
} |
|||
return sqltypes.NewVarChar("0") |
|||
} |
|||
return sqltypes.NULL |
|||
} |
|||
|
|||
// extractRawValue extracts the raw Go value from a schema_pb.Value
|
|||
func (e *SQLEngine) extractRawValue(value *schema_pb.Value) interface{} { |
|||
switch v := value.Kind.(type) { |
|||
case *schema_pb.Value_Int32Value: |
|||
return v.Int32Value |
|||
case *schema_pb.Value_Int64Value: |
|||
return v.Int64Value |
|||
case *schema_pb.Value_FloatValue: |
|||
return v.FloatValue |
|||
case *schema_pb.Value_DoubleValue: |
|||
return v.DoubleValue |
|||
case *schema_pb.Value_StringValue: |
|||
return v.StringValue |
|||
case *schema_pb.Value_BoolValue: |
|||
return v.BoolValue |
|||
case *schema_pb.Value_BytesValue: |
|||
return string(v.BytesValue) // Convert bytes to string for comparison
|
|||
} |
|||
return nil |
|||
} |
|||
|
|||
// compareValues compares two schema_pb.Value objects
|
|||
func (e *SQLEngine) compareValues(value1 *schema_pb.Value, value2 *schema_pb.Value) int { |
|||
if value2 == nil { |
|||
return 1 // value1 > nil
|
|||
} |
|||
raw1 := e.extractRawValue(value1) |
|||
raw2 := e.extractRawValue(value2) |
|||
if raw1 == nil { |
|||
return -1 |
|||
} |
|||
if raw2 == nil { |
|||
return 1 |
|||
} |
|||
|
|||
// Simple comparison - in a full implementation this would handle type coercion
|
|||
switch v1 := raw1.(type) { |
|||
case int32: |
|||
if v2, ok := raw2.(int32); ok { |
|||
if v1 < v2 { |
|||
return -1 |
|||
} else if v1 > v2 { |
|||
return 1 |
|||
} |
|||
return 0 |
|||
} |
|||
case int64: |
|||
if v2, ok := raw2.(int64); ok { |
|||
if v1 < v2 { |
|||
return -1 |
|||
} else if v1 > v2 { |
|||
return 1 |
|||
} |
|||
return 0 |
|||
} |
|||
case float32: |
|||
if v2, ok := raw2.(float32); ok { |
|||
if v1 < v2 { |
|||
return -1 |
|||
} else if v1 > v2 { |
|||
return 1 |
|||
} |
|||
return 0 |
|||
} |
|||
case float64: |
|||
if v2, ok := raw2.(float64); ok { |
|||
if v1 < v2 { |
|||
return -1 |
|||
} else if v1 > v2 { |
|||
return 1 |
|||
} |
|||
return 0 |
|||
} |
|||
case string: |
|||
if v2, ok := raw2.(string); ok { |
|||
if v1 < v2 { |
|||
return -1 |
|||
} else if v1 > v2 { |
|||
return 1 |
|||
} |
|||
return 0 |
|||
} |
|||
case bool: |
|||
if v2, ok := raw2.(bool); ok { |
|||
if v1 == v2 { |
|||
return 0 |
|||
} else if v1 && !v2 { |
|||
return 1 |
|||
} |
|||
return -1 |
|||
} |
|||
} |
|||
return 0 |
|||
} |
|||
|
|||
// convertRawValueToSchemaValue converts raw Go values back to schema_pb.Value for comparison
|
|||
func (e *SQLEngine) convertRawValueToSchemaValue(rawValue interface{}) *schema_pb.Value { |
|||
switch v := rawValue.(type) { |
|||
case int32: |
|||
return &schema_pb.Value{Kind: &schema_pb.Value_Int32Value{Int32Value: v}} |
|||
case int64: |
|||
return &schema_pb.Value{Kind: &schema_pb.Value_Int64Value{Int64Value: v}} |
|||
case float32: |
|||
return &schema_pb.Value{Kind: &schema_pb.Value_FloatValue{FloatValue: v}} |
|||
case float64: |
|||
return &schema_pb.Value{Kind: &schema_pb.Value_DoubleValue{DoubleValue: v}} |
|||
case string: |
|||
return &schema_pb.Value{Kind: &schema_pb.Value_StringValue{StringValue: v}} |
|||
case bool: |
|||
return &schema_pb.Value{Kind: &schema_pb.Value_BoolValue{BoolValue: v}} |
|||
case []byte: |
|||
return &schema_pb.Value{Kind: &schema_pb.Value_BytesValue{BytesValue: v}} |
|||
default: |
|||
// Convert other types to string as fallback
|
|||
return &schema_pb.Value{Kind: &schema_pb.Value_StringValue{StringValue: fmt.Sprintf("%v", v)}} |
|||
} |
|||
} |
|||
|
|||
// convertJSONValueToSchemaValue converts JSON values to schema_pb.Value
|
|||
func (e *SQLEngine) convertJSONValueToSchemaValue(jsonValue interface{}) *schema_pb.Value { |
|||
switch v := jsonValue.(type) { |
|||
case string: |
|||
return &schema_pb.Value{Kind: &schema_pb.Value_StringValue{StringValue: v}} |
|||
case float64: |
|||
// JSON numbers are always float64, try to detect if it's actually an integer
|
|||
if v == float64(int64(v)) { |
|||
return &schema_pb.Value{Kind: &schema_pb.Value_Int64Value{Int64Value: int64(v)}} |
|||
} |
|||
return &schema_pb.Value{Kind: &schema_pb.Value_DoubleValue{DoubleValue: v}} |
|||
case bool: |
|||
return &schema_pb.Value{Kind: &schema_pb.Value_BoolValue{BoolValue: v}} |
|||
case nil: |
|||
return nil |
|||
default: |
|||
// Convert other types to string
|
|||
return &schema_pb.Value{Kind: &schema_pb.Value_StringValue{StringValue: fmt.Sprintf("%v", v)}} |
|||
} |
|||
} |
|||
|
|||
// Helper functions for aggregation processing
|
|||
|
|||
// isNullValue checks if a schema_pb.Value is null or empty
|
|||
func (e *SQLEngine) isNullValue(value *schema_pb.Value) bool { |
|||
return value == nil || value.Kind == nil |
|||
} |
|||
|
|||
// convertToNumber converts a schema_pb.Value to a float64 for numeric operations
|
|||
func (e *SQLEngine) convertToNumber(value *schema_pb.Value) *float64 { |
|||
switch v := value.Kind.(type) { |
|||
case *schema_pb.Value_Int32Value: |
|||
result := float64(v.Int32Value) |
|||
return &result |
|||
case *schema_pb.Value_Int64Value: |
|||
result := float64(v.Int64Value) |
|||
return &result |
|||
case *schema_pb.Value_FloatValue: |
|||
result := float64(v.FloatValue) |
|||
return &result |
|||
case *schema_pb.Value_DoubleValue: |
|||
return &v.DoubleValue |
|||
} |
|||
return nil |
|||
} |
@ -0,0 +1,36 @@ |
|||
package engine |
|||
|
|||
import "fmt" |
|||
|
|||
// Error types for better error handling and testing
|
|||
|
|||
// AggregationError represents errors that occur during aggregation computation
|
|||
type AggregationError struct { |
|||
Operation string |
|||
Column string |
|||
Cause error |
|||
} |
|||
|
|||
func (e AggregationError) Error() string { |
|||
return fmt.Sprintf("aggregation error in %s(%s): %v", e.Operation, e.Column, e.Cause) |
|||
} |
|||
|
|||
// DataSourceError represents errors that occur when accessing data sources
|
|||
type DataSourceError struct { |
|||
Source string |
|||
Cause error |
|||
} |
|||
|
|||
func (e DataSourceError) Error() string { |
|||
return fmt.Sprintf("data source error in %s: %v", e.Source, e.Cause) |
|||
} |
|||
|
|||
// OptimizationError represents errors that occur during query optimization
|
|||
type OptimizationError struct { |
|||
Strategy string |
|||
Reason string |
|||
} |
|||
|
|||
func (e OptimizationError) Error() string { |
|||
return fmt.Sprintf("optimization failed for %s: %s", e.Strategy, e.Reason) |
|||
} |
@ -0,0 +1,170 @@ |
|||
package engine |
|||
|
|||
import ( |
|||
"regexp" |
|||
"strconv" |
|||
"strings" |
|||
"time" |
|||
|
|||
"github.com/seaweedfs/seaweedfs/weed/pb/schema_pb" |
|||
) |
|||
|
|||
// isSystemColumn checks if a column is a system column (_timestamp_ns, _key, _source)
|
|||
func (e *SQLEngine) isSystemColumn(columnName string) bool { |
|||
lowerName := strings.ToLower(columnName) |
|||
return lowerName == "_timestamp_ns" || lowerName == "timestamp_ns" || |
|||
lowerName == "_key" || lowerName == "key" || |
|||
lowerName == "_source" || lowerName == "source" |
|||
} |
|||
|
|||
// isRegularColumn checks if a column might be a regular data column (placeholder)
|
|||
func (e *SQLEngine) isRegularColumn(columnName string) bool { |
|||
// For now, assume any non-system column is a regular column
|
|||
return !e.isSystemColumn(columnName) |
|||
} |
|||
|
|||
// getSystemColumnGlobalMin computes global min for system columns using file metadata
|
|||
func (e *SQLEngine) getSystemColumnGlobalMin(columnName string, allFileStats map[string][]*ParquetFileStats) interface{} { |
|||
lowerName := strings.ToLower(columnName) |
|||
|
|||
switch lowerName { |
|||
case "_timestamp_ns", "timestamp_ns": |
|||
// For timestamps, find the earliest timestamp across all files
|
|||
// This should match what's in the Extended["min"] metadata
|
|||
var minTimestamp *int64 |
|||
for _, fileStats := range allFileStats { |
|||
for _, fileStat := range fileStats { |
|||
// Extract timestamp from filename (format: YYYY-MM-DD-HH-MM-SS.parquet)
|
|||
timestamp := e.extractTimestampFromFilename(fileStat.FileName) |
|||
if timestamp != 0 { |
|||
if minTimestamp == nil || timestamp < *minTimestamp { |
|||
minTimestamp = ×tamp |
|||
} |
|||
} |
|||
} |
|||
} |
|||
if minTimestamp != nil { |
|||
return *minTimestamp |
|||
} |
|||
|
|||
case "_key", "key": |
|||
// For keys, we'd need to read the actual parquet column stats
|
|||
// Fall back to scanning if not available in our current stats
|
|||
return nil |
|||
|
|||
case "_source", "source": |
|||
// Source is always "parquet_archive" for parquet files
|
|||
return "parquet_archive" |
|||
} |
|||
|
|||
return nil |
|||
} |
|||
|
|||
// getSystemColumnGlobalMax computes global max for system columns using file metadata
|
|||
func (e *SQLEngine) getSystemColumnGlobalMax(columnName string, allFileStats map[string][]*ParquetFileStats) interface{} { |
|||
lowerName := strings.ToLower(columnName) |
|||
|
|||
switch lowerName { |
|||
case "_timestamp_ns", "timestamp_ns": |
|||
// For timestamps, find the latest timestamp across all files
|
|||
// This should match what's in the Extended["max"] metadata
|
|||
var maxTimestamp *int64 |
|||
for _, fileStats := range allFileStats { |
|||
for _, fileStat := range fileStats { |
|||
// Extract timestamp from filename (format: YYYY-MM-DD-HH-MM-SS.parquet)
|
|||
timestamp := e.extractTimestampFromFilename(fileStat.FileName) |
|||
if timestamp != 0 { |
|||
if maxTimestamp == nil || timestamp > *maxTimestamp { |
|||
maxTimestamp = ×tamp |
|||
} |
|||
} |
|||
} |
|||
} |
|||
if maxTimestamp != nil { |
|||
return *maxTimestamp |
|||
} |
|||
|
|||
case "_key", "key": |
|||
// For keys, we'd need to read the actual parquet column stats
|
|||
// Fall back to scanning if not available in our current stats
|
|||
return nil |
|||
|
|||
case "_source", "source": |
|||
// Source is always "parquet_archive" for parquet files
|
|||
return "parquet_archive" |
|||
} |
|||
|
|||
return nil |
|||
} |
|||
|
|||
// extractTimestampFromFilename extracts timestamp from parquet filename
|
|||
func (e *SQLEngine) extractTimestampFromFilename(filename string) int64 { |
|||
// Expected format: YYYY-MM-DD-HH-MM-SS.parquet or similar
|
|||
// Try to parse timestamp from filename
|
|||
re := regexp.MustCompile(`(\d{4}-\d{2}-\d{2}-\d{2}-\d{2}-\d{2})`) |
|||
matches := re.FindStringSubmatch(filename) |
|||
if len(matches) > 1 { |
|||
timestampStr := matches[1] |
|||
// Convert to time and then to nanoseconds
|
|||
t, err := time.Parse("2006-01-02-15-04-05", timestampStr) |
|||
if err == nil { |
|||
return t.UnixNano() |
|||
} |
|||
} |
|||
|
|||
// Fallback: try to parse as unix timestamp if filename is numeric
|
|||
if timestampStr := strings.TrimSuffix(filename, ".parquet"); timestampStr != filename { |
|||
if timestamp, err := strconv.ParseInt(timestampStr, 10, 64); err == nil { |
|||
// Assume it's already in nanoseconds
|
|||
return timestamp |
|||
} |
|||
} |
|||
|
|||
return 0 |
|||
} |
|||
|
|||
// findColumnValue performs case-insensitive lookup of column values
|
|||
// Now includes support for system columns stored in HybridScanResult
|
|||
func (e *SQLEngine) findColumnValue(result HybridScanResult, columnName string) *schema_pb.Value { |
|||
lowerName := strings.ToLower(columnName) |
|||
|
|||
// Check system columns first
|
|||
switch lowerName { |
|||
case "_timestamp_ns", "timestamp_ns": |
|||
return &schema_pb.Value{ |
|||
Kind: &schema_pb.Value_Int64Value{Int64Value: result.Timestamp}, |
|||
} |
|||
case "_key", "key": |
|||
return &schema_pb.Value{ |
|||
Kind: &schema_pb.Value_BytesValue{BytesValue: result.Key}, |
|||
} |
|||
case "_source", "source": |
|||
return &schema_pb.Value{ |
|||
Kind: &schema_pb.Value_StringValue{StringValue: result.Source}, |
|||
} |
|||
} |
|||
|
|||
// Check regular columns in the record data
|
|||
if result.RecordValue != nil { |
|||
recordValue, ok := result.RecordValue.Kind.(*schema_pb.Value_RecordValue) |
|||
if !ok { |
|||
return nil |
|||
} |
|||
|
|||
if recordValue.RecordValue.Fields != nil { |
|||
// Try exact match first
|
|||
if value, exists := recordValue.RecordValue.Fields[columnName]; exists { |
|||
return value |
|||
} |
|||
|
|||
// Try case-insensitive match
|
|||
for fieldName, value := range recordValue.RecordValue.Fields { |
|||
if strings.EqualFold(fieldName, columnName) { |
|||
return value |
|||
} |
|||
} |
|||
} |
|||
} |
|||
|
|||
return nil |
|||
} |
@ -0,0 +1,62 @@ |
|||
package engine |
|||
|
|||
import ( |
|||
"github.com/seaweedfs/seaweedfs/weed/pb/schema_pb" |
|||
"github.com/seaweedfs/seaweedfs/weed/query/sqltypes" |
|||
) |
|||
|
|||
// QueryExecutionPlan contains information about how a query was executed
|
|||
type QueryExecutionPlan struct { |
|||
QueryType string |
|||
ExecutionStrategy string `json:"execution_strategy"` // fast_path, full_scan, hybrid
|
|||
DataSources []string `json:"data_sources"` // parquet_files, live_logs
|
|||
PartitionsScanned int `json:"partitions_scanned"` |
|||
ParquetFilesScanned int `json:"parquet_files_scanned"` |
|||
LiveLogFilesScanned int `json:"live_log_files_scanned"` |
|||
TotalRowsProcessed int64 `json:"total_rows_processed"` |
|||
OptimizationsUsed []string `json:"optimizations_used"` // parquet_stats, predicate_pushdown, etc.
|
|||
TimeRangeFilters map[string]interface{} `json:"time_range_filters,omitempty"` |
|||
Aggregations []string `json:"aggregations,omitempty"` |
|||
ExecutionTimeMs float64 `json:"execution_time_ms"` |
|||
Details map[string]interface{} `json:"details,omitempty"` |
|||
} |
|||
|
|||
// QueryResult represents the result of a SQL query execution
|
|||
type QueryResult struct { |
|||
Columns []string `json:"columns"` |
|||
Rows [][]sqltypes.Value `json:"rows"` |
|||
Error error `json:"error,omitempty"` |
|||
ExecutionPlan *QueryExecutionPlan `json:"execution_plan,omitempty"` |
|||
} |
|||
|
|||
// ParquetColumnStats holds statistics for a single column in a Parquet file
|
|||
type ParquetColumnStats struct { |
|||
ColumnName string |
|||
MinValue *schema_pb.Value |
|||
MaxValue *schema_pb.Value |
|||
NullCount int64 |
|||
RowCount int64 |
|||
} |
|||
|
|||
// ParquetFileStats holds statistics for a single Parquet file
|
|||
type ParquetFileStats struct { |
|||
FileName string |
|||
RowCount int64 |
|||
ColumnStats map[string]*ParquetColumnStats |
|||
} |
|||
|
|||
// HybridScanResult represents a single record from hybrid scanning
|
|||
type HybridScanResult struct { |
|||
RecordValue *schema_pb.Value |
|||
Source string // "live_log", "parquet_archive"
|
|||
Timestamp int64 |
|||
Key []byte |
|||
} |
|||
|
|||
// HybridScanOptions configures how the hybrid scanner operates
|
|||
type HybridScanOptions struct { |
|||
StartTimeNs int64 |
|||
StopTimeNs int64 |
|||
Limit int |
|||
Predicate func(*schema_pb.RecordValue) bool |
|||
} |
Write
Preview
Loading…
Cancel
Save
Reference in new issue