|
|
package shell
import ( "context" "flag" "fmt" "io" "time"
"github.com/seaweedfs/seaweedfs/weed/glog" "github.com/seaweedfs/seaweedfs/weed/pb"
"google.golang.org/grpc"
"github.com/seaweedfs/seaweedfs/weed/operation" "github.com/seaweedfs/seaweedfs/weed/pb/master_pb" "github.com/seaweedfs/seaweedfs/weed/pb/volume_server_pb" "github.com/seaweedfs/seaweedfs/weed/storage/erasure_coding" "github.com/seaweedfs/seaweedfs/weed/storage/needle" )
func init() { Commands = append(Commands, &commandEcEncode{}) }
type commandEcEncode struct { }
func (c *commandEcEncode) Name() string { return "ec.encode" }
func (c *commandEcEncode) Help() string { return `apply erasure coding to a volume
ec.encode [-collection=""] [-fullPercent=95 -quietFor=1h] ec.encode [-collection=""] [-volumeId=<volume_id>]
This command will: 1. freeze one volume 2. apply erasure coding to the volume 3. (optionally) re-balance encoded shards across multiple volume servers
The erasure coding is 10.4. So ideally you have more than 14 volume servers, and you can afford to lose 4 volume servers.
If the number of volumes are not high, the worst case is that you only have 4 volume servers, and the shards are spread as 4,4,3,3, respectively. You can afford to lose one volume server.
If you only have less than 4 volume servers, with erasure coding, at least you can afford to have 4 corrupted shard files.
Re-balancing algorithm: ` + ecBalanceAlgorithmDescription }
func (c *commandEcEncode) HasTag(CommandTag) bool { return false }
func (c *commandEcEncode) Do(args []string, commandEnv *CommandEnv, writer io.Writer) (err error) {
encodeCommand := flag.NewFlagSet(c.Name(), flag.ContinueOnError) volumeId := encodeCommand.Int("volumeId", 0, "the volume id") collection := encodeCommand.String("collection", "", "the collection name") fullPercentage := encodeCommand.Float64("fullPercent", 95, "the volume reaches the percentage of max volume size") quietPeriod := encodeCommand.Duration("quietFor", time.Hour, "select volumes without no writes for this period") maxParallelization := encodeCommand.Int("maxParallelization", 10, "run up to X tasks in parallel, whenever possible") forceChanges := encodeCommand.Bool("force", false, "force the encoding even if the cluster has less than recommended 4 nodes") shardReplicaPlacement := encodeCommand.String("shardReplicaPlacement", "", "replica placement for EC shards, or master default if empty") applyBalancing := encodeCommand.Bool("rebalance", false, "re-balance EC shards after creation")
if err = encodeCommand.Parse(args); err != nil { return nil } if err = commandEnv.confirmIsLocked(args); err != nil { return } rp, err := parseReplicaPlacementArg(commandEnv, *shardReplicaPlacement) if err != nil { return err }
// collect topology information
topologyInfo, _, err := collectTopologyInfo(commandEnv, 0) if err != nil { return err }
if !*forceChanges { var nodeCount int eachDataNode(topologyInfo, func(dc DataCenterId, rack RackId, dn *master_pb.DataNodeInfo) { nodeCount++ }) if nodeCount < erasure_coding.ParityShardsCount { glog.V(0).Infof("skip erasure coding with %d nodes, less than recommended %d nodes", nodeCount, erasure_coding.ParityShardsCount) return nil } }
var volumeIds []needle.VolumeId if vid := needle.VolumeId(*volumeId); vid != 0 { // volumeId is provided
volumeIds = append(volumeIds, vid) } else { // apply to all volumes in the collection
volumeIds, err = collectVolumeIdsForEcEncode(commandEnv, *collection, *fullPercentage, *quietPeriod) if err != nil { return err } }
var collections []string if *collection != "" { collections = []string{*collection} } else { collections = collectCollectionsForVolumeIds(topologyInfo, volumeIds) }
// encode all requested volumes...
for _, vid := range volumeIds { if err = doEcEncode(commandEnv, *collection, vid, *maxParallelization); err != nil { return fmt.Errorf("ec encode for volume %d: %v", vid, err) } } // ...then re-balance ec shards.
if err := EcBalance(commandEnv, collections, "", rp, *maxParallelization, *applyBalancing); err != nil { return fmt.Errorf("re-balance ec shards for collection(s) %v: %v", collections, err) }
return nil }
func doEcEncode(commandEnv *CommandEnv, collection string, vid needle.VolumeId, maxParallelization int) error { var ewg *ErrorWaitGroup
if !commandEnv.isLocked() { return fmt.Errorf("lock is lost") }
// find volume location
locations, found := commandEnv.MasterClient.GetLocationsClone(uint32(vid)) if !found { return fmt.Errorf("volume %d not found", vid) }
// mark the volume as readonly
ewg = NewErrorWaitGroup(maxParallelization) for _, location := range locations { ewg.Add(func() error { if err := markVolumeReplicaWritable(commandEnv.option.GrpcDialOption, vid, location, false, false); err != nil { return fmt.Errorf("mark volume %d as readonly on %s: %v", vid, location.Url, err) } return nil }) } if err := ewg.Wait(); err != nil { return err }
// generate ec shards
if err := generateEcShards(commandEnv.option.GrpcDialOption, vid, collection, locations[0].ServerAddress()); err != nil { return fmt.Errorf("generate ec shards for volume %d on %s: %v", vid, locations[0].Url, err) }
// ask the source volume server to delete the original volume
ewg = NewErrorWaitGroup(maxParallelization) for _, location := range locations { ewg.Add(func() error { if err := deleteVolume(commandEnv.option.GrpcDialOption, vid, location.ServerAddress(), false); err != nil { return fmt.Errorf("deleteVolume %s volume %d: %v", location.Url, vid, err) } fmt.Printf("deleted volume %d from %s\n", vid, location.Url) return nil }) } if err := ewg.Wait(); err != nil { return err }
return nil }
func generateEcShards(grpcDialOption grpc.DialOption, volumeId needle.VolumeId, collection string, sourceVolumeServer pb.ServerAddress) error {
fmt.Printf("generateEcShards %s %d on %s ...\n", collection, volumeId, sourceVolumeServer)
err := operation.WithVolumeServerClient(false, sourceVolumeServer, grpcDialOption, func(volumeServerClient volume_server_pb.VolumeServerClient) error { _, genErr := volumeServerClient.VolumeEcShardsGenerate(context.Background(), &volume_server_pb.VolumeEcShardsGenerateRequest{ VolumeId: uint32(volumeId), Collection: collection, }) return genErr })
return err
}
func collectVolumeIdsForEcEncode(commandEnv *CommandEnv, selectedCollection string, fullPercentage float64, quietPeriod time.Duration) (vids []needle.VolumeId, err error) { // collect topology information
topologyInfo, volumeSizeLimitMb, err := collectTopologyInfo(commandEnv, 0) if err != nil { return }
quietSeconds := int64(quietPeriod / time.Second) nowUnixSeconds := time.Now().Unix()
fmt.Printf("collect volumes quiet for: %d seconds and %.1f%% full\n", quietSeconds, fullPercentage)
vidMap := make(map[uint32]bool) eachDataNode(topologyInfo, func(dc DataCenterId, rack RackId, dn *master_pb.DataNodeInfo) { for _, diskInfo := range dn.DiskInfos { for _, v := range diskInfo.VolumeInfos { // ignore remote volumes
if v.RemoteStorageName != "" && v.RemoteStorageKey != "" { continue } if v.Collection == selectedCollection && v.ModifiedAtSecond+quietSeconds < nowUnixSeconds { if float64(v.Size) > fullPercentage/100*float64(volumeSizeLimitMb)*1024*1024 { if good, found := vidMap[v.Id]; found { if good { if diskInfo.FreeVolumeCount < 2 { glog.V(0).Infof("skip %s %d on %s, no free disk", v.Collection, v.Id, dn.Id) vidMap[v.Id] = false } } } else { if diskInfo.FreeVolumeCount < 2 { glog.V(0).Infof("skip %s %d on %s, no free disk", v.Collection, v.Id, dn.Id) vidMap[v.Id] = false } else { vidMap[v.Id] = true } } } } } } })
for vid, good := range vidMap { if good { vids = append(vids, needle.VolumeId(vid)) } }
return }
|