|
|
package bounded_tree
import ( "sync"
"github.com/chrislusf/seaweedfs/weed/glog" "github.com/chrislusf/seaweedfs/weed/util" )
type Node struct { Parent *Node Name string Children map[string]*Node }
type BoundedTree struct { root *Node sync.Mutex }
func NewBoundedTree() *BoundedTree { return &BoundedTree{ root: &Node{ Name: "/", }, } }
type VisitNodeFunc func(path util.FullPath) (childDirectories []string, err error)
// If the path is not visited, call the visitFn for each level of directory
// No action if the directory has been visited before or does not exist.
// A leaf node, which has no children, represents a directory not visited.
// A non-leaf node or a non-existing node represents a directory already visited, or does not need to visit.
func (t *BoundedTree) EnsureVisited(p util.FullPath, visitFn VisitNodeFunc) { t.Lock() defer t.Unlock()
if t.root == nil { return } components := p.Split() // fmt.Printf("components %v %d\n", components, len(components))
if canDelete := t.ensureVisited(t.root, util.FullPath("/"), components, 0, visitFn); canDelete { t.root = nil } }
func (t *BoundedTree) ensureVisited(n *Node, currentPath util.FullPath, components []string, i int, visitFn VisitNodeFunc) (canDeleteNode bool) {
// println("ensureVisited", currentPath, i)
if n == nil { // fmt.Printf("%s null\n", currentPath)
return }
if n.isVisited() { // fmt.Printf("%s visited %v\n", currentPath, n.Name)
} else { // fmt.Printf("ensure %v\n", currentPath)
children, err := visitFn(currentPath) if err != nil { glog.V(0).Infof("failed to visit %s: %v", currentPath, err) return }
if len(children) == 0 { // fmt.Printf(" canDelete %v without children\n", currentPath)
return true }
n.Children = make(map[string]*Node) for _, child := range children { // fmt.Printf(" add child %v %v\n", currentPath, child)
n.Children[child] = &Node{ Name: child, } } }
if i >= len(components) { return }
// fmt.Printf(" check child %v %v\n", currentPath, components[i])
toVisitNode, found := n.Children[components[i]] if !found { // fmt.Printf(" did not find child %v %v\n", currentPath, components[i])
return }
// fmt.Printf(" ensureVisited %v %v\n", currentPath, toVisitNode.Name)
if canDelete := t.ensureVisited(toVisitNode, currentPath.Child(components[i]), components, i+1, visitFn); canDelete {
// fmt.Printf(" delete %v %v\n", currentPath, components[i])
delete(n.Children, components[i])
if len(n.Children) == 0 { // fmt.Printf(" canDelete %v\n", currentPath)
return true } }
return false
}
func (n *Node) isVisited() bool { if n == nil { return true } if len(n.Children) > 0 { return true } return false }
func (n *Node) getChild(childName string) *Node { if n == nil { return nil } if len(n.Children) > 0 { return n.Children[childName] } return nil }
func (t *BoundedTree) HasVisited(p util.FullPath) bool {
if t.root == nil { return true }
components := p.Split() // fmt.Printf("components %v %d\n", components, len(components))
return t.hasVisited(t.root, util.FullPath("/"), components, 0) }
func (t *BoundedTree) hasVisited(n *Node, currentPath util.FullPath, components []string, i int) bool {
if n == nil { return true }
if !n.isVisited() { return false }
// fmt.Printf(" hasVisited child %v %+v %d\n", currentPath, components, i)
if i >= len(components) { return true }
toVisitNode, found := n.Children[components[i]] if !found { return true }
return t.hasVisited(toVisitNode, currentPath.Child(components[i]), components, i+1)
}
|