|
|
package shell
import ( "context" "flag" "fmt" "io" "math/rand" "sync" "time"
"github.com/seaweedfs/seaweedfs/weed/glog" "github.com/seaweedfs/seaweedfs/weed/pb"
"google.golang.org/grpc"
"github.com/seaweedfs/seaweedfs/weed/operation" "github.com/seaweedfs/seaweedfs/weed/pb/master_pb" "github.com/seaweedfs/seaweedfs/weed/pb/volume_server_pb" "github.com/seaweedfs/seaweedfs/weed/storage/erasure_coding" "github.com/seaweedfs/seaweedfs/weed/storage/needle" "github.com/seaweedfs/seaweedfs/weed/wdclient" )
func init() { Commands = append(Commands, &commandEcEncode{}) }
type commandEcEncode struct { }
func (c *commandEcEncode) Name() string { return "ec.encode" }
func (c *commandEcEncode) Help() string { return `apply erasure coding to a volume
ec.encode [-collection=""] [-fullPercent=95 -quietFor=1h] ec.encode [-collection=""] [-volumeId=<volume_id>]
This command will: 1. freeze one volume 2. apply erasure coding to the volume 3. (optionally) re-balance encoded shards across multiple volume servers
The erasure coding is 10.4. So ideally you have more than 14 volume servers, and you can afford to lose 4 volume servers.
If the number of volumes are not high, the worst case is that you only have 4 volume servers, and the shards are spread as 4,4,3,3, respectively. You can afford to lose one volume server.
If you only have less than 4 volume servers, with erasure coding, at least you can afford to have 4 corrupted shard files.
Re-balancing algorithm: ` + ecBalanceAlgorithmDescription }
func (c *commandEcEncode) HasTag(CommandTag) bool { return false }
func (c *commandEcEncode) Do(args []string, commandEnv *CommandEnv, writer io.Writer) (err error) {
encodeCommand := flag.NewFlagSet(c.Name(), flag.ContinueOnError) volumeId := encodeCommand.Int("volumeId", 0, "the volume id") collection := encodeCommand.String("collection", "", "the collection name") fullPercentage := encodeCommand.Float64("fullPercent", 95, "the volume reaches the percentage of max volume size") quietPeriod := encodeCommand.Duration("quietFor", time.Hour, "select volumes without no writes for this period") // TODO: Add concurrency support to EcBalance and reenable this switch?
//parallelCopy := encodeCommand.Bool("parallelCopy", true, "copy shards in parallel")
forceChanges := encodeCommand.Bool("force", false, "force the encoding even if the cluster has less than recommended 4 nodes") shardReplicaPlacement := encodeCommand.String("shardReplicaPlacement", "", "replica placement for EC shards, or master default if empty") applyBalancing := encodeCommand.Bool("rebalance", false, "re-balance EC shards after creation")
if err = encodeCommand.Parse(args); err != nil { return nil } if err = commandEnv.confirmIsLocked(args); err != nil { return } rp, err := parseReplicaPlacementArg(commandEnv, *shardReplicaPlacement) if err != nil { return err }
// collect topology information
topologyInfo, _, err := collectTopologyInfo(commandEnv, 0) if err != nil { return err }
if !*forceChanges { var nodeCount int eachDataNode(topologyInfo, func(dc DataCenterId, rack RackId, dn *master_pb.DataNodeInfo) { nodeCount++ }) if nodeCount < erasure_coding.ParityShardsCount { glog.V(0).Infof("skip erasure coding with %d nodes, less than recommended %d nodes", nodeCount, erasure_coding.ParityShardsCount) return nil } }
var volumeIds []needle.VolumeId if vid := needle.VolumeId(*volumeId); vid != 0 { // volumeId is provided
volumeIds = append(volumeIds, vid) } else { // apply to all volumes in the collection
volumeIds, err = collectVolumeIdsForEcEncode(commandEnv, *collection, *fullPercentage, *quietPeriod) if err != nil { return err } }
var collections []string if *collection != "" { collections = []string{*collection} } else { // TODO: should we limit this to collections associated with the provided volume ID?
collections, err = ListCollectionNames(commandEnv, false, true) if err != nil { return err } }
// encode all requested volumes...
for _, vid := range volumeIds { if err = doEcEncode(commandEnv, *collection, vid); err != nil { return fmt.Errorf("ec encode for volume %d: %v", vid, err) } } // ...then re-balance ec shards.
if err := EcBalance(commandEnv, collections, "", rp, *applyBalancing); err != nil { return fmt.Errorf("re-balance ec shards for collection(s) %v: %v", collections, err) }
return nil }
func doEcEncode(commandEnv *CommandEnv, collection string, vid needle.VolumeId) error { if !commandEnv.isLocked() { return fmt.Errorf("lock is lost") }
// find volume location
locations, found := commandEnv.MasterClient.GetLocationsClone(uint32(vid)) if !found { return fmt.Errorf("volume %d not found", vid) }
// fmt.Printf("found ec %d shards on %v\n", vid, locations)
// mark the volume as readonly
if err := markVolumeReplicasWritable(commandEnv.option.GrpcDialOption, vid, locations, false, false); err != nil { return fmt.Errorf("mark volume %d as readonly on %s: %v", vid, locations[0].Url, err) }
// generate ec shards
if err := generateEcShards(commandEnv.option.GrpcDialOption, vid, collection, locations[0].ServerAddress()); err != nil { return fmt.Errorf("generate ec shards for volume %d on %s: %v", vid, locations[0].Url, err) }
return nil }
func generateEcShards(grpcDialOption grpc.DialOption, volumeId needle.VolumeId, collection string, sourceVolumeServer pb.ServerAddress) error {
fmt.Printf("generateEcShards %s %d on %s ...\n", collection, volumeId, sourceVolumeServer)
err := operation.WithVolumeServerClient(false, sourceVolumeServer, grpcDialOption, func(volumeServerClient volume_server_pb.VolumeServerClient) error { _, genErr := volumeServerClient.VolumeEcShardsGenerate(context.Background(), &volume_server_pb.VolumeEcShardsGenerateRequest{ VolumeId: uint32(volumeId), Collection: collection, }) return genErr })
return err
}
// TODO: delete this (now unused) shard spread logic.
func spreadEcShards(commandEnv *CommandEnv, volumeId needle.VolumeId, collection string, existingLocations []wdclient.Location, parallelCopy bool) (err error) {
allEcNodes, totalFreeEcSlots, err := collectEcNodes(commandEnv) if err != nil { return err }
if totalFreeEcSlots < erasure_coding.TotalShardsCount { return fmt.Errorf("not enough free ec shard slots. only %d left", totalFreeEcSlots) } allocatedDataNodes := allEcNodes if len(allocatedDataNodes) > erasure_coding.TotalShardsCount { allocatedDataNodes = allocatedDataNodes[:erasure_coding.TotalShardsCount] }
// calculate how many shards to allocate for these servers
allocatedEcIds := balancedEcDistribution(allocatedDataNodes)
// ask the data nodes to copy from the source volume server
copiedShardIds, err := parallelCopyEcShardsFromSource(commandEnv.option.GrpcDialOption, allocatedDataNodes, allocatedEcIds, volumeId, collection, existingLocations[0], parallelCopy) if err != nil { return err }
// unmount the to be deleted shards
err = unmountEcShards(commandEnv.option.GrpcDialOption, volumeId, existingLocations[0].ServerAddress(), copiedShardIds) if err != nil { return err }
// ask the source volume server to clean up copied ec shards
err = sourceServerDeleteEcShards(commandEnv.option.GrpcDialOption, collection, volumeId, existingLocations[0].ServerAddress(), copiedShardIds) if err != nil { return fmt.Errorf("source delete copied ecShards %s %d.%v: %v", existingLocations[0].Url, volumeId, copiedShardIds, err) }
// ask the source volume server to delete the original volume
for _, location := range existingLocations { fmt.Printf("delete volume %d from %s\n", volumeId, location.Url) err = deleteVolume(commandEnv.option.GrpcDialOption, volumeId, location.ServerAddress(), false) if err != nil { return fmt.Errorf("deleteVolume %s volume %d: %v", location.Url, volumeId, err) } }
return err
}
func parallelCopyEcShardsFromSource(grpcDialOption grpc.DialOption, targetServers []*EcNode, allocatedEcIds [][]uint32, volumeId needle.VolumeId, collection string, existingLocation wdclient.Location, parallelCopy bool) (actuallyCopied []uint32, err error) {
fmt.Printf("parallelCopyEcShardsFromSource %d %s\n", volumeId, existingLocation.Url)
var wg sync.WaitGroup shardIdChan := make(chan []uint32, len(targetServers)) copyFunc := func(server *EcNode, allocatedEcShardIds []uint32) { defer wg.Done() copiedShardIds, copyErr := oneServerCopyAndMountEcShardsFromSource(grpcDialOption, server, allocatedEcShardIds, volumeId, collection, existingLocation.ServerAddress()) if copyErr != nil { err = copyErr } else { shardIdChan <- copiedShardIds server.addEcVolumeShards(volumeId, collection, copiedShardIds) } } cleanupFunc := func(server *EcNode, allocatedEcShardIds []uint32) { if err := unmountEcShards(grpcDialOption, volumeId, pb.NewServerAddressFromDataNode(server.info), allocatedEcShardIds); err != nil { fmt.Printf("unmount aborted shards %d.%v on %s: %v\n", volumeId, allocatedEcShardIds, server.info.Id, err) } if err := sourceServerDeleteEcShards(grpcDialOption, collection, volumeId, pb.NewServerAddressFromDataNode(server.info), allocatedEcShardIds); err != nil { fmt.Printf("remove aborted shards %d.%v on target server %s: %v\n", volumeId, allocatedEcShardIds, server.info.Id, err) } if err := sourceServerDeleteEcShards(grpcDialOption, collection, volumeId, existingLocation.ServerAddress(), allocatedEcShardIds); err != nil { fmt.Printf("remove aborted shards %d.%v on existing server %s: %v\n", volumeId, allocatedEcShardIds, existingLocation.ServerAddress(), err) } }
// maybe parallelize
for i, server := range targetServers { if len(allocatedEcIds[i]) <= 0 { continue }
wg.Add(1) if parallelCopy { go copyFunc(server, allocatedEcIds[i]) } else { copyFunc(server, allocatedEcIds[i]) } } wg.Wait() close(shardIdChan)
if err != nil { for i, server := range targetServers { if len(allocatedEcIds[i]) <= 0 { continue } cleanupFunc(server, allocatedEcIds[i]) } return nil, err }
for shardIds := range shardIdChan { actuallyCopied = append(actuallyCopied, shardIds...) }
return }
func balancedEcDistribution(servers []*EcNode) (allocated [][]uint32) { allocated = make([][]uint32, len(servers)) allocatedShardIdIndex := uint32(0) serverIndex := rand.Intn(len(servers)) for allocatedShardIdIndex < erasure_coding.TotalShardsCount { if servers[serverIndex].freeEcSlot > 0 { allocated[serverIndex] = append(allocated[serverIndex], allocatedShardIdIndex) allocatedShardIdIndex++ } serverIndex++ if serverIndex >= len(servers) { serverIndex = 0 } }
return allocated }
func collectVolumeIdsForEcEncode(commandEnv *CommandEnv, selectedCollection string, fullPercentage float64, quietPeriod time.Duration) (vids []needle.VolumeId, err error) { // collect topology information
topologyInfo, volumeSizeLimitMb, err := collectTopologyInfo(commandEnv, 0) if err != nil { return }
quietSeconds := int64(quietPeriod / time.Second) nowUnixSeconds := time.Now().Unix()
fmt.Printf("collect volumes quiet for: %d seconds and %.1f%% full\n", quietSeconds, fullPercentage)
vidMap := make(map[uint32]bool) eachDataNode(topologyInfo, func(dc DataCenterId, rack RackId, dn *master_pb.DataNodeInfo) { for _, diskInfo := range dn.DiskInfos { for _, v := range diskInfo.VolumeInfos { // ignore remote volumes
if v.RemoteStorageName != "" && v.RemoteStorageKey != "" { continue } if v.Collection == selectedCollection && v.ModifiedAtSecond+quietSeconds < nowUnixSeconds { if float64(v.Size) > fullPercentage/100*float64(volumeSizeLimitMb)*1024*1024 { if good, found := vidMap[v.Id]; found { if good { if diskInfo.FreeVolumeCount < 2 { glog.V(0).Infof("skip %s %d on %s, no free disk", v.Collection, v.Id, dn.Id) vidMap[v.Id] = false } } } else { if diskInfo.FreeVolumeCount < 2 { glog.V(0).Infof("skip %s %d on %s, no free disk", v.Collection, v.Id, dn.Id) vidMap[v.Id] = false } else { vidMap[v.Id] = true } } } } } } })
for vid, good := range vidMap { if good { vids = append(vids, needle.VolumeId(vid)) } }
return }
|