|
|
package shell
import ( "context" "flag" "fmt" "io" "sort" "sync"
"github.com/chrislusf/seaweedfs/weed/glog" "github.com/chrislusf/seaweedfs/weed/operation" "github.com/chrislusf/seaweedfs/weed/pb/master_pb" "github.com/chrislusf/seaweedfs/weed/pb/volume_server_pb" "github.com/chrislusf/seaweedfs/weed/storage/erasure_coding" "github.com/chrislusf/seaweedfs/weed/storage/needle" "github.com/chrislusf/seaweedfs/weed/wdclient" "google.golang.org/grpc" )
func init() { commands = append(commands, &commandEcEncode{}) }
type commandEcEncode struct { }
func (c *commandEcEncode) Name() string { return "ec.encode" }
func (c *commandEcEncode) Help() string { return `apply erasure coding to a volume
This command will: 1. freeze one volume 2. apply erasure coding to the volume 3. move the encoded shards to multiple volume servers
The erasure coding is 10.4. So ideally you have more than 14 volume servers, and you can afford to lose 4 volume servers.
If the number of volumes are not high, the worst case is that you only have 4 volume servers, and the shards are spread as 4,4,3,3, respectively. You can afford to lose one volume server.
If you only have less than 4 volume servers, with erasure coding, at least you can afford to have 4 corrupted shard files.
` }
func (c *commandEcEncode) Do(args []string, commandEnv *commandEnv, writer io.Writer) (err error) {
encodeCommand := flag.NewFlagSet(c.Name(), flag.ContinueOnError) volumeId := encodeCommand.Int("volumeId", 0, "the volume id") collection := encodeCommand.String("collection", "", "the collection name") if err = encodeCommand.Parse(args); err != nil { return nil }
ctx := context.Background()
// find volume location
locations := commandEnv.masterClient.GetLocations(uint32(*volumeId)) if len(locations) == 0 { return fmt.Errorf("volume %d not found", *volumeId) }
// generate ec shards
err = generateEcShards(ctx, commandEnv.option.GrpcDialOption, needle.VolumeId(*volumeId), *collection, locations[0].Url) if err != nil { return fmt.Errorf("generate ec shards for volume %d on %s: %v", *volumeId, locations[0].Url, err) }
// balance the ec shards to current cluster
err = balanceEcShards(ctx, commandEnv, needle.VolumeId(*volumeId), *collection, locations) if err != nil { return fmt.Errorf("balance ec shards for volume %d on %s: %v", *volumeId, locations[0].Url, err) }
return err }
func generateEcShards(ctx context.Context, grpcDialOption grpc.DialOption, volumeId needle.VolumeId, collection string, sourceVolumeServer string) error {
err := operation.WithVolumeServerClient(sourceVolumeServer, grpcDialOption, func(volumeServerClient volume_server_pb.VolumeServerClient) error { _, genErr := volumeServerClient.VolumeEcShardsGenerate(ctx, &volume_server_pb.VolumeEcShardsGenerateRequest{ VolumeId: uint32(volumeId), Collection: collection, }) return genErr })
return err
}
func balanceEcShards(ctx context.Context, commandEnv *commandEnv, volumeId needle.VolumeId, collection string, existingLocations []wdclient.Location) (err error) {
// list all possible locations
var resp *master_pb.VolumeListResponse err = commandEnv.masterClient.WithClient(ctx, func(client master_pb.SeaweedClient) error { resp, err = client.VolumeList(ctx, &master_pb.VolumeListRequest{}) return err }) if err != nil { return err }
// find out all volume servers with one volume slot left.
var allDataNodes []*master_pb.DataNodeInfo var totalFreeEcSlots uint32 eachDataNode(resp.TopologyInfo, func(dn *master_pb.DataNodeInfo) { if freeEcSlots := countFreeShardSlots(dn); freeEcSlots > 0 { allDataNodes = append(allDataNodes, dn) totalFreeEcSlots += freeEcSlots } }) if totalFreeEcSlots < erasure_coding.TotalShardsCount { return fmt.Errorf("not enough free ec shard slots. only %d left", totalFreeEcSlots) } sort.Slice(allDataNodes, func(i, j int) bool { return countFreeShardSlots(allDataNodes[j]) < countFreeShardSlots(allDataNodes[i]) }) if len(allDataNodes) > erasure_coding.TotalShardsCount { allDataNodes = allDataNodes[:erasure_coding.TotalShardsCount] }
// calculate how many shards to allocate for these servers
allocated := balancedEcDistribution(allDataNodes)
// ask the data nodes to copy from the source volume server
copiedShardIds, err := parallelCopyEcShardsFromSource(ctx, commandEnv.option.GrpcDialOption, allDataNodes, allocated, volumeId, collection, existingLocations[0]) if err != nil { return nil }
// ask the source volume server to clean up copied ec shards
err = sourceServerDeleteEcShards(ctx, commandEnv.option.GrpcDialOption, volumeId, existingLocations[0], copiedShardIds) if err != nil { return fmt.Errorf("sourceServerDeleteEcShards %s %d.%v: %v", existingLocations[0], volumeId, copiedShardIds, err) }
// ask the source volume server to delete the original volume
for _, location := range existingLocations { err = deleteVolume(ctx, commandEnv.option.GrpcDialOption, volumeId, location.Url) if err != nil { return fmt.Errorf("deleteVolume %s volume %d: %v", location.Url, volumeId, err) } }
return err
}
func parallelCopyEcShardsFromSource(ctx context.Context, grpcDialOption grpc.DialOption, targetServers []*master_pb.DataNodeInfo, allocated []uint32, volumeId needle.VolumeId, collection string, existingLocation wdclient.Location) (actuallyCopied []uint32, err error) {
// parallelize
shardIdChan := make(chan []uint32, len(targetServers)) var wg sync.WaitGroup startFromShardId := uint32(0) for i, server := range targetServers { if allocated[i] <= 0 { continue }
wg.Add(1) go func(server *master_pb.DataNodeInfo, startFromShardId uint32, shardCount uint32) { defer wg.Done() copiedShardIds, copyErr := oneServerCopyEcShardsFromSource(ctx, grpcDialOption, server, startFromShardId, shardCount, volumeId, collection, existingLocation) if copyErr != nil { err = copyErr } else { shardIdChan <- copiedShardIds } }(server, startFromShardId, allocated[i]) startFromShardId += allocated[i] } wg.Wait() close(shardIdChan)
if err != nil { return nil, err }
for shardIds := range shardIdChan { actuallyCopied = append(actuallyCopied, shardIds...) }
return }
func oneServerCopyEcShardsFromSource(ctx context.Context, grpcDialOption grpc.DialOption, targetServer *master_pb.DataNodeInfo, startFromShardId uint32, shardCount uint32, volumeId needle.VolumeId, collection string, existingLocation wdclient.Location) (copiedShardIds []uint32, err error) {
var shardIdsToCopy []uint32 for shardId := startFromShardId; shardId < startFromShardId+shardCount; shardId++ { fmt.Printf("allocate %d.%d %s => %s\n", volumeId, shardId, existingLocation.Url, targetServer.Id) shardIdsToCopy = append(shardIdsToCopy, shardId) }
err = operation.WithVolumeServerClient(targetServer.Id, grpcDialOption, func(volumeServerClient volume_server_pb.VolumeServerClient) error {
if targetServer.Id != existingLocation.Url {
_, copyErr := volumeServerClient.VolumeEcShardsCopy(ctx, &volume_server_pb.VolumeEcShardsCopyRequest{ VolumeId: uint32(volumeId), Collection: collection, ShardIds: shardIdsToCopy, SourceDataNode: existingLocation.Url, }) if copyErr != nil { return copyErr } }
_, mountErr := volumeServerClient.VolumeEcShardsMount(ctx, &volume_server_pb.VolumeEcShardsMountRequest{ VolumeId: uint32(volumeId), Collection: collection, ShardIds: shardIdsToCopy, }) if mountErr != nil { return mountErr }
if targetServer.Id != existingLocation.Url { copiedShardIds = shardIdsToCopy glog.V(0).Infof("%s ec volume %d deletes shards %+v", existingLocation.Url, volumeId, copiedShardIds) }
return nil })
if err != nil { return }
return }
func sourceServerDeleteEcShards(ctx context.Context, grpcDialOption grpc.DialOption, volumeId needle.VolumeId, sourceLocation wdclient.Location, toBeDeletedShardIds []uint32) error {
shouldDeleteEcx := len(toBeDeletedShardIds) == erasure_coding.TotalShardsCount
return operation.WithVolumeServerClient(sourceLocation.Url, grpcDialOption, func(volumeServerClient volume_server_pb.VolumeServerClient) error { _, deleteErr := volumeServerClient.VolumeEcShardsDelete(ctx, &volume_server_pb.VolumeEcShardsDeleteRequest{ VolumeId: uint32(volumeId), ShardIds: toBeDeletedShardIds, ShouldDeleteEcx: shouldDeleteEcx, }) return deleteErr })
}
func balancedEcDistribution(servers []*master_pb.DataNodeInfo) (allocated []uint32) { freeSlots := make([]uint32, len(servers)) allocated = make([]uint32, len(servers)) for i, server := range servers { freeSlots[i] = countFreeShardSlots(server) } allocatedCount := 0 for allocatedCount < erasure_coding.TotalShardsCount { for i, _ := range servers { if freeSlots[i]-allocated[i] > 0 { allocated[i] += 1 allocatedCount += 1 } if allocatedCount >= erasure_coding.TotalShardsCount { break } } }
return allocated }
func eachDataNode(topo *master_pb.TopologyInfo, fn func(*master_pb.DataNodeInfo)) { for _, dc := range topo.DataCenterInfos { for _, rack := range dc.RackInfos { for _, dn := range rack.DataNodeInfos { fn(dn) } } } }
func countShards(ecShardInfos []*master_pb.VolumeEcShardInformationMessage) (count uint32) { for _, ecShardInfo := range ecShardInfos { shardBits := erasure_coding.ShardBits(ecShardInfo.EcIndexBits) count += uint32(shardBits.ShardIdCount()) } return }
func countFreeShardSlots(dn *master_pb.DataNodeInfo) (count uint32) { return uint32(dn.FreeVolumeCount)*10 - countShards(dn.EcShardInfos) }
|