|
|
package util
import ( "bytes" "crypto/md5" "crypto/rand" "encoding/base64" "fmt" "io" "math" "strconv" "strings" "unicode" )
// BytesToHumanReadable returns the converted human readable representation of the bytes.
func BytesToHumanReadable(b uint64) string { const unit = 1024 if b < unit { return fmt.Sprintf("%d B", b) }
div, exp := uint64(unit), 0 for n := b / unit; n >= unit; n /= unit { div *= unit exp++ }
return fmt.Sprintf("%.2f %ciB", float64(b)/float64(div), "KMGTPE"[exp]) }
// big endian
func BytesToUint64(b []byte) (v uint64) { length := uint(len(b)) for i := uint(0); i < length-1; i++ { v += uint64(b[i]) v <<= 8 } v += uint64(b[length-1]) return } func BytesToUint32(b []byte) (v uint32) { length := uint(len(b)) for i := uint(0); i < length-1; i++ { v += uint32(b[i]) v <<= 8 } v += uint32(b[length-1]) return } func BytesToUint16(b []byte) (v uint16) { v += uint16(b[0]) v <<= 8 v += uint16(b[1]) return } func Uint64toBytes(b []byte, v uint64) { for i := uint(0); i < 8; i++ { b[7-i] = byte(v >> (i * 8)) } } func Uint32toBytes(b []byte, v uint32) { for i := uint(0); i < 4; i++ { b[3-i] = byte(v >> (i * 8)) } } func Uint16toBytes(b []byte, v uint16) { b[0] = byte(v >> 8) b[1] = byte(v) } func Uint8toBytes(b []byte, v uint8) { b[0] = byte(v) }
// returns a 64 bit big int
func HashStringToLong(dir string) (v int64) { h := md5.New() io.WriteString(h, dir)
b := h.Sum(nil)
v += int64(b[0]) v <<= 8 v += int64(b[1]) v <<= 8 v += int64(b[2]) v <<= 8 v += int64(b[3]) v <<= 8 v += int64(b[4]) v <<= 8 v += int64(b[5]) v <<= 8 v += int64(b[6]) v <<= 8 v += int64(b[7])
return }
func HashToInt32(data []byte) (v int32) { h := md5.New() h.Write(data)
b := h.Sum(nil)
v += int32(b[0]) v <<= 8 v += int32(b[1]) v <<= 8 v += int32(b[2]) v <<= 8 v += int32(b[3])
return }
func Base64Encode(data []byte) string { return base64.StdEncoding.EncodeToString(data) }
func Base64Md5(data []byte) string { return Base64Encode(Md5(data)) }
func Md5(data []byte) []byte { hash := md5.New() hash.Write(data) return hash.Sum(nil) }
func Md5String(data []byte) string { return fmt.Sprintf("%x", Md5(data)) }
func Base64Md5ToBytes(contentMd5 string) []byte { data, err := base64.StdEncoding.DecodeString(contentMd5) if err != nil { return nil } return data }
func RandomInt32() int32 { buf := make([]byte, 4) rand.Read(buf) return int32(BytesToUint32(buf)) }
func RandomUint64() int32 { buf := make([]byte, 8) rand.Read(buf) return int32(BytesToUint64(buf)) }
func RandomBytes(byteCount int) []byte { buf := make([]byte, byteCount) rand.Read(buf) return buf }
type BytesReader struct { Bytes []byte *bytes.Reader }
func NewBytesReader(b []byte) *BytesReader { return &BytesReader{ Bytes: b, Reader: bytes.NewReader(b), } }
// EmptyTo returns to if s is empty.
func EmptyTo(s, to string) string { if s == "" { return to }
return s }
// IfElse works like b ? this : that.
func IfElse(b bool, this, that string) string { if b { return this } return that }
// ParseBytes parses a string representation of bytes into the number
// of bytes it represents.
//
// See Also: Bytes, IBytes.
//
// ParseBytes("42MB") -> 42000000, nil
// ParseBytes("42 MB") -> 42000000, nil
// ParseBytes("42 mib") -> 44040192, nil
func ParseBytes(s string) (uint64, error) { lastDigit := 0 hasComma := false for _, r := range s { if !(unicode.IsDigit(r) || r == '.' || r == ',') { break } if r == ',' { hasComma = true } lastDigit++ }
num := s[:lastDigit] if hasComma { num = strings.Replace(num, ",", "", -1) }
f, err := strconv.ParseFloat(num, 64) if err != nil { return 0, err }
extra := strings.ToLower(strings.TrimSpace(s[lastDigit:])) if m, ok := bytesSizeTable[extra]; ok { f *= float64(m) if f >= math.MaxUint64 { return 0, fmt.Errorf("too large: %v", s) } return uint64(f), nil }
return 0, fmt.Errorf("unhandled size name: %v", extra) }
var bytesSizeTable = map[string]uint64{ "b": Byte, "kib": KiByte, "kb": KByte, "mib": MiByte, "mb": MByte, "gib": GiByte, "gb": GByte, "tib": TiByte, "tb": TByte, "pib": PiByte, "pb": PByte, "eib": EiByte, "eb": EByte, // Without suffix
"": Byte, "ki": KiByte, "k": KByte, "mi": MiByte, "m": MByte, "gi": GiByte, "g": GByte, "ti": TiByte, "t": TByte, "pi": PiByte, "p": PByte, "ei": EiByte, "e": EByte, }
// IEC Sizes.
// kibis of bits
const ( Byte = 1 << (iota * 10) KiByte MiByte GiByte TiByte PiByte EiByte )
// SI Sizes.
const ( IByte = 1 KByte = IByte * 1000 MByte = KByte * 1000 GByte = MByte * 1000 TByte = GByte * 1000 PByte = TByte * 1000 EByte = PByte * 1000 )
|