mirror of https://github.com/trapexit/mergerfs.git
				
				
			
			You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							4217 lines
						
					
					
						
							151 KiB
						
					
					
				
			
		
		
		
			
			
			
		
		
	
	
							4217 lines
						
					
					
						
							151 KiB
						
					
					
				| /* | |
|   Formatting library for C++ | |
|  | |
|   Copyright (c) 2012 - present, Victor Zverovich | |
|  | |
|   Permission is hereby granted, free of charge, to any person obtaining | |
|   a copy of this software and associated documentation files (the | |
|   "Software"), to deal in the Software without restriction, including | |
|   without limitation the rights to use, copy, modify, merge, publish, | |
|   distribute, sublicense, and/or sell copies of the Software, and to | |
|   permit persons to whom the Software is furnished to do so, subject to | |
|   the following conditions: | |
|  | |
|   The above copyright notice and this permission notice shall be | |
|   included in all copies or substantial portions of the Software. | |
|  | |
|   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
|   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
|   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
|   NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | |
|   LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |
|   OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |
|   WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
|  | |
|   --- Optional exception to the license --- | |
|  | |
|   As an exception, if, as a result of your compiling your source code, portions | |
|   of this Software are embedded into a machine-executable object form of such | |
|   source code, you may redistribute such embedded portions in such object form | |
|   without including the above copyright and permission notices. | |
|  */ | |
| 
 | |
| #ifndef FMT_FORMAT_H_ | |
| #define FMT_FORMAT_H_ | |
|  | |
| #include <cmath>         // std::signbit | |
| #include <cstdint>       // uint32_t | |
| #include <cstring>       // std::memcpy | |
| #include <limits>        // std::numeric_limits | |
| #include <memory>        // std::uninitialized_copy | |
| #include <stdexcept>     // std::runtime_error | |
| #include <system_error>  // std::system_error | |
|  | |
| #ifdef __cpp_lib_bit_cast | |
| #  include <bit>  // std::bitcast | |
| #endif | |
|  | |
| #include "core.h" | |
|  | |
| #if FMT_GCC_VERSION | |
| #  define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden"))) | |
| #else | |
| #  define FMT_GCC_VISIBILITY_HIDDEN | |
| #endif | |
|  | |
| #ifdef __NVCC__ | |
| #  define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__) | |
| #else | |
| #  define FMT_CUDA_VERSION 0 | |
| #endif | |
|  | |
| #ifdef __has_builtin | |
| #  define FMT_HAS_BUILTIN(x) __has_builtin(x) | |
| #else | |
| #  define FMT_HAS_BUILTIN(x) 0 | |
| #endif | |
|  | |
| #if FMT_GCC_VERSION || FMT_CLANG_VERSION | |
| #  define FMT_NOINLINE __attribute__((noinline)) | |
| #else | |
| #  define FMT_NOINLINE | |
| #endif | |
|  | |
| #if FMT_MSC_VERSION | |
| #  define FMT_MSC_DEFAULT = default | |
| #else | |
| #  define FMT_MSC_DEFAULT | |
| #endif | |
|  | |
| #ifndef FMT_THROW | |
| #  if FMT_EXCEPTIONS | |
| #    if FMT_MSC_VERSION || defined(__NVCC__) | |
| FMT_BEGIN_NAMESPACE | |
| namespace detail { | |
| template <typename Exception> inline void do_throw(const Exception& x) { | |
|   // Silence unreachable code warnings in MSVC and NVCC because these | |
|   // are nearly impossible to fix in a generic code. | |
|   volatile bool b = true; | |
|   if (b) throw x; | |
| } | |
| }  // namespace detail | |
| FMT_END_NAMESPACE | |
| #      define FMT_THROW(x) detail::do_throw(x) | |
| #    else | |
| #      define FMT_THROW(x) throw x | |
| #    endif | |
| #  else | |
| #    define FMT_THROW(x)               \ | |
|       do {                             \ | |
|         FMT_ASSERT(false, (x).what()); \ | |
|       } while (false) | |
| #  endif | |
| #endif | |
|  | |
| #if FMT_EXCEPTIONS | |
| #  define FMT_TRY try | |
| #  define FMT_CATCH(x) catch (x) | |
| #else | |
| #  define FMT_TRY if (true) | |
| #  define FMT_CATCH(x) if (false) | |
| #endif | |
|  | |
| #ifndef FMT_MAYBE_UNUSED | |
| #  if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused) | |
| #    define FMT_MAYBE_UNUSED [[maybe_unused]] | |
| #  else | |
| #    define FMT_MAYBE_UNUSED | |
| #  endif | |
| #endif | |
|  | |
| #ifndef FMT_USE_USER_DEFINED_LITERALS | |
| // EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs. | |
| #  if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \ | |
|        FMT_MSC_VERSION >= 1900) &&                                     \ | |
|       (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480) | |
| #    define FMT_USE_USER_DEFINED_LITERALS 1 | |
| #  else | |
| #    define FMT_USE_USER_DEFINED_LITERALS 0 | |
| #  endif | |
| #endif | |
|  | |
| // Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of | |
| // integer formatter template instantiations to just one by only using the | |
| // largest integer type. This results in a reduction in binary size but will | |
| // cause a decrease in integer formatting performance. | |
| #if !defined(FMT_REDUCE_INT_INSTANTIATIONS) | |
| #  define FMT_REDUCE_INT_INSTANTIATIONS 0 | |
| #endif | |
|  | |
| // __builtin_clz is broken in clang with Microsoft CodeGen: | |
| // https://github.com/fmtlib/fmt/issues/519. | |
| #if !FMT_MSC_VERSION | |
| #  if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION | |
| #    define FMT_BUILTIN_CLZ(n) __builtin_clz(n) | |
| #  endif | |
| #  if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION | |
| #    define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) | |
| #  endif | |
| #endif | |
|  | |
| // __builtin_ctz is broken in Intel Compiler Classic on Windows: | |
| // https://github.com/fmtlib/fmt/issues/2510. | |
| #ifndef __ICL | |
| #  if FMT_HAS_BUILTIN(__builtin_ctz) || FMT_GCC_VERSION || FMT_ICC_VERSION || \ | |
|       defined(__NVCOMPILER) | |
| #    define FMT_BUILTIN_CTZ(n) __builtin_ctz(n) | |
| #  endif | |
| #  if FMT_HAS_BUILTIN(__builtin_ctzll) || FMT_GCC_VERSION || \ | |
|       FMT_ICC_VERSION || defined(__NVCOMPILER) | |
| #    define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n) | |
| #  endif | |
| #endif | |
|  | |
| #if FMT_MSC_VERSION | |
| #  include <intrin.h>  // _BitScanReverse[64], _BitScanForward[64], _umul128 | |
| #endif | |
|  | |
| // Some compilers masquerade as both MSVC and GCC-likes or otherwise support | |
| // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the | |
| // MSVC intrinsics if the clz and clzll builtins are not available. | |
| #if FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL) && \ | |
|     !defined(FMT_BUILTIN_CTZLL) | |
| FMT_BEGIN_NAMESPACE | |
| namespace detail { | |
| // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning. | |
| #  if !defined(__clang__) | |
| #    pragma intrinsic(_BitScanForward) | |
| #    pragma intrinsic(_BitScanReverse) | |
| #    if defined(_WIN64) | |
| #      pragma intrinsic(_BitScanForward64) | |
| #      pragma intrinsic(_BitScanReverse64) | |
| #    endif | |
| #  endif | |
|  | |
| inline auto clz(uint32_t x) -> int { | |
|   unsigned long r = 0; | |
|   _BitScanReverse(&r, x); | |
|   FMT_ASSERT(x != 0, ""); | |
|   // Static analysis complains about using uninitialized data | |
|   // "r", but the only way that can happen is if "x" is 0, | |
|   // which the callers guarantee to not happen. | |
|   FMT_MSC_WARNING(suppress : 6102) | |
|   return 31 ^ static_cast<int>(r); | |
| } | |
| #  define FMT_BUILTIN_CLZ(n) detail::clz(n) | |
|  | |
| inline auto clzll(uint64_t x) -> int { | |
|   unsigned long r = 0; | |
| #  ifdef _WIN64 | |
|   _BitScanReverse64(&r, x); | |
| #  else | |
|   // Scan the high 32 bits. | |
|   if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32))) return 63 ^ (r + 32); | |
|   // Scan the low 32 bits. | |
|   _BitScanReverse(&r, static_cast<uint32_t>(x)); | |
| #  endif | |
|   FMT_ASSERT(x != 0, ""); | |
|   FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning. | |
|   return 63 ^ static_cast<int>(r); | |
| } | |
| #  define FMT_BUILTIN_CLZLL(n) detail::clzll(n) | |
|  | |
| inline auto ctz(uint32_t x) -> int { | |
|   unsigned long r = 0; | |
|   _BitScanForward(&r, x); | |
|   FMT_ASSERT(x != 0, ""); | |
|   FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning. | |
|   return static_cast<int>(r); | |
| } | |
| #  define FMT_BUILTIN_CTZ(n) detail::ctz(n) | |
|  | |
| inline auto ctzll(uint64_t x) -> int { | |
|   unsigned long r = 0; | |
|   FMT_ASSERT(x != 0, ""); | |
|   FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning. | |
| #  ifdef _WIN64 | |
|   _BitScanForward64(&r, x); | |
| #  else | |
|   // Scan the low 32 bits. | |
|   if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r); | |
|   // Scan the high 32 bits. | |
|   _BitScanForward(&r, static_cast<uint32_t>(x >> 32)); | |
|   r += 32; | |
| #  endif | |
|   return static_cast<int>(r); | |
| } | |
| #  define FMT_BUILTIN_CTZLL(n) detail::ctzll(n) | |
| }  // namespace detail | |
| FMT_END_NAMESPACE | |
| #endif | |
|  | |
| FMT_BEGIN_NAMESPACE | |
| namespace detail { | |
| 
 | |
| FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) { | |
|   ignore_unused(condition); | |
| #ifdef FMT_FUZZ | |
|   if (condition) throw std::runtime_error("fuzzing limit reached"); | |
| #endif | |
| } | |
| 
 | |
| template <typename CharT, CharT... C> struct string_literal { | |
|   static constexpr CharT value[sizeof...(C)] = {C...}; | |
|   constexpr operator basic_string_view<CharT>() const { | |
|     return {value, sizeof...(C)}; | |
|   } | |
| }; | |
| 
 | |
| #if FMT_CPLUSPLUS < 201703L | |
| template <typename CharT, CharT... C> | |
| constexpr CharT string_literal<CharT, C...>::value[sizeof...(C)]; | |
| #endif | |
|  | |
| template <typename Streambuf> class formatbuf : public Streambuf { | |
|  private: | |
|   using char_type = typename Streambuf::char_type; | |
|   using streamsize = decltype(std::declval<Streambuf>().sputn(nullptr, 0)); | |
|   using int_type = typename Streambuf::int_type; | |
|   using traits_type = typename Streambuf::traits_type; | |
| 
 | |
|   buffer<char_type>& buffer_; | |
| 
 | |
|  public: | |
|   explicit formatbuf(buffer<char_type>& buf) : buffer_(buf) {} | |
| 
 | |
|  protected: | |
|   // The put area is always empty. This makes the implementation simpler and has | |
|   // the advantage that the streambuf and the buffer are always in sync and | |
|   // sputc never writes into uninitialized memory. A disadvantage is that each | |
|   // call to sputc always results in a (virtual) call to overflow. There is no | |
|   // disadvantage here for sputn since this always results in a call to xsputn. | |
|  | |
|   auto overflow(int_type ch) -> int_type override { | |
|     if (!traits_type::eq_int_type(ch, traits_type::eof())) | |
|       buffer_.push_back(static_cast<char_type>(ch)); | |
|     return ch; | |
|   } | |
| 
 | |
|   auto xsputn(const char_type* s, streamsize count) -> streamsize override { | |
|     buffer_.append(s, s + count); | |
|     return count; | |
|   } | |
| }; | |
| 
 | |
| // Implementation of std::bit_cast for pre-C++20. | |
| template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))> | |
| FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To { | |
| #ifdef __cpp_lib_bit_cast | |
|   if (is_constant_evaluated()) return std::bit_cast<To>(from); | |
| #endif | |
|   auto to = To(); | |
|   // The cast suppresses a bogus -Wclass-memaccess on GCC. | |
|   std::memcpy(static_cast<void*>(&to), &from, sizeof(to)); | |
|   return to; | |
| } | |
| 
 | |
| inline auto is_big_endian() -> bool { | |
| #ifdef _WIN32 | |
|   return false; | |
| #elif defined(__BIG_ENDIAN__) | |
|   return true; | |
| #elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) | |
|   return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__; | |
| #else | |
|   struct bytes { | |
|     char data[sizeof(int)]; | |
|   }; | |
|   return bit_cast<bytes>(1).data[0] == 0; | |
| #endif | |
| } | |
| 
 | |
| class uint128_fallback { | |
|  private: | |
|   uint64_t lo_, hi_; | |
| 
 | |
|   friend uint128_fallback umul128(uint64_t x, uint64_t y) noexcept; | |
| 
 | |
|  public: | |
|   constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {} | |
|   constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {} | |
| 
 | |
|   constexpr uint64_t high() const noexcept { return hi_; } | |
|   constexpr uint64_t low() const noexcept { return lo_; } | |
| 
 | |
|   template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> | |
|   constexpr explicit operator T() const { | |
|     return static_cast<T>(lo_); | |
|   } | |
| 
 | |
|   friend constexpr auto operator==(const uint128_fallback& lhs, | |
|                                    const uint128_fallback& rhs) -> bool { | |
|     return lhs.hi_ == rhs.hi_ && lhs.lo_ == rhs.lo_; | |
|   } | |
|   friend constexpr auto operator!=(const uint128_fallback& lhs, | |
|                                    const uint128_fallback& rhs) -> bool { | |
|     return !(lhs == rhs); | |
|   } | |
|   friend constexpr auto operator>(const uint128_fallback& lhs, | |
|                                   const uint128_fallback& rhs) -> bool { | |
|     return lhs.hi_ != rhs.hi_ ? lhs.hi_ > rhs.hi_ : lhs.lo_ > rhs.lo_; | |
|   } | |
|   friend constexpr auto operator|(const uint128_fallback& lhs, | |
|                                   const uint128_fallback& rhs) | |
|       -> uint128_fallback { | |
|     return {lhs.hi_ | rhs.hi_, lhs.lo_ | rhs.lo_}; | |
|   } | |
|   friend constexpr auto operator&(const uint128_fallback& lhs, | |
|                                   const uint128_fallback& rhs) | |
|       -> uint128_fallback { | |
|     return {lhs.hi_ & rhs.hi_, lhs.lo_ & rhs.lo_}; | |
|   } | |
|   friend auto operator+(const uint128_fallback& lhs, | |
|                         const uint128_fallback& rhs) -> uint128_fallback { | |
|     auto result = uint128_fallback(lhs); | |
|     result += rhs; | |
|     return result; | |
|   } | |
|   friend auto operator*(const uint128_fallback& lhs, uint32_t rhs) | |
|       -> uint128_fallback { | |
|     FMT_ASSERT(lhs.hi_ == 0, ""); | |
|     uint64_t hi = (lhs.lo_ >> 32) * rhs; | |
|     uint64_t lo = (lhs.lo_ & ~uint32_t()) * rhs; | |
|     uint64_t new_lo = (hi << 32) + lo; | |
|     return {(hi >> 32) + (new_lo < lo ? 1 : 0), new_lo}; | |
|   } | |
|   friend auto operator-(const uint128_fallback& lhs, uint64_t rhs) | |
|       -> uint128_fallback { | |
|     return {lhs.hi_ - (lhs.lo_ < rhs ? 1 : 0), lhs.lo_ - rhs}; | |
|   } | |
|   FMT_CONSTEXPR auto operator>>(int shift) const -> uint128_fallback { | |
|     if (shift == 64) return {0, hi_}; | |
|     if (shift > 64) return uint128_fallback(0, hi_) >> (shift - 64); | |
|     return {hi_ >> shift, (hi_ << (64 - shift)) | (lo_ >> shift)}; | |
|   } | |
|   FMT_CONSTEXPR auto operator<<(int shift) const -> uint128_fallback { | |
|     if (shift == 64) return {lo_, 0}; | |
|     if (shift > 64) return uint128_fallback(lo_, 0) << (shift - 64); | |
|     return {hi_ << shift | (lo_ >> (64 - shift)), (lo_ << shift)}; | |
|   } | |
|   FMT_CONSTEXPR auto operator>>=(int shift) -> uint128_fallback& { | |
|     return *this = *this >> shift; | |
|   } | |
|   FMT_CONSTEXPR void operator+=(uint128_fallback n) { | |
|     uint64_t new_lo = lo_ + n.lo_; | |
|     uint64_t new_hi = hi_ + n.hi_ + (new_lo < lo_ ? 1 : 0); | |
|     FMT_ASSERT(new_hi >= hi_, ""); | |
|     lo_ = new_lo; | |
|     hi_ = new_hi; | |
|   } | |
| 
 | |
|   FMT_CONSTEXPR20 uint128_fallback& operator+=(uint64_t n) noexcept { | |
|     if (is_constant_evaluated()) { | |
|       lo_ += n; | |
|       hi_ += (lo_ < n ? 1 : 0); | |
|       return *this; | |
|     } | |
| #if FMT_HAS_BUILTIN(__builtin_addcll) && !defined(__ibmxl__) | |
|     unsigned long long carry; | |
|     lo_ = __builtin_addcll(lo_, n, 0, &carry); | |
|     hi_ += carry; | |
| #elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) && !defined(__ibmxl__) | |
|     unsigned long long result; | |
|     auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result); | |
|     lo_ = result; | |
|     hi_ += carry; | |
| #elif defined(_MSC_VER) && defined(_M_X64) | |
|     auto carry = _addcarry_u64(0, lo_, n, &lo_); | |
|     _addcarry_u64(carry, hi_, 0, &hi_); | |
| #else | |
|     lo_ += n; | |
|     hi_ += (lo_ < n ? 1 : 0); | |
| #endif | |
|     return *this; | |
|   } | |
| }; | |
| 
 | |
| using uint128_t = conditional_t<FMT_USE_INT128, uint128_opt, uint128_fallback>; | |
| 
 | |
| #ifdef UINTPTR_MAX | |
| using uintptr_t = ::uintptr_t; | |
| #else | |
| using uintptr_t = uint128_t; | |
| #endif | |
|  | |
| // Returns the largest possible value for type T. Same as | |
| // std::numeric_limits<T>::max() but shorter and not affected by the max macro. | |
| template <typename T> constexpr auto max_value() -> T { | |
|   return (std::numeric_limits<T>::max)(); | |
| } | |
| template <typename T> constexpr auto num_bits() -> int { | |
|   return std::numeric_limits<T>::digits; | |
| } | |
| // std::numeric_limits<T>::digits may return 0 for 128-bit ints. | |
| template <> constexpr auto num_bits<int128_opt>() -> int { return 128; } | |
| template <> constexpr auto num_bits<uint128_t>() -> int { return 128; } | |
| 
 | |
| // A heterogeneous bit_cast used for converting 96-bit long double to uint128_t | |
| // and 128-bit pointers to uint128_fallback. | |
| template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) > sizeof(From))> | |
| inline auto bit_cast(const From& from) -> To { | |
|   constexpr auto size = static_cast<int>(sizeof(From) / sizeof(unsigned)); | |
|   struct data_t { | |
|     unsigned value[static_cast<unsigned>(size)]; | |
|   } data = bit_cast<data_t>(from); | |
|   auto result = To(); | |
|   if (const_check(is_big_endian())) { | |
|     for (int i = 0; i < size; ++i) | |
|       result = (result << num_bits<unsigned>()) | data.value[i]; | |
|   } else { | |
|     for (int i = size - 1; i >= 0; --i) | |
|       result = (result << num_bits<unsigned>()) | data.value[i]; | |
|   } | |
|   return result; | |
| } | |
| 
 | |
| FMT_INLINE void assume(bool condition) { | |
|   (void)condition; | |
| #if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION | |
|   __builtin_assume(condition); | |
| #endif | |
| } | |
| 
 | |
| // An approximation of iterator_t for pre-C++20 systems. | |
| template <typename T> | |
| using iterator_t = decltype(std::begin(std::declval<T&>())); | |
| template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>())); | |
| 
 | |
| // A workaround for std::string not having mutable data() until C++17. | |
| template <typename Char> | |
| inline auto get_data(std::basic_string<Char>& s) -> Char* { | |
|   return &s[0]; | |
| } | |
| template <typename Container> | |
| inline auto get_data(Container& c) -> typename Container::value_type* { | |
|   return c.data(); | |
| } | |
| 
 | |
| #if defined(_SECURE_SCL) && _SECURE_SCL | |
| // Make a checked iterator to avoid MSVC warnings. | |
| template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>; | |
| template <typename T> | |
| constexpr auto make_checked(T* p, size_t size) -> checked_ptr<T> { | |
|   return {p, size}; | |
| } | |
| #else | |
| template <typename T> using checked_ptr = T*; | |
| template <typename T> constexpr auto make_checked(T* p, size_t) -> T* { | |
|   return p; | |
| } | |
| #endif | |
|  | |
| // Attempts to reserve space for n extra characters in the output range. | |
| // Returns a pointer to the reserved range or a reference to it. | |
| template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)> | |
| #if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION | |
| __attribute__((no_sanitize("undefined"))) | |
| #endif | |
| inline auto | |
| reserve(std::back_insert_iterator<Container> it, size_t n) | |
|     -> checked_ptr<typename Container::value_type> { | |
|   Container& c = get_container(it); | |
|   size_t size = c.size(); | |
|   c.resize(size + n); | |
|   return make_checked(get_data(c) + size, n); | |
| } | |
| 
 | |
| template <typename T> | |
| inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> { | |
|   buffer<T>& buf = get_container(it); | |
|   buf.try_reserve(buf.size() + n); | |
|   return it; | |
| } | |
| 
 | |
| template <typename Iterator> | |
| constexpr auto reserve(Iterator& it, size_t) -> Iterator& { | |
|   return it; | |
| } | |
| 
 | |
| template <typename OutputIt> | |
| using reserve_iterator = | |
|     remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>; | |
| 
 | |
| template <typename T, typename OutputIt> | |
| constexpr auto to_pointer(OutputIt, size_t) -> T* { | |
|   return nullptr; | |
| } | |
| template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* { | |
|   buffer<T>& buf = get_container(it); | |
|   auto size = buf.size(); | |
|   if (buf.capacity() < size + n) return nullptr; | |
|   buf.try_resize(size + n); | |
|   return buf.data() + size; | |
| } | |
| 
 | |
| template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)> | |
| inline auto base_iterator(std::back_insert_iterator<Container>& it, | |
|                           checked_ptr<typename Container::value_type>) | |
|     -> std::back_insert_iterator<Container> { | |
|   return it; | |
| } | |
| 
 | |
| template <typename Iterator> | |
| constexpr auto base_iterator(Iterator, Iterator it) -> Iterator { | |
|   return it; | |
| } | |
| 
 | |
| // <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n | |
| // instead (#1998). | |
| template <typename OutputIt, typename Size, typename T> | |
| FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value) | |
|     -> OutputIt { | |
|   for (Size i = 0; i < count; ++i) *out++ = value; | |
|   return out; | |
| } | |
| template <typename T, typename Size> | |
| FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* { | |
|   if (is_constant_evaluated()) { | |
|     return fill_n<T*, Size, T>(out, count, value); | |
|   } | |
|   std::memset(out, value, to_unsigned(count)); | |
|   return out + count; | |
| } | |
| 
 | |
| #ifdef __cpp_char8_t | |
| using char8_type = char8_t; | |
| #else | |
| enum char8_type : unsigned char {}; | |
| #endif | |
|  | |
| template <typename OutChar, typename InputIt, typename OutputIt> | |
| FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end, | |
|                                                   OutputIt out) -> OutputIt { | |
|   return copy_str<OutChar>(begin, end, out); | |
| } | |
| 
 | |
| // A public domain branchless UTF-8 decoder by Christopher Wellons: | |
| // https://github.com/skeeto/branchless-utf8 | |
| /* Decode the next character, c, from s, reporting errors in e. | |
|  * | |
|  * Since this is a branchless decoder, four bytes will be read from the | |
|  * buffer regardless of the actual length of the next character. This | |
|  * means the buffer _must_ have at least three bytes of zero padding | |
|  * following the end of the data stream. | |
|  * | |
|  * Errors are reported in e, which will be non-zero if the parsed | |
|  * character was somehow invalid: invalid byte sequence, non-canonical | |
|  * encoding, or a surrogate half. | |
|  * | |
|  * The function returns a pointer to the next character. When an error | |
|  * occurs, this pointer will be a guess that depends on the particular | |
|  * error, but it will always advance at least one byte. | |
|  */ | |
| FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e) | |
|     -> const char* { | |
|   constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07}; | |
|   constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536}; | |
|   constexpr const int shiftc[] = {0, 18, 12, 6, 0}; | |
|   constexpr const int shifte[] = {0, 6, 4, 2, 0}; | |
| 
 | |
|   int len = code_point_length_impl(*s); | |
|   // Compute the pointer to the next character early so that the next | |
|   // iteration can start working on the next character. Neither Clang | |
|   // nor GCC figure out this reordering on their own. | |
|   const char* next = s + len + !len; | |
| 
 | |
|   using uchar = unsigned char; | |
| 
 | |
|   // Assume a four-byte character and load four bytes. Unused bits are | |
|   // shifted out. | |
|   *c = uint32_t(uchar(s[0]) & masks[len]) << 18; | |
|   *c |= uint32_t(uchar(s[1]) & 0x3f) << 12; | |
|   *c |= uint32_t(uchar(s[2]) & 0x3f) << 6; | |
|   *c |= uint32_t(uchar(s[3]) & 0x3f) << 0; | |
|   *c >>= shiftc[len]; | |
| 
 | |
|   // Accumulate the various error conditions. | |
|   *e = (*c < mins[len]) << 6;       // non-canonical encoding | |
|   *e |= ((*c >> 11) == 0x1b) << 7;  // surrogate half? | |
|   *e |= (*c > 0x10FFFF) << 8;       // out of range? | |
|   *e |= (uchar(s[1]) & 0xc0) >> 2; | |
|   *e |= (uchar(s[2]) & 0xc0) >> 4; | |
|   *e |= uchar(s[3]) >> 6; | |
|   *e ^= 0x2a;  // top two bits of each tail byte correct? | |
|   *e >>= shifte[len]; | |
| 
 | |
|   return next; | |
| } | |
| 
 | |
| constexpr uint32_t invalid_code_point = ~uint32_t(); | |
| 
 | |
| // Invokes f(cp, sv) for every code point cp in s with sv being the string view | |
| // corresponding to the code point. cp is invalid_code_point on error. | |
| template <typename F> | |
| FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) { | |
|   auto decode = [f](const char* buf_ptr, const char* ptr) { | |
|     auto cp = uint32_t(); | |
|     auto error = 0; | |
|     auto end = utf8_decode(buf_ptr, &cp, &error); | |
|     bool result = f(error ? invalid_code_point : cp, | |
|                     string_view(ptr, error ? 1 : to_unsigned(end - buf_ptr))); | |
|     return result ? (error ? buf_ptr + 1 : end) : nullptr; | |
|   }; | |
|   auto p = s.data(); | |
|   const size_t block_size = 4;  // utf8_decode always reads blocks of 4 chars. | |
|   if (s.size() >= block_size) { | |
|     for (auto end = p + s.size() - block_size + 1; p < end;) { | |
|       p = decode(p, p); | |
|       if (!p) return; | |
|     } | |
|   } | |
|   if (auto num_chars_left = s.data() + s.size() - p) { | |
|     char buf[2 * block_size - 1] = {}; | |
|     copy_str<char>(p, p + num_chars_left, buf); | |
|     const char* buf_ptr = buf; | |
|     do { | |
|       auto end = decode(buf_ptr, p); | |
|       if (!end) return; | |
|       p += end - buf_ptr; | |
|       buf_ptr = end; | |
|     } while (buf_ptr - buf < num_chars_left); | |
|   } | |
| } | |
| 
 | |
| template <typename Char> | |
| inline auto compute_width(basic_string_view<Char> s) -> size_t { | |
|   return s.size(); | |
| } | |
| 
 | |
| // Computes approximate display width of a UTF-8 string. | |
| FMT_CONSTEXPR inline size_t compute_width(string_view s) { | |
|   size_t num_code_points = 0; | |
|   // It is not a lambda for compatibility with C++14. | |
|   struct count_code_points { | |
|     size_t* count; | |
|     FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool { | |
|       *count += detail::to_unsigned( | |
|           1 + | |
|           (cp >= 0x1100 && | |
|            (cp <= 0x115f ||  // Hangul Jamo init. consonants | |
|             cp == 0x2329 ||  // LEFT-POINTING ANGLE BRACKET | |
|             cp == 0x232a ||  // RIGHT-POINTING ANGLE BRACKET | |
|             // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE: | |
|             (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) || | |
|             (cp >= 0xac00 && cp <= 0xd7a3) ||    // Hangul Syllables | |
|             (cp >= 0xf900 && cp <= 0xfaff) ||    // CJK Compatibility Ideographs | |
|             (cp >= 0xfe10 && cp <= 0xfe19) ||    // Vertical Forms | |
|             (cp >= 0xfe30 && cp <= 0xfe6f) ||    // CJK Compatibility Forms | |
|             (cp >= 0xff00 && cp <= 0xff60) ||    // Fullwidth Forms | |
|             (cp >= 0xffe0 && cp <= 0xffe6) ||    // Fullwidth Forms | |
|             (cp >= 0x20000 && cp <= 0x2fffd) ||  // CJK | |
|             (cp >= 0x30000 && cp <= 0x3fffd) || | |
|             // Miscellaneous Symbols and Pictographs + Emoticons: | |
|             (cp >= 0x1f300 && cp <= 0x1f64f) || | |
|             // Supplemental Symbols and Pictographs: | |
|             (cp >= 0x1f900 && cp <= 0x1f9ff)))); | |
|       return true; | |
|     } | |
|   }; | |
|   for_each_codepoint(s, count_code_points{&num_code_points}); | |
|   return num_code_points; | |
| } | |
| 
 | |
| inline auto compute_width(basic_string_view<char8_type> s) -> size_t { | |
|   return compute_width( | |
|       string_view(reinterpret_cast<const char*>(s.data()), s.size())); | |
| } | |
| 
 | |
| template <typename Char> | |
| inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t { | |
|   size_t size = s.size(); | |
|   return n < size ? n : size; | |
| } | |
| 
 | |
| // Calculates the index of the nth code point in a UTF-8 string. | |
| inline auto code_point_index(string_view s, size_t n) -> size_t { | |
|   const char* data = s.data(); | |
|   size_t num_code_points = 0; | |
|   for (size_t i = 0, size = s.size(); i != size; ++i) { | |
|     if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i; | |
|   } | |
|   return s.size(); | |
| } | |
| 
 | |
| inline auto code_point_index(basic_string_view<char8_type> s, size_t n) | |
|     -> size_t { | |
|   return code_point_index( | |
|       string_view(reinterpret_cast<const char*>(s.data()), s.size()), n); | |
| } | |
| 
 | |
| #ifndef FMT_USE_FLOAT128 | |
| #  ifdef __SIZEOF_FLOAT128__ | |
| #    define FMT_USE_FLOAT128 1 | |
| #  else | |
| #    define FMT_USE_FLOAT128 0 | |
| #  endif | |
| #endif | |
| #if FMT_USE_FLOAT128 | |
| using float128 = __float128; | |
| #else | |
| using float128 = void; | |
| #endif | |
| template <typename T> using is_float128 = std::is_same<T, float128>; | |
| 
 | |
| template <typename T> | |
| using is_floating_point = | |
|     bool_constant<std::is_floating_point<T>::value || is_float128<T>::value>; | |
| 
 | |
| template <typename T, bool = std::is_floating_point<T>::value> | |
| struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 && | |
|                                      sizeof(T) <= sizeof(double)> {}; | |
| template <typename T> struct is_fast_float<T, false> : std::false_type {}; | |
| 
 | |
| template <typename T> | |
| using is_double_double = bool_constant<std::numeric_limits<T>::digits == 106>; | |
| 
 | |
| #ifndef FMT_USE_FULL_CACHE_DRAGONBOX | |
| #  define FMT_USE_FULL_CACHE_DRAGONBOX 0 | |
| #endif | |
|  | |
| template <typename T> | |
| template <typename U> | |
| void buffer<T>::append(const U* begin, const U* end) { | |
|   while (begin != end) { | |
|     auto count = to_unsigned(end - begin); | |
|     try_reserve(size_ + count); | |
|     auto free_cap = capacity_ - size_; | |
|     if (free_cap < count) count = free_cap; | |
|     std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count)); | |
|     size_ += count; | |
|     begin += count; | |
|   } | |
| } | |
| 
 | |
| template <typename T, typename Enable = void> | |
| struct is_locale : std::false_type {}; | |
| template <typename T> | |
| struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {}; | |
| }  // namespace detail | |
|  | |
| FMT_MODULE_EXPORT_BEGIN | |
| 
 | |
| // The number of characters to store in the basic_memory_buffer object itself | |
| // to avoid dynamic memory allocation. | |
| enum { inline_buffer_size = 500 }; | |
| 
 | |
| /** | |
|   \rst | |
|   A dynamically growing memory buffer for trivially copyable/constructible types | |
|   with the first ``SIZE`` elements stored in the object itself. | |
|  | |
|   You can use the ``memory_buffer`` type alias for ``char`` instead. | |
|  | |
|   **Example**:: | |
|  | |
|      auto out = fmt::memory_buffer(); | |
|      format_to(std::back_inserter(out), "The answer is {}.", 42); | |
|  | |
|   This will append the following output to the ``out`` object: | |
|  | |
|   .. code-block:: none | |
|  | |
|      The answer is 42. | |
|  | |
|   The output can be converted to an ``std::string`` with ``to_string(out)``. | |
|   \endrst | |
|  */ | |
| template <typename T, size_t SIZE = inline_buffer_size, | |
|           typename Allocator = std::allocator<T>> | |
| class basic_memory_buffer final : public detail::buffer<T> { | |
|  private: | |
|   T store_[SIZE]; | |
| 
 | |
|   // Don't inherit from Allocator avoid generating type_info for it. | |
|   Allocator alloc_; | |
| 
 | |
|   // Deallocate memory allocated by the buffer. | |
|   FMT_CONSTEXPR20 void deallocate() { | |
|     T* data = this->data(); | |
|     if (data != store_) alloc_.deallocate(data, this->capacity()); | |
|   } | |
| 
 | |
|  protected: | |
|   FMT_CONSTEXPR20 void grow(size_t size) override; | |
| 
 | |
|  public: | |
|   using value_type = T; | |
|   using const_reference = const T&; | |
| 
 | |
|   FMT_CONSTEXPR20 explicit basic_memory_buffer( | |
|       const Allocator& alloc = Allocator()) | |
|       : alloc_(alloc) { | |
|     this->set(store_, SIZE); | |
|     if (detail::is_constant_evaluated()) detail::fill_n(store_, SIZE, T()); | |
|   } | |
|   FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); } | |
| 
 | |
|  private: | |
|   // Move data from other to this buffer. | |
|   FMT_CONSTEXPR20 void move(basic_memory_buffer& other) { | |
|     alloc_ = std::move(other.alloc_); | |
|     T* data = other.data(); | |
|     size_t size = other.size(), capacity = other.capacity(); | |
|     if (data == other.store_) { | |
|       this->set(store_, capacity); | |
|       detail::copy_str<T>(other.store_, other.store_ + size, | |
|                           detail::make_checked(store_, capacity)); | |
|     } else { | |
|       this->set(data, capacity); | |
|       // Set pointer to the inline array so that delete is not called | |
|       // when deallocating. | |
|       other.set(other.store_, 0); | |
|       other.clear(); | |
|     } | |
|     this->resize(size); | |
|   } | |
| 
 | |
|  public: | |
|   /** | |
|     \rst | |
|     Constructs a :class:`fmt::basic_memory_buffer` object moving the content | |
|     of the other object to it. | |
|     \endrst | |
|    */ | |
|   FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) noexcept { | |
|     move(other); | |
|   } | |
| 
 | |
|   /** | |
|     \rst | |
|     Moves the content of the other ``basic_memory_buffer`` object to this one. | |
|     \endrst | |
|    */ | |
|   auto operator=(basic_memory_buffer&& other) noexcept -> basic_memory_buffer& { | |
|     FMT_ASSERT(this != &other, ""); | |
|     deallocate(); | |
|     move(other); | |
|     return *this; | |
|   } | |
| 
 | |
|   // Returns a copy of the allocator associated with this buffer. | |
|   auto get_allocator() const -> Allocator { return alloc_; } | |
| 
 | |
|   /** | |
|     Resizes the buffer to contain *count* elements. If T is a POD type new | |
|     elements may not be initialized. | |
|    */ | |
|   FMT_CONSTEXPR20 void resize(size_t count) { this->try_resize(count); } | |
| 
 | |
|   /** Increases the buffer capacity to *new_capacity*. */ | |
|   void reserve(size_t new_capacity) { this->try_reserve(new_capacity); } | |
| 
 | |
|   // Directly append data into the buffer | |
|   using detail::buffer<T>::append; | |
|   template <typename ContiguousRange> | |
|   void append(const ContiguousRange& range) { | |
|     append(range.data(), range.data() + range.size()); | |
|   } | |
| }; | |
| 
 | |
| template <typename T, size_t SIZE, typename Allocator> | |
| FMT_CONSTEXPR20 void basic_memory_buffer<T, SIZE, Allocator>::grow( | |
|     size_t size) { | |
|   detail::abort_fuzzing_if(size > 5000); | |
|   const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_); | |
|   size_t old_capacity = this->capacity(); | |
|   size_t new_capacity = old_capacity + old_capacity / 2; | |
|   if (size > new_capacity) | |
|     new_capacity = size; | |
|   else if (new_capacity > max_size) | |
|     new_capacity = size > max_size ? size : max_size; | |
|   T* old_data = this->data(); | |
|   T* new_data = | |
|       std::allocator_traits<Allocator>::allocate(alloc_, new_capacity); | |
|   // The following code doesn't throw, so the raw pointer above doesn't leak. | |
|   std::uninitialized_copy(old_data, old_data + this->size(), | |
|                           detail::make_checked(new_data, new_capacity)); | |
|   this->set(new_data, new_capacity); | |
|   // deallocate must not throw according to the standard, but even if it does, | |
|   // the buffer already uses the new storage and will deallocate it in | |
|   // destructor. | |
|   if (old_data != store_) alloc_.deallocate(old_data, old_capacity); | |
| } | |
| 
 | |
| using memory_buffer = basic_memory_buffer<char>; | |
| 
 | |
| template <typename T, size_t SIZE, typename Allocator> | |
| struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type { | |
| }; | |
| 
 | |
| namespace detail { | |
| #ifdef _WIN32 | |
| FMT_API bool write_console(std::FILE* f, string_view text); | |
| #endif | |
| FMT_API void print(std::FILE*, string_view); | |
| }  // namespace detail | |
|  | |
| /** A formatting error such as invalid format string. */ | |
| FMT_CLASS_API | |
| class FMT_API format_error : public std::runtime_error { | |
|  public: | |
|   explicit format_error(const char* message) : std::runtime_error(message) {} | |
|   explicit format_error(const std::string& message) | |
|       : std::runtime_error(message) {} | |
|   format_error(const format_error&) = default; | |
|   format_error& operator=(const format_error&) = default; | |
|   format_error(format_error&&) = default; | |
|   format_error& operator=(format_error&&) = default; | |
|   ~format_error() noexcept override FMT_MSC_DEFAULT; | |
| }; | |
| 
 | |
| namespace detail_exported { | |
| #if FMT_USE_NONTYPE_TEMPLATE_ARGS | |
| template <typename Char, size_t N> struct fixed_string { | |
|   constexpr fixed_string(const Char (&str)[N]) { | |
|     detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str), | |
|                                                str + N, data); | |
|   } | |
|   Char data[N] = {}; | |
| }; | |
| #endif | |
|  | |
| // Converts a compile-time string to basic_string_view. | |
| template <typename Char, size_t N> | |
| constexpr auto compile_string_to_view(const Char (&s)[N]) | |
|     -> basic_string_view<Char> { | |
|   // Remove trailing NUL character if needed. Won't be present if this is used | |
|   // with a raw character array (i.e. not defined as a string). | |
|   return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)}; | |
| } | |
| template <typename Char> | |
| constexpr auto compile_string_to_view(detail::std_string_view<Char> s) | |
|     -> basic_string_view<Char> { | |
|   return {s.data(), s.size()}; | |
| } | |
| }  // namespace detail_exported | |
|  | |
| FMT_BEGIN_DETAIL_NAMESPACE | |
| 
 | |
| template <typename T> struct is_integral : std::is_integral<T> {}; | |
| template <> struct is_integral<int128_opt> : std::true_type {}; | |
| template <> struct is_integral<uint128_t> : std::true_type {}; | |
| 
 | |
| template <typename T> | |
| using is_signed = | |
|     std::integral_constant<bool, std::numeric_limits<T>::is_signed || | |
|                                      std::is_same<T, int128_opt>::value>; | |
| 
 | |
| // Returns true if value is negative, false otherwise. | |
| // Same as `value < 0` but doesn't produce warnings if T is an unsigned type. | |
| template <typename T, FMT_ENABLE_IF(is_signed<T>::value)> | |
| constexpr auto is_negative(T value) -> bool { | |
|   return value < 0; | |
| } | |
| template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)> | |
| constexpr auto is_negative(T) -> bool { | |
|   return false; | |
| } | |
| 
 | |
| template <typename T> | |
| FMT_CONSTEXPR auto is_supported_floating_point(T) -> bool { | |
|   if (std::is_same<T, float>()) return FMT_USE_FLOAT; | |
|   if (std::is_same<T, double>()) return FMT_USE_DOUBLE; | |
|   if (std::is_same<T, long double>()) return FMT_USE_LONG_DOUBLE; | |
|   return true; | |
| } | |
| 
 | |
| // Smallest of uint32_t, uint64_t, uint128_t that is large enough to | |
| // represent all values of an integral type T. | |
| template <typename T> | |
| using uint32_or_64_or_128_t = | |
|     conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS, | |
|                   uint32_t, | |
|                   conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>; | |
| template <typename T> | |
| using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>; | |
| 
 | |
| #define FMT_POWERS_OF_10(factor)                                             \ | |
|   factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \ | |
|       (factor)*1000000, (factor)*10000000, (factor)*100000000,               \ | |
|       (factor)*1000000000 | |
|  | |
| // Converts value in the range [0, 100) to a string. | |
| constexpr const char* digits2(size_t value) { | |
|   // GCC generates slightly better code when value is pointer-size. | |
|   return &"0001020304050607080910111213141516171819" | |
|          "2021222324252627282930313233343536373839" | |
|          "4041424344454647484950515253545556575859" | |
|          "6061626364656667686970717273747576777879" | |
|          "8081828384858687888990919293949596979899"[value * 2]; | |
| } | |
| 
 | |
| // Sign is a template parameter to workaround a bug in gcc 4.8. | |
| template <typename Char, typename Sign> constexpr Char sign(Sign s) { | |
| #if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604 | |
|   static_assert(std::is_same<Sign, sign_t>::value, ""); | |
| #endif | |
|   return static_cast<Char>("\0-+ "[s]); | |
| } | |
| 
 | |
| template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int { | |
|   int count = 1; | |
|   for (;;) { | |
|     // Integer division is slow so do it for a group of four digits instead | |
|     // of for every digit. The idea comes from the talk by Alexandrescu | |
|     // "Three Optimization Tips for C++". See speed-test for a comparison. | |
|     if (n < 10) return count; | |
|     if (n < 100) return count + 1; | |
|     if (n < 1000) return count + 2; | |
|     if (n < 10000) return count + 3; | |
|     n /= 10000u; | |
|     count += 4; | |
|   } | |
| } | |
| #if FMT_USE_INT128 | |
| FMT_CONSTEXPR inline auto count_digits(uint128_opt n) -> int { | |
|   return count_digits_fallback(n); | |
| } | |
| #endif | |
|  | |
| #ifdef FMT_BUILTIN_CLZLL | |
| // It is a separate function rather than a part of count_digits to workaround | |
| // the lack of static constexpr in constexpr functions. | |
| inline auto do_count_digits(uint64_t n) -> int { | |
|   // This has comparable performance to the version by Kendall Willets | |
|   // (https://github.com/fmtlib/format-benchmark/blob/master/digits10) | |
|   // but uses smaller tables. | |
|   // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)). | |
|   static constexpr uint8_t bsr2log10[] = { | |
|       1,  1,  1,  2,  2,  2,  3,  3,  3,  4,  4,  4,  4,  5,  5,  5, | |
|       6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  9,  9,  9,  10, 10, 10, | |
|       10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, | |
|       15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20}; | |
|   auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63]; | |
|   static constexpr const uint64_t zero_or_powers_of_10[] = { | |
|       0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL), | |
|       10000000000000000000ULL}; | |
|   return t - (n < zero_or_powers_of_10[t]); | |
| } | |
| #endif | |
|  | |
| // Returns the number of decimal digits in n. Leading zeros are not counted | |
| // except for n == 0 in which case count_digits returns 1. | |
| FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int { | |
| #ifdef FMT_BUILTIN_CLZLL | |
|   if (!is_constant_evaluated()) { | |
|     return do_count_digits(n); | |
|   } | |
| #endif | |
|   return count_digits_fallback(n); | |
| } | |
| 
 | |
| // Counts the number of digits in n. BITS = log2(radix). | |
| template <int BITS, typename UInt> | |
| FMT_CONSTEXPR auto count_digits(UInt n) -> int { | |
| #ifdef FMT_BUILTIN_CLZ | |
|   if (!is_constant_evaluated() && num_bits<UInt>() == 32) | |
|     return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1; | |
| #endif | |
|   // Lambda avoids unreachable code warnings from NVHPC. | |
|   return [](UInt m) { | |
|     int num_digits = 0; | |
|     do { | |
|       ++num_digits; | |
|     } while ((m >>= BITS) != 0); | |
|     return num_digits; | |
|   }(n); | |
| } | |
| 
 | |
| #ifdef FMT_BUILTIN_CLZ | |
| // It is a separate function rather than a part of count_digits to workaround | |
| // the lack of static constexpr in constexpr functions. | |
| FMT_INLINE auto do_count_digits(uint32_t n) -> int { | |
| // An optimization by Kendall Willets from https://bit.ly/3uOIQrB. | |
| // This increments the upper 32 bits (log10(T) - 1) when >= T is added. | |
| #  define FMT_INC(T) (((sizeof(#  T) - 1ull) << 32) - T) | |
|   static constexpr uint64_t table[] = { | |
|       FMT_INC(0),          FMT_INC(0),          FMT_INC(0),           // 8 | |
|       FMT_INC(10),         FMT_INC(10),         FMT_INC(10),          // 64 | |
|       FMT_INC(100),        FMT_INC(100),        FMT_INC(100),         // 512 | |
|       FMT_INC(1000),       FMT_INC(1000),       FMT_INC(1000),        // 4096 | |
|       FMT_INC(10000),      FMT_INC(10000),      FMT_INC(10000),       // 32k | |
|       FMT_INC(100000),     FMT_INC(100000),     FMT_INC(100000),      // 256k | |
|       FMT_INC(1000000),    FMT_INC(1000000),    FMT_INC(1000000),     // 2048k | |
|       FMT_INC(10000000),   FMT_INC(10000000),   FMT_INC(10000000),    // 16M | |
|       FMT_INC(100000000),  FMT_INC(100000000),  FMT_INC(100000000),   // 128M | |
|       FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000),  // 1024M | |
|       FMT_INC(1000000000), FMT_INC(1000000000)                        // 4B | |
|   }; | |
|   auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31]; | |
|   return static_cast<int>((n + inc) >> 32); | |
| } | |
| #endif | |
|  | |
| // Optional version of count_digits for better performance on 32-bit platforms. | |
| FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int { | |
| #ifdef FMT_BUILTIN_CLZ | |
|   if (!is_constant_evaluated()) { | |
|     return do_count_digits(n); | |
|   } | |
| #endif | |
|   return count_digits_fallback(n); | |
| } | |
| 
 | |
| template <typename Int> constexpr auto digits10() noexcept -> int { | |
|   return std::numeric_limits<Int>::digits10; | |
| } | |
| template <> constexpr auto digits10<int128_opt>() noexcept -> int { return 38; } | |
| template <> constexpr auto digits10<uint128_t>() noexcept -> int { return 38; } | |
| 
 | |
| template <typename Char> struct thousands_sep_result { | |
|   std::string grouping; | |
|   Char thousands_sep; | |
| }; | |
| 
 | |
| template <typename Char> | |
| FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>; | |
| template <typename Char> | |
| inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> { | |
|   auto result = thousands_sep_impl<char>(loc); | |
|   return {result.grouping, Char(result.thousands_sep)}; | |
| } | |
| template <> | |
| inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> { | |
|   return thousands_sep_impl<wchar_t>(loc); | |
| } | |
| 
 | |
| template <typename Char> | |
| FMT_API auto decimal_point_impl(locale_ref loc) -> Char; | |
| template <typename Char> inline auto decimal_point(locale_ref loc) -> Char { | |
|   return Char(decimal_point_impl<char>(loc)); | |
| } | |
| template <> inline auto decimal_point(locale_ref loc) -> wchar_t { | |
|   return decimal_point_impl<wchar_t>(loc); | |
| } | |
| 
 | |
| // Compares two characters for equality. | |
| template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool { | |
|   return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]); | |
| } | |
| inline auto equal2(const char* lhs, const char* rhs) -> bool { | |
|   return memcmp(lhs, rhs, 2) == 0; | |
| } | |
| 
 | |
| // Copies two characters from src to dst. | |
| template <typename Char> | |
| FMT_CONSTEXPR20 FMT_INLINE void copy2(Char* dst, const char* src) { | |
|   if (!is_constant_evaluated() && sizeof(Char) == sizeof(char)) { | |
|     memcpy(dst, src, 2); | |
|     return; | |
|   } | |
|   *dst++ = static_cast<Char>(*src++); | |
|   *dst = static_cast<Char>(*src); | |
| } | |
| 
 | |
| template <typename Iterator> struct format_decimal_result { | |
|   Iterator begin; | |
|   Iterator end; | |
| }; | |
| 
 | |
| // Formats a decimal unsigned integer value writing into out pointing to a | |
| // buffer of specified size. The caller must ensure that the buffer is large | |
| // enough. | |
| template <typename Char, typename UInt> | |
| FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size) | |
|     -> format_decimal_result<Char*> { | |
|   FMT_ASSERT(size >= count_digits(value), "invalid digit count"); | |
|   out += size; | |
|   Char* end = out; | |
|   while (value >= 100) { | |
|     // Integer division is slow so do it for a group of two digits instead | |
|     // of for every digit. The idea comes from the talk by Alexandrescu | |
|     // "Three Optimization Tips for C++". See speed-test for a comparison. | |
|     out -= 2; | |
|     copy2(out, digits2(static_cast<size_t>(value % 100))); | |
|     value /= 100; | |
|   } | |
|   if (value < 10) { | |
|     *--out = static_cast<Char>('0' + value); | |
|     return {out, end}; | |
|   } | |
|   out -= 2; | |
|   copy2(out, digits2(static_cast<size_t>(value))); | |
|   return {out, end}; | |
| } | |
| 
 | |
| template <typename Char, typename UInt, typename Iterator, | |
|           FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)> | |
| FMT_CONSTEXPR inline auto format_decimal(Iterator out, UInt value, int size) | |
|     -> format_decimal_result<Iterator> { | |
|   // Buffer is large enough to hold all digits (digits10 + 1). | |
|   Char buffer[digits10<UInt>() + 1]; | |
|   auto end = format_decimal(buffer, value, size).end; | |
|   return {out, detail::copy_str_noinline<Char>(buffer, end, out)}; | |
| } | |
| 
 | |
| template <unsigned BASE_BITS, typename Char, typename UInt> | |
| FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits, | |
|                                bool upper = false) -> Char* { | |
|   buffer += num_digits; | |
|   Char* end = buffer; | |
|   do { | |
|     const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef"; | |
|     unsigned digit = static_cast<unsigned>(value & ((1 << BASE_BITS) - 1)); | |
|     *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit) | |
|                                                 : digits[digit]); | |
|   } while ((value >>= BASE_BITS) != 0); | |
|   return end; | |
| } | |
| 
 | |
| template <unsigned BASE_BITS, typename Char, typename It, typename UInt> | |
| inline auto format_uint(It out, UInt value, int num_digits, bool upper = false) | |
|     -> It { | |
|   if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) { | |
|     format_uint<BASE_BITS>(ptr, value, num_digits, upper); | |
|     return out; | |
|   } | |
|   // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1). | |
|   char buffer[num_bits<UInt>() / BASE_BITS + 1]; | |
|   format_uint<BASE_BITS>(buffer, value, num_digits, upper); | |
|   return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out); | |
| } | |
| 
 | |
| // A converter from UTF-8 to UTF-16. | |
| class utf8_to_utf16 { | |
|  private: | |
|   basic_memory_buffer<wchar_t> buffer_; | |
| 
 | |
|  public: | |
|   FMT_API explicit utf8_to_utf16(string_view s); | |
|   operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; } | |
|   auto size() const -> size_t { return buffer_.size() - 1; } | |
|   auto c_str() const -> const wchar_t* { return &buffer_[0]; } | |
|   auto str() const -> std::wstring { return {&buffer_[0], size()}; } | |
| }; | |
| 
 | |
| namespace dragonbox { | |
| 
 | |
| // Type-specific information that Dragonbox uses. | |
| template <typename T, typename Enable = void> struct float_info; | |
| 
 | |
| template <> struct float_info<float> { | |
|   using carrier_uint = uint32_t; | |
|   static const int exponent_bits = 8; | |
|   static const int kappa = 1; | |
|   static const int big_divisor = 100; | |
|   static const int small_divisor = 10; | |
|   static const int min_k = -31; | |
|   static const int max_k = 46; | |
|   static const int shorter_interval_tie_lower_threshold = -35; | |
|   static const int shorter_interval_tie_upper_threshold = -35; | |
| }; | |
| 
 | |
| template <> struct float_info<double> { | |
|   using carrier_uint = uint64_t; | |
|   static const int exponent_bits = 11; | |
|   static const int kappa = 2; | |
|   static const int big_divisor = 1000; | |
|   static const int small_divisor = 100; | |
|   static const int min_k = -292; | |
|   static const int max_k = 326; | |
|   static const int shorter_interval_tie_lower_threshold = -77; | |
|   static const int shorter_interval_tie_upper_threshold = -77; | |
| }; | |
| 
 | |
| // An 80- or 128-bit floating point number. | |
| template <typename T> | |
| struct float_info<T, enable_if_t<std::numeric_limits<T>::digits == 64 || | |
|                                  std::numeric_limits<T>::digits == 113 || | |
|                                  is_float128<T>::value>> { | |
|   using carrier_uint = detail::uint128_t; | |
|   static const int exponent_bits = 15; | |
| }; | |
| 
 | |
| // A double-double floating point number. | |
| template <typename T> | |
| struct float_info<T, enable_if_t<is_double_double<T>::value>> { | |
|   using carrier_uint = detail::uint128_t; | |
| }; | |
| 
 | |
| template <typename T> struct decimal_fp { | |
|   using significand_type = typename float_info<T>::carrier_uint; | |
|   significand_type significand; | |
|   int exponent; | |
| }; | |
| 
 | |
| template <typename T> FMT_API auto to_decimal(T x) noexcept -> decimal_fp<T>; | |
| }  // namespace dragonbox | |
|  | |
| // Returns true iff Float has the implicit bit which is not stored. | |
| template <typename Float> constexpr bool has_implicit_bit() { | |
|   // An 80-bit FP number has a 64-bit significand an no implicit bit. | |
|   return std::numeric_limits<Float>::digits != 64; | |
| } | |
| 
 | |
| // Returns the number of significand bits stored in Float. The implicit bit is | |
| // not counted since it is not stored. | |
| template <typename Float> constexpr int num_significand_bits() { | |
|   // std::numeric_limits may not support __float128. | |
|   return is_float128<Float>() ? 112 | |
|                               : (std::numeric_limits<Float>::digits - | |
|                                  (has_implicit_bit<Float>() ? 1 : 0)); | |
| } | |
| 
 | |
| template <typename Float> | |
| constexpr auto exponent_mask() -> | |
|     typename dragonbox::float_info<Float>::carrier_uint { | |
|   using uint = typename dragonbox::float_info<Float>::carrier_uint; | |
|   return ((uint(1) << dragonbox::float_info<Float>::exponent_bits) - 1) | |
|          << num_significand_bits<Float>(); | |
| } | |
| template <typename Float> constexpr auto exponent_bias() -> int { | |
|   // std::numeric_limits may not support __float128. | |
|   return is_float128<Float>() ? 16383 | |
|                               : std::numeric_limits<Float>::max_exponent - 1; | |
| } | |
| 
 | |
| // Writes the exponent exp in the form "[+-]d{2,3}" to buffer. | |
| template <typename Char, typename It> | |
| FMT_CONSTEXPR auto write_exponent(int exp, It it) -> It { | |
|   FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range"); | |
|   if (exp < 0) { | |
|     *it++ = static_cast<Char>('-'); | |
|     exp = -exp; | |
|   } else { | |
|     *it++ = static_cast<Char>('+'); | |
|   } | |
|   if (exp >= 100) { | |
|     const char* top = digits2(to_unsigned(exp / 100)); | |
|     if (exp >= 1000) *it++ = static_cast<Char>(top[0]); | |
|     *it++ = static_cast<Char>(top[1]); | |
|     exp %= 100; | |
|   } | |
|   const char* d = digits2(to_unsigned(exp)); | |
|   *it++ = static_cast<Char>(d[0]); | |
|   *it++ = static_cast<Char>(d[1]); | |
|   return it; | |
| } | |
| 
 | |
| // A floating-point number f * pow(2, e) where F is an unsigned type. | |
| template <typename F> struct basic_fp { | |
|   F f; | |
|   int e; | |
| 
 | |
|   static constexpr const int num_significand_bits = | |
|       static_cast<int>(sizeof(F) * num_bits<unsigned char>()); | |
| 
 | |
|   constexpr basic_fp() : f(0), e(0) {} | |
|   constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {} | |
| 
 | |
|   // Constructs fp from an IEEE754 floating-point number. | |
|   template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); } | |
| 
 | |
|   // Assigns n to this and return true iff predecessor is closer than successor. | |
|   template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)> | |
|   FMT_CONSTEXPR auto assign(Float n) -> bool { | |
|     static_assert(std::numeric_limits<Float>::digits <= 113, "unsupported FP"); | |
|     // Assume Float is in the format [sign][exponent][significand]. | |
|     using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint; | |
|     const auto num_float_significand_bits = | |
|         detail::num_significand_bits<Float>(); | |
|     const auto implicit_bit = carrier_uint(1) << num_float_significand_bits; | |
|     const auto significand_mask = implicit_bit - 1; | |
|     auto u = bit_cast<carrier_uint>(n); | |
|     f = static_cast<F>(u & significand_mask); | |
|     auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >> | |
|                                      num_float_significand_bits); | |
|     // The predecessor is closer if n is a normalized power of 2 (f == 0) | |
|     // other than the smallest normalized number (biased_e > 1). | |
|     auto is_predecessor_closer = f == 0 && biased_e > 1; | |
|     if (biased_e == 0) | |
|       biased_e = 1;  // Subnormals use biased exponent 1 (min exponent). | |
|     else if (has_implicit_bit<Float>()) | |
|       f += static_cast<F>(implicit_bit); | |
|     e = biased_e - exponent_bias<Float>() - num_float_significand_bits; | |
|     if (!has_implicit_bit<Float>()) ++e; | |
|     return is_predecessor_closer; | |
|   } | |
| 
 | |
|   template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)> | |
|   FMT_CONSTEXPR auto assign(Float n) -> bool { | |
|     static_assert(std::numeric_limits<double>::is_iec559, "unsupported FP"); | |
|     return assign(static_cast<double>(n)); | |
|   } | |
| }; | |
| 
 | |
| using fp = basic_fp<unsigned long long>; | |
| 
 | |
| // Normalizes the value converted from double and multiplied by (1 << SHIFT). | |
| template <int SHIFT = 0, typename F> | |
| FMT_CONSTEXPR basic_fp<F> normalize(basic_fp<F> value) { | |
|   // Handle subnormals. | |
|   const auto implicit_bit = F(1) << num_significand_bits<double>(); | |
|   const auto shifted_implicit_bit = implicit_bit << SHIFT; | |
|   while ((value.f & shifted_implicit_bit) == 0) { | |
|     value.f <<= 1; | |
|     --value.e; | |
|   } | |
|   // Subtract 1 to account for hidden bit. | |
|   const auto offset = basic_fp<F>::num_significand_bits - | |
|                       num_significand_bits<double>() - SHIFT - 1; | |
|   value.f <<= offset; | |
|   value.e -= offset; | |
|   return value; | |
| } | |
| 
 | |
| // Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking. | |
| FMT_CONSTEXPR inline uint64_t multiply(uint64_t lhs, uint64_t rhs) { | |
| #if FMT_USE_INT128 | |
|   auto product = static_cast<__uint128_t>(lhs) * rhs; | |
|   auto f = static_cast<uint64_t>(product >> 64); | |
|   return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f; | |
| #else | |
|   // Multiply 32-bit parts of significands. | |
|   uint64_t mask = (1ULL << 32) - 1; | |
|   uint64_t a = lhs >> 32, b = lhs & mask; | |
|   uint64_t c = rhs >> 32, d = rhs & mask; | |
|   uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d; | |
|   // Compute mid 64-bit of result and round. | |
|   uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31); | |
|   return ac + (ad >> 32) + (bc >> 32) + (mid >> 32); | |
| #endif | |
| } | |
| 
 | |
| FMT_CONSTEXPR inline fp operator*(fp x, fp y) { | |
|   return {multiply(x.f, y.f), x.e + y.e + 64}; | |
| } | |
| 
 | |
| template <typename T = void> struct basic_data { | |
|   // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340. | |
|   // These are generated by support/compute-powers.py. | |
|   static constexpr uint64_t pow10_significands[87] = { | |
|       0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, | |
|       0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, | |
|       0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, | |
|       0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5, | |
|       0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, | |
|       0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7, | |
|       0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, | |
|       0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996, | |
|       0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, | |
|       0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053, | |
|       0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, | |
|       0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, | |
|       0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, | |
|       0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb, | |
|       0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, | |
|       0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984, | |
|       0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, | |
|       0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8, | |
|       0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, | |
|       0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85, | |
|       0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, | |
|       0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25, | |
|       0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, | |
|       0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a, | |
|       0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, | |
|       0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129, | |
|       0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, | |
|       0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, | |
|       0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b, | |
|   }; | |
| 
 | |
| #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 | |
| #  pragma GCC diagnostic push | |
| #  pragma GCC diagnostic ignored "-Wnarrowing" | |
| #endif | |
|   // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding | |
|   // to significands above. | |
|   static constexpr int16_t pow10_exponents[87] = { | |
|       -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, | |
|       -927,  -901,  -874,  -847,  -821,  -794,  -768,  -741,  -715,  -688, -661, | |
|       -635,  -608,  -582,  -555,  -529,  -502,  -475,  -449,  -422,  -396, -369, | |
|       -343,  -316,  -289,  -263,  -236,  -210,  -183,  -157,  -130,  -103, -77, | |
|       -50,   -24,   3,     30,    56,    83,    109,   136,   162,   189,  216, | |
|       242,   269,   295,   322,   348,   375,   402,   428,   455,   481,  508, | |
|       534,   561,   588,   614,   641,   667,   694,   720,   747,   774,  800, | |
|       827,   853,   880,   907,   933,   960,   986,   1013,  1039,  1066}; | |
| #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 | |
| #  pragma GCC diagnostic pop | |
| #endif | |
|  | |
|   static constexpr uint64_t power_of_10_64[20] = { | |
|       1, FMT_POWERS_OF_10(1ULL), FMT_POWERS_OF_10(1000000000ULL), | |
|       10000000000000000000ULL}; | |
| }; | |
| 
 | |
| #if FMT_CPLUSPLUS < 201703L | |
| template <typename T> constexpr uint64_t basic_data<T>::pow10_significands[]; | |
| template <typename T> constexpr int16_t basic_data<T>::pow10_exponents[]; | |
| template <typename T> constexpr uint64_t basic_data<T>::power_of_10_64[]; | |
| #endif | |
|  | |
| // This is a struct rather than an alias to avoid shadowing warnings in gcc. | |
| struct data : basic_data<> {}; | |
| 
 | |
| // Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its | |
| // (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`. | |
| FMT_CONSTEXPR inline fp get_cached_power(int min_exponent, | |
|                                          int& pow10_exponent) { | |
|   const int shift = 32; | |
|   // log10(2) = 0x0.4d104d427de7fbcc... | |
|   const int64_t significand = 0x4d104d427de7fbcc; | |
|   int index = static_cast<int>( | |
|       ((min_exponent + fp::num_significand_bits - 1) * (significand >> shift) + | |
|        ((int64_t(1) << shift) - 1))  // ceil | |
|       >> 32                          // arithmetic shift | |
|   ); | |
|   // Decimal exponent of the first (smallest) cached power of 10. | |
|   const int first_dec_exp = -348; | |
|   // Difference between 2 consecutive decimal exponents in cached powers of 10. | |
|   const int dec_exp_step = 8; | |
|   index = (index - first_dec_exp - 1) / dec_exp_step + 1; | |
|   pow10_exponent = first_dec_exp + index * dec_exp_step; | |
|   // Using *(x + index) instead of x[index] avoids an issue with some compilers | |
|   // using the EDG frontend (e.g. nvhpc/22.3 in C++17 mode). | |
|   return {*(data::pow10_significands + index), | |
|           *(data::pow10_exponents + index)}; | |
| } | |
| 
 | |
| #ifndef _MSC_VER | |
| #  define FMT_SNPRINTF snprintf | |
| #else | |
| FMT_API auto fmt_snprintf(char* buf, size_t size, const char* fmt, ...) -> int; | |
| #  define FMT_SNPRINTF fmt_snprintf | |
| #endif  // _MSC_VER | |
|  | |
| // Formats a floating-point number with snprintf using the hexfloat format. | |
| template <typename T> | |
| auto snprintf_float(T value, int precision, float_specs specs, | |
|                     buffer<char>& buf) -> int { | |
|   // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail. | |
|   FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer"); | |
|   FMT_ASSERT(specs.format == float_format::hex, ""); | |
|   static_assert(!std::is_same<T, float>::value, ""); | |
| 
 | |
|   // Build the format string. | |
|   char format[7];  // The longest format is "%#.*Le". | |
|   char* format_ptr = format; | |
|   *format_ptr++ = '%'; | |
|   if (specs.showpoint) *format_ptr++ = '#'; | |
|   if (precision >= 0) { | |
|     *format_ptr++ = '.'; | |
|     *format_ptr++ = '*'; | |
|   } | |
|   if (std::is_same<T, long double>()) *format_ptr++ = 'L'; | |
|   *format_ptr++ = specs.upper ? 'A' : 'a'; | |
|   *format_ptr = '\0'; | |
| 
 | |
|   // Format using snprintf. | |
|   auto offset = buf.size(); | |
|   for (;;) { | |
|     auto begin = buf.data() + offset; | |
|     auto capacity = buf.capacity() - offset; | |
|     abort_fuzzing_if(precision > 100000); | |
|     // Suppress the warning about a nonliteral format string. | |
|     // Cannot use auto because of a bug in MinGW (#1532). | |
|     int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF; | |
|     int result = precision >= 0 | |
|                      ? snprintf_ptr(begin, capacity, format, precision, value) | |
|                      : snprintf_ptr(begin, capacity, format, value); | |
|     if (result < 0) { | |
|       // The buffer will grow exponentially. | |
|       buf.try_reserve(buf.capacity() + 1); | |
|       continue; | |
|     } | |
|     auto size = to_unsigned(result); | |
|     // Size equal to capacity means that the last character was truncated. | |
|     if (size < capacity) { | |
|       buf.try_resize(size + offset); | |
|       return 0; | |
|     } | |
|     buf.try_reserve(size + offset + 1);  // Add 1 for the terminating '\0'. | |
|   } | |
| } | |
| 
 | |
| template <typename T> | |
| using convert_float_result = | |
|     conditional_t<std::is_same<T, float>::value || sizeof(T) == sizeof(double), | |
|                   double, T>; | |
| 
 | |
| template <typename T> | |
| constexpr auto convert_float(T value) -> convert_float_result<T> { | |
|   return static_cast<convert_float_result<T>>(value); | |
| } | |
| 
 | |
| template <typename OutputIt, typename Char> | |
| FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n, | |
|                                      const fill_t<Char>& fill) -> OutputIt { | |
|   auto fill_size = fill.size(); | |
|   if (fill_size == 1) return detail::fill_n(it, n, fill[0]); | |
|   auto data = fill.data(); | |
|   for (size_t i = 0; i < n; ++i) | |
|     it = copy_str<Char>(data, data + fill_size, it); | |
|   return it; | |
| } | |
| 
 | |
| // Writes the output of f, padded according to format specifications in specs. | |
| // size: output size in code units. | |
| // width: output display width in (terminal) column positions. | |
| template <align::type align = align::left, typename OutputIt, typename Char, | |
|           typename F> | |
| FMT_CONSTEXPR auto write_padded(OutputIt out, | |
|                                 const basic_format_specs<Char>& specs, | |
|                                 size_t size, size_t width, F&& f) -> OutputIt { | |
|   static_assert(align == align::left || align == align::right, ""); | |
|   unsigned spec_width = to_unsigned(specs.width); | |
|   size_t padding = spec_width > width ? spec_width - width : 0; | |
|   // Shifts are encoded as string literals because static constexpr is not | |
|   // supported in constexpr functions. | |
|   auto* shifts = align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01"; | |
|   size_t left_padding = padding >> shifts[specs.align]; | |
|   size_t right_padding = padding - left_padding; | |
|   auto it = reserve(out, size + padding * specs.fill.size()); | |
|   if (left_padding != 0) it = fill(it, left_padding, specs.fill); | |
|   it = f(it); | |
|   if (right_padding != 0) it = fill(it, right_padding, specs.fill); | |
|   return base_iterator(out, it); | |
| } | |
| 
 | |
| template <align::type align = align::left, typename OutputIt, typename Char, | |
|           typename F> | |
| constexpr auto write_padded(OutputIt out, const basic_format_specs<Char>& specs, | |
|                             size_t size, F&& f) -> OutputIt { | |
|   return write_padded<align>(out, specs, size, size, f); | |
| } | |
| 
 | |
| template <align::type align = align::left, typename Char, typename OutputIt> | |
| FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes, | |
|                                const basic_format_specs<Char>& specs) | |
|     -> OutputIt { | |
|   return write_padded<align>( | |
|       out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) { | |
|         const char* data = bytes.data(); | |
|         return copy_str<Char>(data, data + bytes.size(), it); | |
|       }); | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt, typename UIntPtr> | |
| auto write_ptr(OutputIt out, UIntPtr value, | |
|                const basic_format_specs<Char>* specs) -> OutputIt { | |
|   int num_digits = count_digits<4>(value); | |
|   auto size = to_unsigned(num_digits) + size_t(2); | |
|   auto write = [=](reserve_iterator<OutputIt> it) { | |
|     *it++ = static_cast<Char>('0'); | |
|     *it++ = static_cast<Char>('x'); | |
|     return format_uint<4, Char>(it, value, num_digits); | |
|   }; | |
|   return specs ? write_padded<align::right>(out, *specs, size, write) | |
|                : base_iterator(out, write(reserve(out, size))); | |
| } | |
| 
 | |
| // Returns true iff the code point cp is printable. | |
| FMT_API auto is_printable(uint32_t cp) -> bool; | |
| 
 | |
| inline auto needs_escape(uint32_t cp) -> bool { | |
|   return cp < 0x20 || cp == 0x7f || cp == '"' || cp == '\\' || | |
|          !is_printable(cp); | |
| } | |
| 
 | |
| template <typename Char> struct find_escape_result { | |
|   const Char* begin; | |
|   const Char* end; | |
|   uint32_t cp; | |
| }; | |
| 
 | |
| template <typename Char> | |
| using make_unsigned_char = | |
|     typename conditional_t<std::is_integral<Char>::value, | |
|                            std::make_unsigned<Char>, | |
|                            type_identity<uint32_t>>::type; | |
| 
 | |
| template <typename Char> | |
| auto find_escape(const Char* begin, const Char* end) | |
|     -> find_escape_result<Char> { | |
|   for (; begin != end; ++begin) { | |
|     uint32_t cp = static_cast<make_unsigned_char<Char>>(*begin); | |
|     if (const_check(sizeof(Char) == 1) && cp >= 0x80) continue; | |
|     if (needs_escape(cp)) return {begin, begin + 1, cp}; | |
|   } | |
|   return {begin, nullptr, 0}; | |
| } | |
| 
 | |
| inline auto find_escape(const char* begin, const char* end) | |
|     -> find_escape_result<char> { | |
|   if (!is_utf8()) return find_escape<char>(begin, end); | |
|   auto result = find_escape_result<char>{end, nullptr, 0}; | |
|   for_each_codepoint(string_view(begin, to_unsigned(end - begin)), | |
|                      [&](uint32_t cp, string_view sv) { | |
|                        if (needs_escape(cp)) { | |
|                          result = {sv.begin(), sv.end(), cp}; | |
|                          return false; | |
|                        } | |
|                        return true; | |
|                      }); | |
|   return result; | |
| } | |
| 
 | |
| #define FMT_STRING_IMPL(s, base, explicit)                                    \ | |
|   [] {                                                                        \ | |
|     /* Use the hidden visibility as a workaround for a GCC bug (#1973). */    \ | |
|     /* Use a macro-like name to avoid shadowing warnings. */                  \ | |
|     struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base {              \ | |
|       using char_type FMT_MAYBE_UNUSED = fmt::remove_cvref_t<decltype(s[0])>; \ | |
|       FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit                                 \ | |
|       operator fmt::basic_string_view<char_type>() const {                    \ | |
|         return fmt::detail_exported::compile_string_to_view<char_type>(s);    \ | |
|       }                                                                       \ | |
|     };                                                                        \ | |
|     return FMT_COMPILE_STRING();                                              \ | |
|   }() | |
|  | |
| /** | |
|   \rst | |
|   Constructs a compile-time format string from a string literal *s*. | |
|  | |
|   **Example**:: | |
|  | |
|     // A compile-time error because 'd' is an invalid specifier for strings. | |
|     std::string s = fmt::format(FMT_STRING("{:d}"), "foo"); | |
|   \endrst | |
|  */ | |
| #define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::detail::compile_string, ) | |
|  | |
| template <size_t width, typename Char, typename OutputIt> | |
| auto write_codepoint(OutputIt out, char prefix, uint32_t cp) -> OutputIt { | |
|   *out++ = static_cast<Char>('\\'); | |
|   *out++ = static_cast<Char>(prefix); | |
|   Char buf[width]; | |
|   fill_n(buf, width, static_cast<Char>('0')); | |
|   format_uint<4>(buf, cp, width); | |
|   return copy_str<Char>(buf, buf + width, out); | |
| } | |
| 
 | |
| template <typename OutputIt, typename Char> | |
| auto write_escaped_cp(OutputIt out, const find_escape_result<Char>& escape) | |
|     -> OutputIt { | |
|   auto c = static_cast<Char>(escape.cp); | |
|   switch (escape.cp) { | |
|   case '\n': | |
|     *out++ = static_cast<Char>('\\'); | |
|     c = static_cast<Char>('n'); | |
|     break; | |
|   case '\r': | |
|     *out++ = static_cast<Char>('\\'); | |
|     c = static_cast<Char>('r'); | |
|     break; | |
|   case '\t': | |
|     *out++ = static_cast<Char>('\\'); | |
|     c = static_cast<Char>('t'); | |
|     break; | |
|   case '"': | |
|     FMT_FALLTHROUGH; | |
|   case '\'': | |
|     FMT_FALLTHROUGH; | |
|   case '\\': | |
|     *out++ = static_cast<Char>('\\'); | |
|     break; | |
|   default: | |
|     if (is_utf8()) { | |
|       if (escape.cp < 0x100) { | |
|         return write_codepoint<2, Char>(out, 'x', escape.cp); | |
|       } | |
|       if (escape.cp < 0x10000) { | |
|         return write_codepoint<4, Char>(out, 'u', escape.cp); | |
|       } | |
|       if (escape.cp < 0x110000) { | |
|         return write_codepoint<8, Char>(out, 'U', escape.cp); | |
|       } | |
|     } | |
|     for (Char escape_char : basic_string_view<Char>( | |
|              escape.begin, to_unsigned(escape.end - escape.begin))) { | |
|       out = write_codepoint<2, Char>(out, 'x', | |
|                                      static_cast<uint32_t>(escape_char) & 0xFF); | |
|     } | |
|     return out; | |
|   } | |
|   *out++ = c; | |
|   return out; | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt> | |
| auto write_escaped_string(OutputIt out, basic_string_view<Char> str) | |
|     -> OutputIt { | |
|   *out++ = static_cast<Char>('"'); | |
|   auto begin = str.begin(), end = str.end(); | |
|   do { | |
|     auto escape = find_escape(begin, end); | |
|     out = copy_str<Char>(begin, escape.begin, out); | |
|     begin = escape.end; | |
|     if (!begin) break; | |
|     out = write_escaped_cp<OutputIt, Char>(out, escape); | |
|   } while (begin != end); | |
|   *out++ = static_cast<Char>('"'); | |
|   return out; | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt> | |
| auto write_escaped_char(OutputIt out, Char v) -> OutputIt { | |
|   *out++ = static_cast<Char>('\''); | |
|   if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) || | |
|       v == static_cast<Char>('\'')) { | |
|     out = write_escaped_cp( | |
|         out, find_escape_result<Char>{&v, &v + 1, static_cast<uint32_t>(v)}); | |
|   } else { | |
|     *out++ = v; | |
|   } | |
|   *out++ = static_cast<Char>('\''); | |
|   return out; | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt> | |
| FMT_CONSTEXPR auto write_char(OutputIt out, Char value, | |
|                               const basic_format_specs<Char>& specs) | |
|     -> OutputIt { | |
|   bool is_debug = specs.type == presentation_type::debug; | |
|   return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) { | |
|     if (is_debug) return write_escaped_char(it, value); | |
|     *it++ = value; | |
|     return it; | |
|   }); | |
| } | |
| template <typename Char, typename OutputIt> | |
| FMT_CONSTEXPR auto write(OutputIt out, Char value, | |
|                          const basic_format_specs<Char>& specs, | |
|                          locale_ref loc = {}) -> OutputIt { | |
|   return check_char_specs(specs) | |
|              ? write_char(out, value, specs) | |
|              : write(out, static_cast<int>(value), specs, loc); | |
| } | |
| 
 | |
| // Data for write_int that doesn't depend on output iterator type. It is used to | |
| // avoid template code bloat. | |
| template <typename Char> struct write_int_data { | |
|   size_t size; | |
|   size_t padding; | |
| 
 | |
|   FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix, | |
|                                const basic_format_specs<Char>& specs) | |
|       : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) { | |
|     if (specs.align == align::numeric) { | |
|       auto width = to_unsigned(specs.width); | |
|       if (width > size) { | |
|         padding = width - size; | |
|         size = width; | |
|       } | |
|     } else if (specs.precision > num_digits) { | |
|       size = (prefix >> 24) + to_unsigned(specs.precision); | |
|       padding = to_unsigned(specs.precision - num_digits); | |
|     } | |
|   } | |
| }; | |
| 
 | |
| // Writes an integer in the format | |
| //   <left-padding><prefix><numeric-padding><digits><right-padding> | |
| // where <digits> are written by write_digits(it). | |
| // prefix contains chars in three lower bytes and the size in the fourth byte. | |
| template <typename OutputIt, typename Char, typename W> | |
| FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits, | |
|                                         unsigned prefix, | |
|                                         const basic_format_specs<Char>& specs, | |
|                                         W write_digits) -> OutputIt { | |
|   // Slightly faster check for specs.width == 0 && specs.precision == -1. | |
|   if ((specs.width | (specs.precision + 1)) == 0) { | |
|     auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24)); | |
|     if (prefix != 0) { | |
|       for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) | |
|         *it++ = static_cast<Char>(p & 0xff); | |
|     } | |
|     return base_iterator(out, write_digits(it)); | |
|   } | |
|   auto data = write_int_data<Char>(num_digits, prefix, specs); | |
|   return write_padded<align::right>( | |
|       out, specs, data.size, [=](reserve_iterator<OutputIt> it) { | |
|         for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) | |
|           *it++ = static_cast<Char>(p & 0xff); | |
|         it = detail::fill_n(it, data.padding, static_cast<Char>('0')); | |
|         return write_digits(it); | |
|       }); | |
| } | |
| 
 | |
| template <typename Char> class digit_grouping { | |
|  private: | |
|   thousands_sep_result<Char> sep_; | |
| 
 | |
|   struct next_state { | |
|     std::string::const_iterator group; | |
|     int pos; | |
|   }; | |
|   next_state initial_state() const { return {sep_.grouping.begin(), 0}; } | |
| 
 | |
|   // Returns the next digit group separator position. | |
|   int next(next_state& state) const { | |
|     if (!sep_.thousands_sep) return max_value<int>(); | |
|     if (state.group == sep_.grouping.end()) | |
|       return state.pos += sep_.grouping.back(); | |
|     if (*state.group <= 0 || *state.group == max_value<char>()) | |
|       return max_value<int>(); | |
|     state.pos += *state.group++; | |
|     return state.pos; | |
|   } | |
| 
 | |
|  public: | |
|   explicit digit_grouping(locale_ref loc, bool localized = true) { | |
|     if (localized) | |
|       sep_ = thousands_sep<Char>(loc); | |
|     else | |
|       sep_.thousands_sep = Char(); | |
|   } | |
|   explicit digit_grouping(thousands_sep_result<Char> sep) : sep_(sep) {} | |
| 
 | |
|   Char separator() const { return sep_.thousands_sep; } | |
| 
 | |
|   int count_separators(int num_digits) const { | |
|     int count = 0; | |
|     auto state = initial_state(); | |
|     while (num_digits > next(state)) ++count; | |
|     return count; | |
|   } | |
| 
 | |
|   // Applies grouping to digits and write the output to out. | |
|   template <typename Out, typename C> | |
|   Out apply(Out out, basic_string_view<C> digits) const { | |
|     auto num_digits = static_cast<int>(digits.size()); | |
|     auto separators = basic_memory_buffer<int>(); | |
|     separators.push_back(0); | |
|     auto state = initial_state(); | |
|     while (int i = next(state)) { | |
|       if (i >= num_digits) break; | |
|       separators.push_back(i); | |
|     } | |
|     for (int i = 0, sep_index = static_cast<int>(separators.size() - 1); | |
|          i < num_digits; ++i) { | |
|       if (num_digits - i == separators[sep_index]) { | |
|         *out++ = separator(); | |
|         --sep_index; | |
|       } | |
|       *out++ = static_cast<Char>(digits[to_unsigned(i)]); | |
|     } | |
|     return out; | |
|   } | |
| }; | |
| 
 | |
| template <typename OutputIt, typename UInt, typename Char> | |
| auto write_int_localized(OutputIt out, UInt value, unsigned prefix, | |
|                          const basic_format_specs<Char>& specs, | |
|                          const digit_grouping<Char>& grouping) -> OutputIt { | |
|   static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, ""); | |
|   int num_digits = count_digits(value); | |
|   char digits[40]; | |
|   format_decimal(digits, value, num_digits); | |
|   unsigned size = to_unsigned((prefix != 0 ? 1 : 0) + num_digits + | |
|                               grouping.count_separators(num_digits)); | |
|   return write_padded<align::right>( | |
|       out, specs, size, size, [&](reserve_iterator<OutputIt> it) { | |
|         if (prefix != 0) { | |
|           char sign = static_cast<char>(prefix); | |
|           *it++ = static_cast<Char>(sign); | |
|         } | |
|         return grouping.apply(it, string_view(digits, to_unsigned(num_digits))); | |
|       }); | |
| } | |
| 
 | |
| template <typename OutputIt, typename UInt, typename Char> | |
| auto write_int_localized(OutputIt& out, UInt value, unsigned prefix, | |
|                          const basic_format_specs<Char>& specs, locale_ref loc) | |
|     -> bool { | |
|   auto grouping = digit_grouping<Char>(loc); | |
|   out = write_int_localized(out, value, prefix, specs, grouping); | |
|   return true; | |
| } | |
| 
 | |
| FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) { | |
|   prefix |= prefix != 0 ? value << 8 : value; | |
|   prefix += (1u + (value > 0xff ? 1 : 0)) << 24; | |
| } | |
| 
 | |
| template <typename UInt> struct write_int_arg { | |
|   UInt abs_value; | |
|   unsigned prefix; | |
| }; | |
| 
 | |
| template <typename T> | |
| FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign) | |
|     -> write_int_arg<uint32_or_64_or_128_t<T>> { | |
|   auto prefix = 0u; | |
|   auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value); | |
|   if (is_negative(value)) { | |
|     prefix = 0x01000000 | '-'; | |
|     abs_value = 0 - abs_value; | |
|   } else { | |
|     constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+', | |
|                                             0x1000000u | ' '}; | |
|     prefix = prefixes[sign]; | |
|   } | |
|   return {abs_value, prefix}; | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt, typename T> | |
| FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg, | |
|                                         const basic_format_specs<Char>& specs, | |
|                                         locale_ref loc) -> OutputIt { | |
|   static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, ""); | |
|   auto abs_value = arg.abs_value; | |
|   auto prefix = arg.prefix; | |
|   switch (specs.type) { | |
|   case presentation_type::none: | |
|   case presentation_type::dec: { | |
|     if (specs.localized && | |
|         write_int_localized(out, static_cast<uint64_or_128_t<T>>(abs_value), | |
|                             prefix, specs, loc)) { | |
|       return out; | |
|     } | |
|     auto num_digits = count_digits(abs_value); | |
|     return write_int( | |
|         out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) { | |
|           return format_decimal<Char>(it, abs_value, num_digits).end; | |
|         }); | |
|   } | |
|   case presentation_type::hex_lower: | |
|   case presentation_type::hex_upper: { | |
|     bool upper = specs.type == presentation_type::hex_upper; | |
|     if (specs.alt) | |
|       prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0'); | |
|     int num_digits = count_digits<4>(abs_value); | |
|     return write_int( | |
|         out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) { | |
|           return format_uint<4, Char>(it, abs_value, num_digits, upper); | |
|         }); | |
|   } | |
|   case presentation_type::bin_lower: | |
|   case presentation_type::bin_upper: { | |
|     bool upper = specs.type == presentation_type::bin_upper; | |
|     if (specs.alt) | |
|       prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0'); | |
|     int num_digits = count_digits<1>(abs_value); | |
|     return write_int(out, num_digits, prefix, specs, | |
|                      [=](reserve_iterator<OutputIt> it) { | |
|                        return format_uint<1, Char>(it, abs_value, num_digits); | |
|                      }); | |
|   } | |
|   case presentation_type::oct: { | |
|     int num_digits = count_digits<3>(abs_value); | |
|     // Octal prefix '0' is counted as a digit, so only add it if precision | |
|     // is not greater than the number of digits. | |
|     if (specs.alt && specs.precision <= num_digits && abs_value != 0) | |
|       prefix_append(prefix, '0'); | |
|     return write_int(out, num_digits, prefix, specs, | |
|                      [=](reserve_iterator<OutputIt> it) { | |
|                        return format_uint<3, Char>(it, abs_value, num_digits); | |
|                      }); | |
|   } | |
|   case presentation_type::chr: | |
|     return write_char(out, static_cast<Char>(abs_value), specs); | |
|   default: | |
|     throw_format_error("invalid type specifier"); | |
|   } | |
|   return out; | |
| } | |
| template <typename Char, typename OutputIt, typename T> | |
| FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline( | |
|     OutputIt out, write_int_arg<T> arg, const basic_format_specs<Char>& specs, | |
|     locale_ref loc) -> OutputIt { | |
|   return write_int(out, arg, specs, loc); | |
| } | |
| template <typename Char, typename OutputIt, typename T, | |
|           FMT_ENABLE_IF(is_integral<T>::value && | |
|                         !std::is_same<T, bool>::value && | |
|                         std::is_same<OutputIt, buffer_appender<Char>>::value)> | |
| FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value, | |
|                                     const basic_format_specs<Char>& specs, | |
|                                     locale_ref loc) -> OutputIt { | |
|   return write_int_noinline(out, make_write_int_arg(value, specs.sign), specs, | |
|                             loc); | |
| } | |
| // An inlined version of write used in format string compilation. | |
| template <typename Char, typename OutputIt, typename T, | |
|           FMT_ENABLE_IF(is_integral<T>::value && | |
|                         !std::is_same<T, bool>::value && | |
|                         !std::is_same<OutputIt, buffer_appender<Char>>::value)> | |
| FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value, | |
|                                     const basic_format_specs<Char>& specs, | |
|                                     locale_ref loc) -> OutputIt { | |
|   return write_int(out, make_write_int_arg(value, specs.sign), specs, loc); | |
| } | |
| 
 | |
| // An output iterator that counts the number of objects written to it and | |
| // discards them. | |
| class counting_iterator { | |
|  private: | |
|   size_t count_; | |
| 
 | |
|  public: | |
|   using iterator_category = std::output_iterator_tag; | |
|   using difference_type = std::ptrdiff_t; | |
|   using pointer = void; | |
|   using reference = void; | |
|   FMT_UNCHECKED_ITERATOR(counting_iterator); | |
| 
 | |
|   struct value_type { | |
|     template <typename T> FMT_CONSTEXPR void operator=(const T&) {} | |
|   }; | |
| 
 | |
|   FMT_CONSTEXPR counting_iterator() : count_(0) {} | |
| 
 | |
|   FMT_CONSTEXPR size_t count() const { return count_; } | |
| 
 | |
|   FMT_CONSTEXPR counting_iterator& operator++() { | |
|     ++count_; | |
|     return *this; | |
|   } | |
|   FMT_CONSTEXPR counting_iterator operator++(int) { | |
|     auto it = *this; | |
|     ++*this; | |
|     return it; | |
|   } | |
| 
 | |
|   FMT_CONSTEXPR friend counting_iterator operator+(counting_iterator it, | |
|                                                    difference_type n) { | |
|     it.count_ += static_cast<size_t>(n); | |
|     return it; | |
|   } | |
| 
 | |
|   FMT_CONSTEXPR value_type operator*() const { return {}; } | |
| }; | |
| 
 | |
| template <typename Char, typename OutputIt> | |
| FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s, | |
|                          const basic_format_specs<Char>& specs) -> OutputIt { | |
|   auto data = s.data(); | |
|   auto size = s.size(); | |
|   if (specs.precision >= 0 && to_unsigned(specs.precision) < size) | |
|     size = code_point_index(s, to_unsigned(specs.precision)); | |
|   bool is_debug = specs.type == presentation_type::debug; | |
|   size_t width = 0; | |
|   if (specs.width != 0) { | |
|     if (is_debug) | |
|       width = write_escaped_string(counting_iterator{}, s).count(); | |
|     else | |
|       width = compute_width(basic_string_view<Char>(data, size)); | |
|   } | |
|   return write_padded(out, specs, size, width, | |
|                       [=](reserve_iterator<OutputIt> it) { | |
|                         if (is_debug) return write_escaped_string(it, s); | |
|                         return copy_str<Char>(data, data + size, it); | |
|                       }); | |
| } | |
| template <typename Char, typename OutputIt> | |
| FMT_CONSTEXPR auto write(OutputIt out, | |
|                          basic_string_view<type_identity_t<Char>> s, | |
|                          const basic_format_specs<Char>& specs, locale_ref) | |
|     -> OutputIt { | |
|   check_string_type_spec(specs.type); | |
|   return write(out, s, specs); | |
| } | |
| template <typename Char, typename OutputIt> | |
| FMT_CONSTEXPR auto write(OutputIt out, const Char* s, | |
|                          const basic_format_specs<Char>& specs, locale_ref) | |
|     -> OutputIt { | |
|   return check_cstring_type_spec(specs.type) | |
|              ? write(out, basic_string_view<Char>(s), specs, {}) | |
|              : write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs); | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt, typename T, | |
|           FMT_ENABLE_IF(is_integral<T>::value && | |
|                         !std::is_same<T, bool>::value && | |
|                         !std::is_same<T, Char>::value)> | |
| FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt { | |
|   auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value); | |
|   bool negative = is_negative(value); | |
|   // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer. | |
|   if (negative) abs_value = ~abs_value + 1; | |
|   int num_digits = count_digits(abs_value); | |
|   auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits); | |
|   auto it = reserve(out, size); | |
|   if (auto ptr = to_pointer<Char>(it, size)) { | |
|     if (negative) *ptr++ = static_cast<Char>('-'); | |
|     format_decimal<Char>(ptr, abs_value, num_digits); | |
|     return out; | |
|   } | |
|   if (negative) *it++ = static_cast<Char>('-'); | |
|   it = format_decimal<Char>(it, abs_value, num_digits).end; | |
|   return base_iterator(out, it); | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt> | |
| FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isnan, | |
|                                      basic_format_specs<Char> specs, | |
|                                      const float_specs& fspecs) -> OutputIt { | |
|   auto str = | |
|       isnan ? (fspecs.upper ? "NAN" : "nan") : (fspecs.upper ? "INF" : "inf"); | |
|   constexpr size_t str_size = 3; | |
|   auto sign = fspecs.sign; | |
|   auto size = str_size + (sign ? 1 : 0); | |
|   // Replace '0'-padding with space for non-finite values. | |
|   const bool is_zero_fill = | |
|       specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0'); | |
|   if (is_zero_fill) specs.fill[0] = static_cast<Char>(' '); | |
|   return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) { | |
|     if (sign) *it++ = detail::sign<Char>(sign); | |
|     return copy_str<Char>(str, str + str_size, it); | |
|   }); | |
| } | |
| 
 | |
| // A decimal floating-point number significand * pow(10, exp). | |
| struct big_decimal_fp { | |
|   const char* significand; | |
|   int significand_size; | |
|   int exponent; | |
| }; | |
| 
 | |
| constexpr auto get_significand_size(const big_decimal_fp& f) -> int { | |
|   return f.significand_size; | |
| } | |
| template <typename T> | |
| inline auto get_significand_size(const dragonbox::decimal_fp<T>& f) -> int { | |
|   return count_digits(f.significand); | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt> | |
| constexpr auto write_significand(OutputIt out, const char* significand, | |
|                                  int significand_size) -> OutputIt { | |
|   return copy_str<Char>(significand, significand + significand_size, out); | |
| } | |
| template <typename Char, typename OutputIt, typename UInt> | |
| inline auto write_significand(OutputIt out, UInt significand, | |
|                               int significand_size) -> OutputIt { | |
|   return format_decimal<Char>(out, significand, significand_size).end; | |
| } | |
| template <typename Char, typename OutputIt, typename T, typename Grouping> | |
| FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand, | |
|                                        int significand_size, int exponent, | |
|                                        const Grouping& grouping) -> OutputIt { | |
|   if (!grouping.separator()) { | |
|     out = write_significand<Char>(out, significand, significand_size); | |
|     return detail::fill_n(out, exponent, static_cast<Char>('0')); | |
|   } | |
|   auto buffer = memory_buffer(); | |
|   write_significand<char>(appender(buffer), significand, significand_size); | |
|   detail::fill_n(appender(buffer), exponent, '0'); | |
|   return grouping.apply(out, string_view(buffer.data(), buffer.size())); | |
| } | |
| 
 | |
| template <typename Char, typename UInt, | |
|           FMT_ENABLE_IF(std::is_integral<UInt>::value)> | |
| inline auto write_significand(Char* out, UInt significand, int significand_size, | |
|                               int integral_size, Char decimal_point) -> Char* { | |
|   if (!decimal_point) | |
|     return format_decimal(out, significand, significand_size).end; | |
|   out += significand_size + 1; | |
|   Char* end = out; | |
|   int floating_size = significand_size - integral_size; | |
|   for (int i = floating_size / 2; i > 0; --i) { | |
|     out -= 2; | |
|     copy2(out, digits2(static_cast<std::size_t>(significand % 100))); | |
|     significand /= 100; | |
|   } | |
|   if (floating_size % 2 != 0) { | |
|     *--out = static_cast<Char>('0' + significand % 10); | |
|     significand /= 10; | |
|   } | |
|   *--out = decimal_point; | |
|   format_decimal(out - integral_size, significand, integral_size); | |
|   return end; | |
| } | |
| 
 | |
| template <typename OutputIt, typename UInt, typename Char, | |
|           FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)> | |
| inline auto write_significand(OutputIt out, UInt significand, | |
|                               int significand_size, int integral_size, | |
|                               Char decimal_point) -> OutputIt { | |
|   // Buffer is large enough to hold digits (digits10 + 1) and a decimal point. | |
|   Char buffer[digits10<UInt>() + 2]; | |
|   auto end = write_significand(buffer, significand, significand_size, | |
|                                integral_size, decimal_point); | |
|   return detail::copy_str_noinline<Char>(buffer, end, out); | |
| } | |
| 
 | |
| template <typename OutputIt, typename Char> | |
| FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand, | |
|                                      int significand_size, int integral_size, | |
|                                      Char decimal_point) -> OutputIt { | |
|   out = detail::copy_str_noinline<Char>(significand, | |
|                                         significand + integral_size, out); | |
|   if (!decimal_point) return out; | |
|   *out++ = decimal_point; | |
|   return detail::copy_str_noinline<Char>(significand + integral_size, | |
|                                          significand + significand_size, out); | |
| } | |
| 
 | |
| template <typename OutputIt, typename Char, typename T, typename Grouping> | |
| FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand, | |
|                                        int significand_size, int integral_size, | |
|                                        Char decimal_point, | |
|                                        const Grouping& grouping) -> OutputIt { | |
|   if (!grouping.separator()) { | |
|     return write_significand(out, significand, significand_size, integral_size, | |
|                              decimal_point); | |
|   } | |
|   auto buffer = basic_memory_buffer<Char>(); | |
|   write_significand(buffer_appender<Char>(buffer), significand, | |
|                     significand_size, integral_size, decimal_point); | |
|   grouping.apply( | |
|       out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size))); | |
|   return detail::copy_str_noinline<Char>(buffer.data() + integral_size, | |
|                                          buffer.end(), out); | |
| } | |
| 
 | |
| template <typename OutputIt, typename DecimalFP, typename Char, | |
|           typename Grouping = digit_grouping<Char>> | |
| FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& f, | |
|                                     const basic_format_specs<Char>& specs, | |
|                                     float_specs fspecs, locale_ref loc) | |
|     -> OutputIt { | |
|   auto significand = f.significand; | |
|   int significand_size = get_significand_size(f); | |
|   const Char zero = static_cast<Char>('0'); | |
|   auto sign = fspecs.sign; | |
|   size_t size = to_unsigned(significand_size) + (sign ? 1 : 0); | |
|   using iterator = reserve_iterator<OutputIt>; | |
| 
 | |
|   Char decimal_point = | |
|       fspecs.locale ? detail::decimal_point<Char>(loc) : static_cast<Char>('.'); | |
| 
 | |
|   int output_exp = f.exponent + significand_size - 1; | |
|   auto use_exp_format = [=]() { | |
|     if (fspecs.format == float_format::exp) return true; | |
|     if (fspecs.format != float_format::general) return false; | |
|     // Use the fixed notation if the exponent is in [exp_lower, exp_upper), | |
|     // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation. | |
|     const int exp_lower = -4, exp_upper = 16; | |
|     return output_exp < exp_lower || | |
|            output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper); | |
|   }; | |
|   if (use_exp_format()) { | |
|     int num_zeros = 0; | |
|     if (fspecs.showpoint) { | |
|       num_zeros = fspecs.precision - significand_size; | |
|       if (num_zeros < 0) num_zeros = 0; | |
|       size += to_unsigned(num_zeros); | |
|     } else if (significand_size == 1) { | |
|       decimal_point = Char(); | |
|     } | |
|     auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp; | |
|     int exp_digits = 2; | |
|     if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3; | |
| 
 | |
|     size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits); | |
|     char exp_char = fspecs.upper ? 'E' : 'e'; | |
|     auto write = [=](iterator it) { | |
|       if (sign) *it++ = detail::sign<Char>(sign); | |
|       // Insert a decimal point after the first digit and add an exponent. | |
|       it = write_significand(it, significand, significand_size, 1, | |
|                              decimal_point); | |
|       if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero); | |
|       *it++ = static_cast<Char>(exp_char); | |
|       return write_exponent<Char>(output_exp, it); | |
|     }; | |
|     return specs.width > 0 ? write_padded<align::right>(out, specs, size, write) | |
|                            : base_iterator(out, write(reserve(out, size))); | |
|   } | |
| 
 | |
|   int exp = f.exponent + significand_size; | |
|   if (f.exponent >= 0) { | |
|     // 1234e5 -> 123400000[.0+] | |
|     size += to_unsigned(f.exponent); | |
|     int num_zeros = fspecs.precision - exp; | |
|     abort_fuzzing_if(num_zeros > 5000); | |
|     if (fspecs.showpoint) { | |
|       ++size; | |
|       if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 1; | |
|       if (num_zeros > 0) size += to_unsigned(num_zeros); | |
|     } | |
|     auto grouping = Grouping(loc, fspecs.locale); | |
|     size += to_unsigned(grouping.count_separators(exp)); | |
|     return write_padded<align::right>(out, specs, size, [&](iterator it) { | |
|       if (sign) *it++ = detail::sign<Char>(sign); | |
|       it = write_significand<Char>(it, significand, significand_size, | |
|                                    f.exponent, grouping); | |
|       if (!fspecs.showpoint) return it; | |
|       *it++ = decimal_point; | |
|       return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; | |
|     }); | |
|   } else if (exp > 0) { | |
|     // 1234e-2 -> 12.34[0+] | |
|     int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0; | |
|     size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0); | |
|     auto grouping = Grouping(loc, fspecs.locale); | |
|     size += to_unsigned(grouping.count_separators(significand_size)); | |
|     return write_padded<align::right>(out, specs, size, [&](iterator it) { | |
|       if (sign) *it++ = detail::sign<Char>(sign); | |
|       it = write_significand(it, significand, significand_size, exp, | |
|                              decimal_point, grouping); | |
|       return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; | |
|     }); | |
|   } | |
|   // 1234e-6 -> 0.001234 | |
|   int num_zeros = -exp; | |
|   if (significand_size == 0 && fspecs.precision >= 0 && | |
|       fspecs.precision < num_zeros) { | |
|     num_zeros = fspecs.precision; | |
|   } | |
|   bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint; | |
|   size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros); | |
|   return write_padded<align::right>(out, specs, size, [&](iterator it) { | |
|     if (sign) *it++ = detail::sign<Char>(sign); | |
|     *it++ = zero; | |
|     if (!pointy) return it; | |
|     *it++ = decimal_point; | |
|     it = detail::fill_n(it, num_zeros, zero); | |
|     return write_significand<Char>(it, significand, significand_size); | |
|   }); | |
| } | |
| 
 | |
| template <typename Char> class fallback_digit_grouping { | |
|  public: | |
|   constexpr fallback_digit_grouping(locale_ref, bool) {} | |
| 
 | |
|   constexpr Char separator() const { return Char(); } | |
| 
 | |
|   constexpr int count_separators(int) const { return 0; } | |
| 
 | |
|   template <typename Out, typename C> | |
|   constexpr Out apply(Out out, basic_string_view<C>) const { | |
|     return out; | |
|   } | |
| }; | |
| 
 | |
| template <typename OutputIt, typename DecimalFP, typename Char> | |
| FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& f, | |
|                                  const basic_format_specs<Char>& specs, | |
|                                  float_specs fspecs, locale_ref loc) | |
|     -> OutputIt { | |
|   if (is_constant_evaluated()) { | |
|     return do_write_float<OutputIt, DecimalFP, Char, | |
|                           fallback_digit_grouping<Char>>(out, f, specs, fspecs, | |
|                                                          loc); | |
|   } else { | |
|     return do_write_float(out, f, specs, fspecs, loc); | |
|   } | |
| } | |
| 
 | |
| template <typename T> constexpr bool isnan(T value) { | |
|   return !(value >= value);  // std::isnan doesn't support __float128. | |
| } | |
| 
 | |
| template <typename T, typename Enable = void> | |
| struct has_isfinite : std::false_type {}; | |
| 
 | |
| template <typename T> | |
| struct has_isfinite<T, enable_if_t<sizeof(std::isfinite(T())) != 0>> | |
|     : std::true_type {}; | |
| 
 | |
| template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&& | |
|                                         has_isfinite<T>::value)> | |
| FMT_CONSTEXPR20 bool isfinite(T value) { | |
|   constexpr T inf = T(std::numeric_limits<double>::infinity()); | |
|   if (is_constant_evaluated()) | |
|     return !detail::isnan(value) && value != inf && value != -inf; | |
|   return std::isfinite(value); | |
| } | |
| template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)> | |
| FMT_CONSTEXPR bool isfinite(T value) { | |
|   T inf = T(std::numeric_limits<double>::infinity()); | |
|   // std::isfinite doesn't support __float128. | |
|   return !detail::isnan(value) && value != inf && value != -inf; | |
| } | |
| 
 | |
| template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)> | |
| FMT_INLINE FMT_CONSTEXPR bool signbit(T value) { | |
|   if (is_constant_evaluated()) { | |
| #ifdef __cpp_if_constexpr | |
|     if constexpr (std::numeric_limits<double>::is_iec559) { | |
|       auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value)); | |
|       return (bits >> (num_bits<uint64_t>() - 1)) != 0; | |
|     } | |
| #endif | |
|   } | |
|   return std::signbit(static_cast<double>(value)); | |
| } | |
| 
 | |
| enum class round_direction { unknown, up, down }; | |
| 
 | |
| // Given the divisor (normally a power of 10), the remainder = v % divisor for | |
| // some number v and the error, returns whether v should be rounded up, down, or | |
| // whether the rounding direction can't be determined due to error. | |
| // error should be less than divisor / 2. | |
| FMT_CONSTEXPR inline round_direction get_round_direction(uint64_t divisor, | |
|                                                          uint64_t remainder, | |
|                                                          uint64_t error) { | |
|   FMT_ASSERT(remainder < divisor, "");  // divisor - remainder won't overflow. | |
|   FMT_ASSERT(error < divisor, "");      // divisor - error won't overflow. | |
|   FMT_ASSERT(error < divisor - error, "");  // error * 2 won't overflow. | |
|   // Round down if (remainder + error) * 2 <= divisor. | |
|   if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2) | |
|     return round_direction::down; | |
|   // Round up if (remainder - error) * 2 >= divisor. | |
|   if (remainder >= error && | |
|       remainder - error >= divisor - (remainder - error)) { | |
|     return round_direction::up; | |
|   } | |
|   return round_direction::unknown; | |
| } | |
| 
 | |
| namespace digits { | |
| enum result { | |
|   more,  // Generate more digits. | |
|   done,  // Done generating digits. | |
|   error  // Digit generation cancelled due to an error. | |
| }; | |
| } | |
| 
 | |
| struct gen_digits_handler { | |
|   char* buf; | |
|   int size; | |
|   int precision; | |
|   int exp10; | |
|   bool fixed; | |
| 
 | |
|   FMT_CONSTEXPR digits::result on_digit(char digit, uint64_t divisor, | |
|                                         uint64_t remainder, uint64_t error, | |
|                                         bool integral) { | |
|     FMT_ASSERT(remainder < divisor, ""); | |
|     buf[size++] = digit; | |
|     if (!integral && error >= remainder) return digits::error; | |
|     if (size < precision) return digits::more; | |
|     if (!integral) { | |
|       // Check if error * 2 < divisor with overflow prevention. | |
|       // The check is not needed for the integral part because error = 1 | |
|       // and divisor > (1 << 32) there. | |
|       if (error >= divisor || error >= divisor - error) return digits::error; | |
|     } else { | |
|       FMT_ASSERT(error == 1 && divisor > 2, ""); | |
|     } | |
|     auto dir = get_round_direction(divisor, remainder, error); | |
|     if (dir != round_direction::up) | |
|       return dir == round_direction::down ? digits::done : digits::error; | |
|     ++buf[size - 1]; | |
|     for (int i = size - 1; i > 0 && buf[i] > '9'; --i) { | |
|       buf[i] = '0'; | |
|       ++buf[i - 1]; | |
|     } | |
|     if (buf[0] > '9') { | |
|       buf[0] = '1'; | |
|       if (fixed) | |
|         buf[size++] = '0'; | |
|       else | |
|         ++exp10; | |
|     } | |
|     return digits::done; | |
|   } | |
| }; | |
| 
 | |
| inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) { | |
|   // Adjust fixed precision by exponent because it is relative to decimal | |
|   // point. | |
|   if (exp10 > 0 && precision > max_value<int>() - exp10) | |
|     FMT_THROW(format_error("number is too big")); | |
|   precision += exp10; | |
| } | |
| 
 | |
| // Generates output using the Grisu digit-gen algorithm. | |
| // error: the size of the region (lower, upper) outside of which numbers | |
| // definitely do not round to value (Delta in Grisu3). | |
| FMT_INLINE FMT_CONSTEXPR20 auto grisu_gen_digits(fp value, uint64_t error, | |
|                                                  int& exp, | |
|                                                  gen_digits_handler& handler) | |
|     -> digits::result { | |
|   const fp one(1ULL << -value.e, value.e); | |
|   // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be | |
|   // zero because it contains a product of two 64-bit numbers with MSB set (due | |
|   // to normalization) - 1, shifted right by at most 60 bits. | |
|   auto integral = static_cast<uint32_t>(value.f >> -one.e); | |
|   FMT_ASSERT(integral != 0, ""); | |
|   FMT_ASSERT(integral == value.f >> -one.e, ""); | |
|   // The fractional part of scaled value (p2 in Grisu) c = value % one. | |
|   uint64_t fractional = value.f & (one.f - 1); | |
|   exp = count_digits(integral);  // kappa in Grisu. | |
|   // Non-fixed formats require at least one digit and no precision adjustment. | |
|   if (handler.fixed) { | |
|     adjust_precision(handler.precision, exp + handler.exp10); | |
|     // Check if precision is satisfied just by leading zeros, e.g. | |
|     // format("{:.2f}", 0.001) gives "0.00" without generating any digits. | |
|     if (handler.precision <= 0) { | |
|       if (handler.precision < 0) return digits::done; | |
|       // Divide by 10 to prevent overflow. | |
|       uint64_t divisor = data::power_of_10_64[exp - 1] << -one.e; | |
|       auto dir = get_round_direction(divisor, value.f / 10, error * 10); | |
|       if (dir == round_direction::unknown) return digits::error; | |
|       handler.buf[handler.size++] = dir == round_direction::up ? '1' : '0'; | |
|       return digits::done; | |
|     } | |
|   } | |
|   // Generate digits for the integral part. This can produce up to 10 digits. | |
|   do { | |
|     uint32_t digit = 0; | |
|     auto divmod_integral = [&](uint32_t divisor) { | |
|       digit = integral / divisor; | |
|       integral %= divisor; | |
|     }; | |
|     // This optimization by Milo Yip reduces the number of integer divisions by | |
|     // one per iteration. | |
|     switch (exp) { | |
|     case 10: | |
|       divmod_integral(1000000000); | |
|       break; | |
|     case 9: | |
|       divmod_integral(100000000); | |
|       break; | |
|     case 8: | |
|       divmod_integral(10000000); | |
|       break; | |
|     case 7: | |
|       divmod_integral(1000000); | |
|       break; | |
|     case 6: | |
|       divmod_integral(100000); | |
|       break; | |
|     case 5: | |
|       divmod_integral(10000); | |
|       break; | |
|     case 4: | |
|       divmod_integral(1000); | |
|       break; | |
|     case 3: | |
|       divmod_integral(100); | |
|       break; | |
|     case 2: | |
|       divmod_integral(10); | |
|       break; | |
|     case 1: | |
|       digit = integral; | |
|       integral = 0; | |
|       break; | |
|     default: | |
|       FMT_ASSERT(false, "invalid number of digits"); | |
|     } | |
|     --exp; | |
|     auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional; | |
|     auto result = handler.on_digit(static_cast<char>('0' + digit), | |
|                                    data::power_of_10_64[exp] << -one.e, | |
|                                    remainder, error, true); | |
|     if (result != digits::more) return result; | |
|   } while (exp > 0); | |
|   // Generate digits for the fractional part. | |
|   for (;;) { | |
|     fractional *= 10; | |
|     error *= 10; | |
|     char digit = static_cast<char>('0' + (fractional >> -one.e)); | |
|     fractional &= one.f - 1; | |
|     --exp; | |
|     auto result = handler.on_digit(digit, one.f, fractional, error, false); | |
|     if (result != digits::more) return result; | |
|   } | |
| } | |
| 
 | |
| class bigint { | |
|  private: | |
|   // A bigint is stored as an array of bigits (big digits), with bigit at index | |
|   // 0 being the least significant one. | |
|   using bigit = uint32_t; | |
|   using double_bigit = uint64_t; | |
|   enum { bigits_capacity = 32 }; | |
|   basic_memory_buffer<bigit, bigits_capacity> bigits_; | |
|   int exp_; | |
| 
 | |
|   FMT_CONSTEXPR20 bigit operator[](int index) const { | |
|     return bigits_[to_unsigned(index)]; | |
|   } | |
|   FMT_CONSTEXPR20 bigit& operator[](int index) { | |
|     return bigits_[to_unsigned(index)]; | |
|   } | |
| 
 | |
|   static constexpr const int bigit_bits = num_bits<bigit>(); | |
| 
 | |
|   friend struct formatter<bigint>; | |
| 
 | |
|   FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) { | |
|     auto result = static_cast<double_bigit>((*this)[index]) - other - borrow; | |
|     (*this)[index] = static_cast<bigit>(result); | |
|     borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1)); | |
|   } | |
| 
 | |
|   FMT_CONSTEXPR20 void remove_leading_zeros() { | |
|     int num_bigits = static_cast<int>(bigits_.size()) - 1; | |
|     while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits; | |
|     bigits_.resize(to_unsigned(num_bigits + 1)); | |
|   } | |
| 
 | |
|   // Computes *this -= other assuming aligned bigints and *this >= other. | |
|   FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) { | |
|     FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints"); | |
|     FMT_ASSERT(compare(*this, other) >= 0, ""); | |
|     bigit borrow = 0; | |
|     int i = other.exp_ - exp_; | |
|     for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j) | |
|       subtract_bigits(i, other.bigits_[j], borrow); | |
|     while (borrow > 0) subtract_bigits(i, 0, borrow); | |
|     remove_leading_zeros(); | |
|   } | |
| 
 | |
|   FMT_CONSTEXPR20 void multiply(uint32_t value) { | |
|     const double_bigit wide_value = value; | |
|     bigit carry = 0; | |
|     for (size_t i = 0, n = bigits_.size(); i < n; ++i) { | |
|       double_bigit result = bigits_[i] * wide_value + carry; | |
|       bigits_[i] = static_cast<bigit>(result); | |
|       carry = static_cast<bigit>(result >> bigit_bits); | |
|     } | |
|     if (carry != 0) bigits_.push_back(carry); | |
|   } | |
| 
 | |
|   template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value || | |
|                                          std::is_same<UInt, uint128_t>::value)> | |
|   FMT_CONSTEXPR20 void multiply(UInt value) { | |
|     using half_uint = | |
|         conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>; | |
|     const int shift = num_bits<half_uint>() - bigit_bits; | |
|     const UInt lower = static_cast<half_uint>(value); | |
|     const UInt upper = value >> num_bits<half_uint>(); | |
|     UInt carry = 0; | |
|     for (size_t i = 0, n = bigits_.size(); i < n; ++i) { | |
|       UInt result = lower * bigits_[i] + static_cast<bigit>(carry); | |
|       carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) + | |
|               (carry >> bigit_bits); | |
|       bigits_[i] = static_cast<bigit>(result); | |
|     } | |
|     while (carry != 0) { | |
|       bigits_.push_back(static_cast<bigit>(carry)); | |
|       carry >>= bigit_bits; | |
|     } | |
|   } | |
| 
 | |
|   template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value || | |
|                                          std::is_same<UInt, uint128_t>::value)> | |
|   FMT_CONSTEXPR20 void assign(UInt n) { | |
|     size_t num_bigits = 0; | |
|     do { | |
|       bigits_[num_bigits++] = static_cast<bigit>(n); | |
|       n >>= bigit_bits; | |
|     } while (n != 0); | |
|     bigits_.resize(num_bigits); | |
|     exp_ = 0; | |
|   } | |
| 
 | |
|  public: | |
|   FMT_CONSTEXPR20 bigint() : exp_(0) {} | |
|   explicit bigint(uint64_t n) { assign(n); } | |
| 
 | |
|   bigint(const bigint&) = delete; | |
|   void operator=(const bigint&) = delete; | |
| 
 | |
|   FMT_CONSTEXPR20 void assign(const bigint& other) { | |
|     auto size = other.bigits_.size(); | |
|     bigits_.resize(size); | |
|     auto data = other.bigits_.data(); | |
|     std::copy(data, data + size, make_checked(bigits_.data(), size)); | |
|     exp_ = other.exp_; | |
|   } | |
| 
 | |
|   template <typename Int> FMT_CONSTEXPR20 void operator=(Int n) { | |
|     FMT_ASSERT(n > 0, ""); | |
|     assign(uint64_or_128_t<Int>(n)); | |
|   } | |
| 
 | |
|   FMT_CONSTEXPR20 int num_bigits() const { | |
|     return static_cast<int>(bigits_.size()) + exp_; | |
|   } | |
| 
 | |
|   FMT_NOINLINE FMT_CONSTEXPR20 bigint& operator<<=(int shift) { | |
|     FMT_ASSERT(shift >= 0, ""); | |
|     exp_ += shift / bigit_bits; | |
|     shift %= bigit_bits; | |
|     if (shift == 0) return *this; | |
|     bigit carry = 0; | |
|     for (size_t i = 0, n = bigits_.size(); i < n; ++i) { | |
|       bigit c = bigits_[i] >> (bigit_bits - shift); | |
|       bigits_[i] = (bigits_[i] << shift) + carry; | |
|       carry = c; | |
|     } | |
|     if (carry != 0) bigits_.push_back(carry); | |
|     return *this; | |
|   } | |
| 
 | |
|   template <typename Int> FMT_CONSTEXPR20 bigint& operator*=(Int value) { | |
|     FMT_ASSERT(value > 0, ""); | |
|     multiply(uint32_or_64_or_128_t<Int>(value)); | |
|     return *this; | |
|   } | |
| 
 | |
|   friend FMT_CONSTEXPR20 int compare(const bigint& lhs, const bigint& rhs) { | |
|     int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits(); | |
|     if (num_lhs_bigits != num_rhs_bigits) | |
|       return num_lhs_bigits > num_rhs_bigits ? 1 : -1; | |
|     int i = static_cast<int>(lhs.bigits_.size()) - 1; | |
|     int j = static_cast<int>(rhs.bigits_.size()) - 1; | |
|     int end = i - j; | |
|     if (end < 0) end = 0; | |
|     for (; i >= end; --i, --j) { | |
|       bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j]; | |
|       if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1; | |
|     } | |
|     if (i != j) return i > j ? 1 : -1; | |
|     return 0; | |
|   } | |
| 
 | |
|   // Returns compare(lhs1 + lhs2, rhs). | |
|   friend FMT_CONSTEXPR20 int add_compare(const bigint& lhs1, const bigint& lhs2, | |
|                                          const bigint& rhs) { | |
|     auto minimum = [](int a, int b) { return a < b ? a : b; }; | |
|     auto maximum = [](int a, int b) { return a > b ? a : b; }; | |
|     int max_lhs_bigits = maximum(lhs1.num_bigits(), lhs2.num_bigits()); | |
|     int num_rhs_bigits = rhs.num_bigits(); | |
|     if (max_lhs_bigits + 1 < num_rhs_bigits) return -1; | |
|     if (max_lhs_bigits > num_rhs_bigits) return 1; | |
|     auto get_bigit = [](const bigint& n, int i) -> bigit { | |
|       return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0; | |
|     }; | |
|     double_bigit borrow = 0; | |
|     int min_exp = minimum(minimum(lhs1.exp_, lhs2.exp_), rhs.exp_); | |
|     for (int i = num_rhs_bigits - 1; i >= min_exp; --i) { | |
|       double_bigit sum = | |
|           static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i); | |
|       bigit rhs_bigit = get_bigit(rhs, i); | |
|       if (sum > rhs_bigit + borrow) return 1; | |
|       borrow = rhs_bigit + borrow - sum; | |
|       if (borrow > 1) return -1; | |
|       borrow <<= bigit_bits; | |
|     } | |
|     return borrow != 0 ? -1 : 0; | |
|   } | |
| 
 | |
|   // Assigns pow(10, exp) to this bigint. | |
|   FMT_CONSTEXPR20 void assign_pow10(int exp) { | |
|     FMT_ASSERT(exp >= 0, ""); | |
|     if (exp == 0) return *this = 1; | |
|     // Find the top bit. | |
|     int bitmask = 1; | |
|     while (exp >= bitmask) bitmask <<= 1; | |
|     bitmask >>= 1; | |
|     // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by | |
|     // repeated squaring and multiplication. | |
|     *this = 5; | |
|     bitmask >>= 1; | |
|     while (bitmask != 0) { | |
|       square(); | |
|       if ((exp & bitmask) != 0) *this *= 5; | |
|       bitmask >>= 1; | |
|     } | |
|     *this <<= exp;  // Multiply by pow(2, exp) by shifting. | |
|   } | |
| 
 | |
|   FMT_CONSTEXPR20 void square() { | |
|     int num_bigits = static_cast<int>(bigits_.size()); | |
|     int num_result_bigits = 2 * num_bigits; | |
|     basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_)); | |
|     bigits_.resize(to_unsigned(num_result_bigits)); | |
|     auto sum = uint128_t(); | |
|     for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) { | |
|       // Compute bigit at position bigit_index of the result by adding | |
|       // cross-product terms n[i] * n[j] such that i + j == bigit_index. | |
|       for (int i = 0, j = bigit_index; j >= 0; ++i, --j) { | |
|         // Most terms are multiplied twice which can be optimized in the future. | |
|         sum += static_cast<double_bigit>(n[i]) * n[j]; | |
|       } | |
|       (*this)[bigit_index] = static_cast<bigit>(sum); | |
|       sum >>= num_bits<bigit>();  // Compute the carry. | |
|     } | |
|     // Do the same for the top half. | |
|     for (int bigit_index = num_bigits; bigit_index < num_result_bigits; | |
|          ++bigit_index) { | |
|       for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;) | |
|         sum += static_cast<double_bigit>(n[i++]) * n[j--]; | |
|       (*this)[bigit_index] = static_cast<bigit>(sum); | |
|       sum >>= num_bits<bigit>(); | |
|     } | |
|     remove_leading_zeros(); | |
|     exp_ *= 2; | |
|   } | |
| 
 | |
|   // If this bigint has a bigger exponent than other, adds trailing zero to make | |
|   // exponents equal. This simplifies some operations such as subtraction. | |
|   FMT_CONSTEXPR20 void align(const bigint& other) { | |
|     int exp_difference = exp_ - other.exp_; | |
|     if (exp_difference <= 0) return; | |
|     int num_bigits = static_cast<int>(bigits_.size()); | |
|     bigits_.resize(to_unsigned(num_bigits + exp_difference)); | |
|     for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j) | |
|       bigits_[j] = bigits_[i]; | |
|     std::uninitialized_fill_n(bigits_.data(), exp_difference, 0); | |
|     exp_ -= exp_difference; | |
|   } | |
| 
 | |
|   // Divides this bignum by divisor, assigning the remainder to this and | |
|   // returning the quotient. | |
|   FMT_CONSTEXPR20 int divmod_assign(const bigint& divisor) { | |
|     FMT_ASSERT(this != &divisor, ""); | |
|     if (compare(*this, divisor) < 0) return 0; | |
|     FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, ""); | |
|     align(divisor); | |
|     int quotient = 0; | |
|     do { | |
|       subtract_aligned(divisor); | |
|       ++quotient; | |
|     } while (compare(*this, divisor) >= 0); | |
|     return quotient; | |
|   } | |
| }; | |
| 
 | |
| // format_dragon flags. | |
| enum dragon { | |
|   predecessor_closer = 1, | |
|   fixup = 2,  // Run fixup to correct exp10 which can be off by one. | |
|   fixed = 4, | |
| }; | |
| 
 | |
| // Formats a floating-point number using a variation of the Fixed-Precision | |
| // Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White: | |
| // https://fmt.dev/papers/p372-steele.pdf. | |
| FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value, | |
|                                           unsigned flags, int num_digits, | |
|                                           buffer<char>& buf, int& exp10) { | |
|   bigint numerator;    // 2 * R in (FPP)^2. | |
|   bigint denominator;  // 2 * S in (FPP)^2. | |
|   // lower and upper are differences between value and corresponding boundaries. | |
|   bigint lower;             // (M^- in (FPP)^2). | |
|   bigint upper_store;       // upper's value if different from lower. | |
|   bigint* upper = nullptr;  // (M^+ in (FPP)^2). | |
|   // Shift numerator and denominator by an extra bit or two (if lower boundary | |
|   // is closer) to make lower and upper integers. This eliminates multiplication | |
|   // by 2 during later computations. | |
|   bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0; | |
|   int shift = is_predecessor_closer ? 2 : 1; | |
|   if (value.e >= 0) { | |
|     numerator = value.f; | |
|     numerator <<= value.e + shift; | |
|     lower = 1; | |
|     lower <<= value.e; | |
|     if (is_predecessor_closer) { | |
|       upper_store = 1; | |
|       upper_store <<= value.e + 1; | |
|       upper = &upper_store; | |
|     } | |
|     denominator.assign_pow10(exp10); | |
|     denominator <<= shift; | |
|   } else if (exp10 < 0) { | |
|     numerator.assign_pow10(-exp10); | |
|     lower.assign(numerator); | |
|     if (is_predecessor_closer) { | |
|       upper_store.assign(numerator); | |
|       upper_store <<= 1; | |
|       upper = &upper_store; | |
|     } | |
|     numerator *= value.f; | |
|     numerator <<= shift; | |
|     denominator = 1; | |
|     denominator <<= shift - value.e; | |
|   } else { | |
|     numerator = value.f; | |
|     numerator <<= shift; | |
|     denominator.assign_pow10(exp10); | |
|     denominator <<= shift - value.e; | |
|     lower = 1; | |
|     if (is_predecessor_closer) { | |
|       upper_store = 1ULL << 1; | |
|       upper = &upper_store; | |
|     } | |
|   } | |
|   int even = static_cast<int>((value.f & 1) == 0); | |
|   if (!upper) upper = &lower; | |
|   if ((flags & dragon::fixup) != 0) { | |
|     if (add_compare(numerator, *upper, denominator) + even <= 0) { | |
|       --exp10; | |
|       numerator *= 10; | |
|       if (num_digits < 0) { | |
|         lower *= 10; | |
|         if (upper != &lower) *upper *= 10; | |
|       } | |
|     } | |
|     if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1); | |
|   } | |
|   // Invariant: value == (numerator / denominator) * pow(10, exp10). | |
|   if (num_digits < 0) { | |
|     // Generate the shortest representation. | |
|     num_digits = 0; | |
|     char* data = buf.data(); | |
|     for (;;) { | |
|       int digit = numerator.divmod_assign(denominator); | |
|       bool low = compare(numerator, lower) - even < 0;  // numerator <[=] lower. | |
|       // numerator + upper >[=] pow10: | |
|       bool high = add_compare(numerator, *upper, denominator) + even > 0; | |
|       data[num_digits++] = static_cast<char>('0' + digit); | |
|       if (low || high) { | |
|         if (!low) { | |
|           ++data[num_digits - 1]; | |
|         } else if (high) { | |
|           int result = add_compare(numerator, numerator, denominator); | |
|           // Round half to even. | |
|           if (result > 0 || (result == 0 && (digit % 2) != 0)) | |
|             ++data[num_digits - 1]; | |
|         } | |
|         buf.try_resize(to_unsigned(num_digits)); | |
|         exp10 -= num_digits - 1; | |
|         return; | |
|       } | |
|       numerator *= 10; | |
|       lower *= 10; | |
|       if (upper != &lower) *upper *= 10; | |
|     } | |
|   } | |
|   // Generate the given number of digits. | |
|   exp10 -= num_digits - 1; | |
|   if (num_digits == 0) { | |
|     denominator *= 10; | |
|     auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0'; | |
|     buf.push_back(digit); | |
|     return; | |
|   } | |
|   buf.try_resize(to_unsigned(num_digits)); | |
|   for (int i = 0; i < num_digits - 1; ++i) { | |
|     int digit = numerator.divmod_assign(denominator); | |
|     buf[i] = static_cast<char>('0' + digit); | |
|     numerator *= 10; | |
|   } | |
|   int digit = numerator.divmod_assign(denominator); | |
|   auto result = add_compare(numerator, numerator, denominator); | |
|   if (result > 0 || (result == 0 && (digit % 2) != 0)) { | |
|     if (digit == 9) { | |
|       const auto overflow = '0' + 10; | |
|       buf[num_digits - 1] = overflow; | |
|       // Propagate the carry. | |
|       for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) { | |
|         buf[i] = '0'; | |
|         ++buf[i - 1]; | |
|       } | |
|       if (buf[0] == overflow) { | |
|         buf[0] = '1'; | |
|         ++exp10; | |
|       } | |
|       return; | |
|     } | |
|     ++digit; | |
|   } | |
|   buf[num_digits - 1] = static_cast<char>('0' + digit); | |
| } | |
| 
 | |
| template <typename Float> | |
| FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs, | |
|                                   buffer<char>& buf) -> int { | |
|   // float is passed as double to reduce the number of instantiations. | |
|   static_assert(!std::is_same<Float, float>::value, ""); | |
|   FMT_ASSERT(value >= 0, "value is negative"); | |
|   auto converted_value = convert_float(value); | |
| 
 | |
|   const bool fixed = specs.format == float_format::fixed; | |
|   if (value <= 0) {  // <= instead of == to silence a warning. | |
|     if (precision <= 0 || !fixed) { | |
|       buf.push_back('0'); | |
|       return 0; | |
|     } | |
|     buf.try_resize(to_unsigned(precision)); | |
|     fill_n(buf.data(), precision, '0'); | |
|     return -precision; | |
|   } | |
| 
 | |
|   int exp = 0; | |
|   bool use_dragon = true; | |
|   unsigned dragon_flags = 0; | |
|   if (!is_fast_float<Float>()) { | |
|     const auto inv_log2_10 = 0.3010299956639812;  // 1 / log2(10) | |
|     using info = dragonbox::float_info<decltype(converted_value)>; | |
|     const auto f = basic_fp<typename info::carrier_uint>(converted_value); | |
|     // Compute exp, an approximate power of 10, such that | |
|     //   10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1). | |
|     // This is based on log10(value) == log2(value) / log2(10) and approximation | |
|     // of log2(value) by e + num_fraction_bits idea from double-conversion. | |
|     exp = static_cast<int>( | |
|         std::ceil((f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10)); | |
|     dragon_flags = dragon::fixup; | |
|   } else if (!is_constant_evaluated() && precision < 0) { | |
|     // Use Dragonbox for the shortest format. | |
|     if (specs.binary32) { | |
|       auto dec = dragonbox::to_decimal(static_cast<float>(value)); | |
|       write<char>(buffer_appender<char>(buf), dec.significand); | |
|       return dec.exponent; | |
|     } | |
|     auto dec = dragonbox::to_decimal(static_cast<double>(value)); | |
|     write<char>(buffer_appender<char>(buf), dec.significand); | |
|     return dec.exponent; | |
|   } else { | |
|     // Use Grisu + Dragon4 for the given precision: | |
|     // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf. | |
|     const int min_exp = -60;  // alpha in Grisu. | |
|     int cached_exp10 = 0;     // K in Grisu. | |
|     fp normalized = normalize(fp(converted_value)); | |
|     const auto cached_pow = get_cached_power( | |
|         min_exp - (normalized.e + fp::num_significand_bits), cached_exp10); | |
|     normalized = normalized * cached_pow; | |
|     gen_digits_handler handler{buf.data(), 0, precision, -cached_exp10, fixed}; | |
|     if (grisu_gen_digits(normalized, 1, exp, handler) != digits::error && | |
|         !is_constant_evaluated()) { | |
|       exp += handler.exp10; | |
|       buf.try_resize(to_unsigned(handler.size)); | |
|       use_dragon = false; | |
|     } else { | |
|       exp += handler.size - cached_exp10 - 1; | |
|       precision = handler.precision; | |
|     } | |
|   } | |
|   if (use_dragon) { | |
|     auto f = basic_fp<uint128_t>(); | |
|     bool is_predecessor_closer = specs.binary32 | |
|                                      ? f.assign(static_cast<float>(value)) | |
|                                      : f.assign(converted_value); | |
|     if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer; | |
|     if (fixed) dragon_flags |= dragon::fixed; | |
|     // Limit precision to the maximum possible number of significant digits in | |
|     // an IEEE754 double because we don't need to generate zeros. | |
|     const int max_double_digits = 767; | |
|     if (precision > max_double_digits) precision = max_double_digits; | |
|     format_dragon(f, dragon_flags, precision, buf, exp); | |
|   } | |
|   if (!fixed && !specs.showpoint) { | |
|     // Remove trailing zeros. | |
|     auto num_digits = buf.size(); | |
|     while (num_digits > 0 && buf[num_digits - 1] == '0') { | |
|       --num_digits; | |
|       ++exp; | |
|     } | |
|     buf.try_resize(num_digits); | |
|   } | |
|   return exp; | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt, typename T, | |
|           FMT_ENABLE_IF(is_floating_point<T>::value)> | |
| FMT_CONSTEXPR20 auto write(OutputIt out, T value, | |
|                            basic_format_specs<Char> specs, locale_ref loc = {}) | |
|     -> OutputIt { | |
|   if (const_check(!is_supported_floating_point(value))) return out; | |
|   float_specs fspecs = parse_float_type_spec(specs); | |
|   fspecs.sign = specs.sign; | |
|   if (detail::signbit(value)) {  // value < 0 is false for NaN so use signbit. | |
|     fspecs.sign = sign::minus; | |
|     value = -value; | |
|   } else if (fspecs.sign == sign::minus) { | |
|     fspecs.sign = sign::none; | |
|   } | |
| 
 | |
|   if (!detail::isfinite(value)) | |
|     return write_nonfinite(out, detail::isnan(value), specs, fspecs); | |
| 
 | |
|   if (specs.align == align::numeric && fspecs.sign) { | |
|     auto it = reserve(out, 1); | |
|     *it++ = detail::sign<Char>(fspecs.sign); | |
|     out = base_iterator(out, it); | |
|     fspecs.sign = sign::none; | |
|     if (specs.width != 0) --specs.width; | |
|   } | |
| 
 | |
|   memory_buffer buffer; | |
|   if (fspecs.format == float_format::hex) { | |
|     if (fspecs.sign) buffer.push_back(detail::sign<char>(fspecs.sign)); | |
|     snprintf_float(convert_float(value), specs.precision, fspecs, buffer); | |
|     return write_bytes<align::right>(out, {buffer.data(), buffer.size()}, | |
|                                      specs); | |
|   } | |
|   int precision = specs.precision >= 0 || specs.type == presentation_type::none | |
|                       ? specs.precision | |
|                       : 6; | |
|   if (fspecs.format == float_format::exp) { | |
|     if (precision == max_value<int>()) | |
|       throw_format_error("number is too big"); | |
|     else | |
|       ++precision; | |
|   } else if (fspecs.format != float_format::fixed && precision == 0) { | |
|     precision = 1; | |
|   } | |
|   if (const_check(std::is_same<T, float>())) fspecs.binary32 = true; | |
|   int exp = format_float(convert_float(value), precision, fspecs, buffer); | |
|   fspecs.precision = precision; | |
|   auto f = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp}; | |
|   return write_float(out, f, specs, fspecs, loc); | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt, typename T, | |
|           FMT_ENABLE_IF(is_fast_float<T>::value)> | |
| FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt { | |
|   if (is_constant_evaluated()) | |
|     return write(out, value, basic_format_specs<Char>()); | |
|   if (const_check(!is_supported_floating_point(value))) return out; | |
| 
 | |
|   auto fspecs = float_specs(); | |
|   if (detail::signbit(value)) { | |
|     fspecs.sign = sign::minus; | |
|     value = -value; | |
|   } | |
| 
 | |
|   constexpr auto specs = basic_format_specs<Char>(); | |
|   using floaty = conditional_t<std::is_same<T, long double>::value, double, T>; | |
|   using uint = typename dragonbox::float_info<floaty>::carrier_uint; | |
|   uint mask = exponent_mask<floaty>(); | |
|   if ((bit_cast<uint>(value) & mask) == mask) | |
|     return write_nonfinite(out, std::isnan(value), specs, fspecs); | |
| 
 | |
|   auto dec = dragonbox::to_decimal(static_cast<floaty>(value)); | |
|   return write_float(out, dec, specs, fspecs, {}); | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt, typename T, | |
|           FMT_ENABLE_IF(is_floating_point<T>::value && | |
|                         !is_fast_float<T>::value)> | |
| inline auto write(OutputIt out, T value) -> OutputIt { | |
|   return write(out, value, basic_format_specs<Char>()); | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt> | |
| auto write(OutputIt out, monostate, basic_format_specs<Char> = {}, | |
|            locale_ref = {}) -> OutputIt { | |
|   FMT_ASSERT(false, ""); | |
|   return out; | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt> | |
| FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value) | |
|     -> OutputIt { | |
|   auto it = reserve(out, value.size()); | |
|   it = copy_str_noinline<Char>(value.begin(), value.end(), it); | |
|   return base_iterator(out, it); | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt, typename T, | |
|           FMT_ENABLE_IF(is_string<T>::value)> | |
| constexpr auto write(OutputIt out, const T& value) -> OutputIt { | |
|   return write<Char>(out, to_string_view(value)); | |
| } | |
| 
 | |
| // FMT_ENABLE_IF() condition separated to workaround an MSVC bug. | |
| template < | |
|     typename Char, typename OutputIt, typename T, | |
|     bool check = | |
|         std::is_enum<T>::value && !std::is_same<T, Char>::value && | |
|         mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value != | |
|             type::custom_type, | |
|     FMT_ENABLE_IF(check)> | |
| FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt { | |
|   return write<Char>(out, static_cast<underlying_t<T>>(value)); | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt, typename T, | |
|           FMT_ENABLE_IF(std::is_same<T, bool>::value)> | |
| FMT_CONSTEXPR auto write(OutputIt out, T value, | |
|                          const basic_format_specs<Char>& specs = {}, | |
|                          locale_ref = {}) -> OutputIt { | |
|   return specs.type != presentation_type::none && | |
|                  specs.type != presentation_type::string | |
|              ? write(out, value ? 1 : 0, specs, {}) | |
|              : write_bytes(out, value ? "true" : "false", specs); | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt> | |
| FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt { | |
|   auto it = reserve(out, 1); | |
|   *it++ = value; | |
|   return base_iterator(out, it); | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt> | |
| FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value) | |
|     -> OutputIt { | |
|   if (!value) { | |
|     throw_format_error("string pointer is null"); | |
|   } else { | |
|     out = write(out, basic_string_view<Char>(value)); | |
|   } | |
|   return out; | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt, typename T, | |
|           FMT_ENABLE_IF(std::is_same<T, void>::value)> | |
| auto write(OutputIt out, const T* value, | |
|            const basic_format_specs<Char>& specs = {}, locale_ref = {}) | |
|     -> OutputIt { | |
|   check_pointer_type_spec(specs.type, error_handler()); | |
|   return write_ptr<Char>(out, bit_cast<uintptr_t>(value), &specs); | |
| } | |
| 
 | |
| // A write overload that handles implicit conversions. | |
| template <typename Char, typename OutputIt, typename T, | |
|           typename Context = basic_format_context<OutputIt, Char>> | |
| FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t< | |
|     std::is_class<T>::value && !is_string<T>::value && | |
|         !is_floating_point<T>::value && !std::is_same<T, Char>::value && | |
|         !std::is_same<const T&, | |
|                       decltype(arg_mapper<Context>().map(value))>::value, | |
|     OutputIt> { | |
|   return write<Char>(out, arg_mapper<Context>().map(value)); | |
| } | |
| 
 | |
| template <typename Char, typename OutputIt, typename T, | |
|           typename Context = basic_format_context<OutputIt, Char>> | |
| FMT_CONSTEXPR auto write(OutputIt out, const T& value) | |
|     -> enable_if_t<mapped_type_constant<T, Context>::value == type::custom_type, | |
|                    OutputIt> { | |
|   using formatter_type = | |
|       conditional_t<has_formatter<T, Context>::value, | |
|                     typename Context::template formatter_type<T>, | |
|                     fallback_formatter<T, Char>>; | |
|   auto ctx = Context(out, {}, {}); | |
|   return formatter_type().format(value, ctx); | |
| } | |
| 
 | |
| // An argument visitor that formats the argument and writes it via the output | |
| // iterator. It's a class and not a generic lambda for compatibility with C++11. | |
| template <typename Char> struct default_arg_formatter { | |
|   using iterator = buffer_appender<Char>; | |
|   using context = buffer_context<Char>; | |
| 
 | |
|   iterator out; | |
|   basic_format_args<context> args; | |
|   locale_ref loc; | |
| 
 | |
|   template <typename T> auto operator()(T value) -> iterator { | |
|     return write<Char>(out, value); | |
|   } | |
|   auto operator()(typename basic_format_arg<context>::handle h) -> iterator { | |
|     basic_format_parse_context<Char> parse_ctx({}); | |
|     context format_ctx(out, args, loc); | |
|     h.format(parse_ctx, format_ctx); | |
|     return format_ctx.out(); | |
|   } | |
| }; | |
| 
 | |
| template <typename Char> struct arg_formatter { | |
|   using iterator = buffer_appender<Char>; | |
|   using context = buffer_context<Char>; | |
| 
 | |
|   iterator out; | |
|   const basic_format_specs<Char>& specs; | |
|   locale_ref locale; | |
| 
 | |
|   template <typename T> | |
|   FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator { | |
|     return detail::write(out, value, specs, locale); | |
|   } | |
|   auto operator()(typename basic_format_arg<context>::handle) -> iterator { | |
|     // User-defined types are handled separately because they require access | |
|     // to the parse context. | |
|     return out; | |
|   } | |
| }; | |
| 
 | |
| template <typename Char> struct custom_formatter { | |
|   basic_format_parse_context<Char>& parse_ctx; | |
|   buffer_context<Char>& ctx; | |
| 
 | |
|   void operator()( | |
|       typename basic_format_arg<buffer_context<Char>>::handle h) const { | |
|     h.format(parse_ctx, ctx); | |
|   } | |
|   template <typename T> void operator()(T) const {} | |
| }; | |
| 
 | |
| template <typename T> | |
| using is_integer = | |
|     bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value && | |
|                   !std::is_same<T, char>::value && | |
|                   !std::is_same<T, wchar_t>::value>; | |
| 
 | |
| template <typename ErrorHandler> class width_checker { | |
|  public: | |
|   explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {} | |
| 
 | |
|   template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> | |
|   FMT_CONSTEXPR auto operator()(T value) -> unsigned long long { | |
|     if (is_negative(value)) handler_.on_error("negative width"); | |
|     return static_cast<unsigned long long>(value); | |
|   } | |
| 
 | |
|   template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> | |
|   FMT_CONSTEXPR auto operator()(T) -> unsigned long long { | |
|     handler_.on_error("width is not integer"); | |
|     return 0; | |
|   } | |
| 
 | |
|  private: | |
|   ErrorHandler& handler_; | |
| }; | |
| 
 | |
| template <typename ErrorHandler> class precision_checker { | |
|  public: | |
|   explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {} | |
| 
 | |
|   template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> | |
|   FMT_CONSTEXPR auto operator()(T value) -> unsigned long long { | |
|     if (is_negative(value)) handler_.on_error("negative precision"); | |
|     return static_cast<unsigned long long>(value); | |
|   } | |
| 
 | |
|   template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> | |
|   FMT_CONSTEXPR auto operator()(T) -> unsigned long long { | |
|     handler_.on_error("precision is not integer"); | |
|     return 0; | |
|   } | |
| 
 | |
|  private: | |
|   ErrorHandler& handler_; | |
| }; | |
| 
 | |
| template <template <typename> class Handler, typename FormatArg, | |
|           typename ErrorHandler> | |
| FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg, ErrorHandler eh) -> int { | |
|   unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg); | |
|   if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big"); | |
|   return static_cast<int>(value); | |
| } | |
| 
 | |
| template <typename Context, typename ID> | |
| FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) -> | |
|     typename Context::format_arg { | |
|   auto arg = ctx.arg(id); | |
|   if (!arg) ctx.on_error("argument not found"); | |
|   return arg; | |
| } | |
| 
 | |
| // The standard format specifier handler with checking. | |
| template <typename Char> class specs_handler : public specs_setter<Char> { | |
|  private: | |
|   basic_format_parse_context<Char>& parse_context_; | |
|   buffer_context<Char>& context_; | |
| 
 | |
|   // This is only needed for compatibility with gcc 4.4. | |
|   using format_arg = basic_format_arg<buffer_context<Char>>; | |
| 
 | |
|   FMT_CONSTEXPR auto get_arg(auto_id) -> format_arg { | |
|     return detail::get_arg(context_, parse_context_.next_arg_id()); | |
|   } | |
| 
 | |
|   FMT_CONSTEXPR auto get_arg(int arg_id) -> format_arg { | |
|     parse_context_.check_arg_id(arg_id); | |
|     return detail::get_arg(context_, arg_id); | |
|   } | |
| 
 | |
|   FMT_CONSTEXPR auto get_arg(basic_string_view<Char> arg_id) -> format_arg { | |
|     parse_context_.check_arg_id(arg_id); | |
|     return detail::get_arg(context_, arg_id); | |
|   } | |
| 
 | |
|  public: | |
|   FMT_CONSTEXPR specs_handler(basic_format_specs<Char>& specs, | |
|                               basic_format_parse_context<Char>& parse_ctx, | |
|                               buffer_context<Char>& ctx) | |
|       : specs_setter<Char>(specs), parse_context_(parse_ctx), context_(ctx) {} | |
| 
 | |
|   template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) { | |
|     this->specs_.width = get_dynamic_spec<width_checker>( | |
|         get_arg(arg_id), context_.error_handler()); | |
|   } | |
| 
 | |
|   template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) { | |
|     this->specs_.precision = get_dynamic_spec<precision_checker>( | |
|         get_arg(arg_id), context_.error_handler()); | |
|   } | |
| 
 | |
|   void on_error(const char* message) { context_.on_error(message); } | |
| }; | |
| 
 | |
| template <template <typename> class Handler, typename Context> | |
| FMT_CONSTEXPR void handle_dynamic_spec(int& value, | |
|                                        arg_ref<typename Context::char_type> ref, | |
|                                        Context& ctx) { | |
|   switch (ref.kind) { | |
|   case arg_id_kind::none: | |
|     break; | |
|   case arg_id_kind::index: | |
|     value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.index), | |
|                                               ctx.error_handler()); | |
|     break; | |
|   case arg_id_kind::name: | |
|     value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.name), | |
|                                               ctx.error_handler()); | |
|     break; | |
|   } | |
| } | |
| 
 | |
| #if FMT_USE_USER_DEFINED_LITERALS | |
| template <typename Char> struct udl_formatter { | |
|   basic_string_view<Char> str; | |
| 
 | |
|   template <typename... T> | |
|   auto operator()(T&&... args) const -> std::basic_string<Char> { | |
|     return vformat(str, fmt::make_format_args<buffer_context<Char>>(args...)); | |
|   } | |
| }; | |
| 
 | |
| #  if FMT_USE_NONTYPE_TEMPLATE_ARGS | |
| template <typename T, typename Char, size_t N, | |
|           fmt::detail_exported::fixed_string<Char, N> Str> | |
| struct statically_named_arg : view { | |
|   static constexpr auto name = Str.data; | |
| 
 | |
|   const T& value; | |
|   statically_named_arg(const T& v) : value(v) {} | |
| }; | |
| 
 | |
| template <typename T, typename Char, size_t N, | |
|           fmt::detail_exported::fixed_string<Char, N> Str> | |
| struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {}; | |
| 
 | |
| template <typename T, typename Char, size_t N, | |
|           fmt::detail_exported::fixed_string<Char, N> Str> | |
| struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>> | |
|     : std::true_type {}; | |
| 
 | |
| template <typename Char, size_t N, | |
|           fmt::detail_exported::fixed_string<Char, N> Str> | |
| struct udl_arg { | |
|   template <typename T> auto operator=(T&& value) const { | |
|     return statically_named_arg<T, Char, N, Str>(std::forward<T>(value)); | |
|   } | |
| }; | |
| #  else | |
| template <typename Char> struct udl_arg { | |
|   const Char* str; | |
| 
 | |
|   template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> { | |
|     return {str, std::forward<T>(value)}; | |
|   } | |
| }; | |
| #  endif | |
| #endif  // FMT_USE_USER_DEFINED_LITERALS | |
|  | |
| template <typename Locale, typename Char> | |
| auto vformat(const Locale& loc, basic_string_view<Char> format_str, | |
|              basic_format_args<buffer_context<type_identity_t<Char>>> args) | |
|     -> std::basic_string<Char> { | |
|   basic_memory_buffer<Char> buffer; | |
|   detail::vformat_to(buffer, format_str, args, detail::locale_ref(loc)); | |
|   return {buffer.data(), buffer.size()}; | |
| } | |
| 
 | |
| using format_func = void (*)(detail::buffer<char>&, int, const char*); | |
| 
 | |
| FMT_API void format_error_code(buffer<char>& out, int error_code, | |
|                                string_view message) noexcept; | |
| 
 | |
| FMT_API void report_error(format_func func, int error_code, | |
|                           const char* message) noexcept; | |
| FMT_END_DETAIL_NAMESPACE | |
| 
 | |
| FMT_API auto vsystem_error(int error_code, string_view format_str, | |
|                            format_args args) -> std::system_error; | |
| 
 | |
| /** | |
|  \rst | |
|  Constructs :class:`std::system_error` with a message formatted with | |
|  ``fmt::format(fmt, args...)``. | |
|   *error_code* is a system error code as given by ``errno``. | |
|  | |
|  **Example**:: | |
|  | |
|    // This throws std::system_error with the description | |
|    //   cannot open file 'madeup': No such file or directory | |
|    // or similar (system message may vary). | |
|    const char* filename = "madeup"; | |
|    std::FILE* file = std::fopen(filename, "r"); | |
|    if (!file) | |
|      throw fmt::system_error(errno, "cannot open file '{}'", filename); | |
|  \endrst | |
| */ | |
| template <typename... T> | |
| auto system_error(int error_code, format_string<T...> fmt, T&&... args) | |
|     -> std::system_error { | |
|   return vsystem_error(error_code, fmt, fmt::make_format_args(args...)); | |
| } | |
| 
 | |
| /** | |
|   \rst | |
|   Formats an error message for an error returned by an operating system or a | |
|   language runtime, for example a file opening error, and writes it to *out*. | |
|   The format is the same as the one used by ``std::system_error(ec, message)`` | |
|   where ``ec`` is ``std::error_code(error_code, std::generic_category()})``. | |
|   It is implementation-defined but normally looks like: | |
|  | |
|   .. parsed-literal:: | |
|      *<message>*: *<system-message>* | |
|  | |
|   where *<message>* is the passed message and *<system-message>* is the system | |
|   message corresponding to the error code. | |
|   *error_code* is a system error code as given by ``errno``. | |
|   \endrst | |
|  */ | |
| FMT_API void format_system_error(detail::buffer<char>& out, int error_code, | |
|                                  const char* message) noexcept; | |
| 
 | |
| // Reports a system error without throwing an exception. | |
| // Can be used to report errors from destructors. | |
| FMT_API void report_system_error(int error_code, const char* message) noexcept; | |
| 
 | |
| /** Fast integer formatter. */ | |
| class format_int { | |
|  private: | |
|   // Buffer should be large enough to hold all digits (digits10 + 1), | |
|   // a sign and a null character. | |
|   enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 }; | |
|   mutable char buffer_[buffer_size]; | |
|   char* str_; | |
| 
 | |
|   template <typename UInt> auto format_unsigned(UInt value) -> char* { | |
|     auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value); | |
|     return detail::format_decimal(buffer_, n, buffer_size - 1).begin; | |
|   } | |
| 
 | |
|   template <typename Int> auto format_signed(Int value) -> char* { | |
|     auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value); | |
|     bool negative = value < 0; | |
|     if (negative) abs_value = 0 - abs_value; | |
|     auto begin = format_unsigned(abs_value); | |
|     if (negative) *--begin = '-'; | |
|     return begin; | |
|   } | |
| 
 | |
|  public: | |
|   explicit format_int(int value) : str_(format_signed(value)) {} | |
|   explicit format_int(long value) : str_(format_signed(value)) {} | |
|   explicit format_int(long long value) : str_(format_signed(value)) {} | |
|   explicit format_int(unsigned value) : str_(format_unsigned(value)) {} | |
|   explicit format_int(unsigned long value) : str_(format_unsigned(value)) {} | |
|   explicit format_int(unsigned long long value) | |
|       : str_(format_unsigned(value)) {} | |
| 
 | |
|   /** Returns the number of characters written to the output buffer. */ | |
|   auto size() const -> size_t { | |
|     return detail::to_unsigned(buffer_ - str_ + buffer_size - 1); | |
|   } | |
| 
 | |
|   /** | |
|     Returns a pointer to the output buffer content. No terminating null | |
|     character is appended. | |
|    */ | |
|   auto data() const -> const char* { return str_; } | |
| 
 | |
|   /** | |
|     Returns a pointer to the output buffer content with terminating null | |
|     character appended. | |
|    */ | |
|   auto c_str() const -> const char* { | |
|     buffer_[buffer_size - 1] = '\0'; | |
|     return str_; | |
|   } | |
| 
 | |
|   /** | |
|     \rst | |
|     Returns the content of the output buffer as an ``std::string``. | |
|     \endrst | |
|    */ | |
|   auto str() const -> std::string { return std::string(str_, size()); } | |
| }; | |
| 
 | |
| template <typename T, typename Char> | |
| template <typename FormatContext> | |
| FMT_CONSTEXPR FMT_INLINE auto | |
| formatter<T, Char, | |
|           enable_if_t<detail::type_constant<T, Char>::value != | |
|                       detail::type::custom_type>>::format(const T& val, | |
|                                                           FormatContext& ctx) | |
|     const -> decltype(ctx.out()) { | |
|   if (specs_.width_ref.kind != detail::arg_id_kind::none || | |
|       specs_.precision_ref.kind != detail::arg_id_kind::none) { | |
|     auto specs = specs_; | |
|     detail::handle_dynamic_spec<detail::width_checker>(specs.width, | |
|                                                        specs.width_ref, ctx); | |
|     detail::handle_dynamic_spec<detail::precision_checker>( | |
|         specs.precision, specs.precision_ref, ctx); | |
|     return detail::write<Char>(ctx.out(), val, specs, ctx.locale()); | |
|   } | |
|   return detail::write<Char>(ctx.out(), val, specs_, ctx.locale()); | |
| } | |
| 
 | |
| template <typename Char> | |
| struct formatter<void*, Char> : formatter<const void*, Char> { | |
|   template <typename FormatContext> | |
|   auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) { | |
|     return formatter<const void*, Char>::format(val, ctx); | |
|   } | |
| }; | |
| 
 | |
| template <typename Char, size_t N> | |
| struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> { | |
|   template <typename FormatContext> | |
|   FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const | |
|       -> decltype(ctx.out()) { | |
|     return formatter<basic_string_view<Char>, Char>::format(val, ctx); | |
|   } | |
| }; | |
| 
 | |
| // A formatter for types known only at run time such as variant alternatives. | |
| // | |
| // Usage: | |
| //   using variant = std::variant<int, std::string>; | |
| //   template <> | |
| //   struct formatter<variant>: dynamic_formatter<> { | |
| //     auto format(const variant& v, format_context& ctx) { | |
| //       return visit([&](const auto& val) { | |
| //           return dynamic_formatter<>::format(val, ctx); | |
| //       }, v); | |
| //     } | |
| //   }; | |
| template <typename Char = char> class dynamic_formatter { | |
|  private: | |
|   detail::dynamic_format_specs<Char> specs_; | |
|   const Char* format_str_; | |
| 
 | |
|   struct null_handler : detail::error_handler { | |
|     void on_align(align_t) {} | |
|     void on_sign(sign_t) {} | |
|     void on_hash() {} | |
|   }; | |
| 
 | |
|   template <typename Context> void handle_specs(Context& ctx) { | |
|     detail::handle_dynamic_spec<detail::width_checker>(specs_.width, | |
|                                                        specs_.width_ref, ctx); | |
|     detail::handle_dynamic_spec<detail::precision_checker>( | |
|         specs_.precision, specs_.precision_ref, ctx); | |
|   } | |
| 
 | |
|  public: | |
|   template <typename ParseContext> | |
|   FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { | |
|     format_str_ = ctx.begin(); | |
|     // Checks are deferred to formatting time when the argument type is known. | |
|     detail::dynamic_specs_handler<ParseContext> handler(specs_, ctx); | |
|     return detail::parse_format_specs(ctx.begin(), ctx.end(), handler); | |
|   } | |
| 
 | |
|   template <typename T, typename FormatContext> | |
|   auto format(const T& val, FormatContext& ctx) -> decltype(ctx.out()) { | |
|     handle_specs(ctx); | |
|     detail::specs_checker<null_handler> checker( | |
|         null_handler(), detail::mapped_type_constant<T, FormatContext>::value); | |
|     checker.on_align(specs_.align); | |
|     if (specs_.sign != sign::none) checker.on_sign(specs_.sign); | |
|     if (specs_.alt) checker.on_hash(); | |
|     if (specs_.precision >= 0) checker.end_precision(); | |
|     return detail::write<Char>(ctx.out(), val, specs_, ctx.locale()); | |
|   } | |
| }; | |
| 
 | |
| /** | |
|   \rst | |
|   Converts ``p`` to ``const void*`` for pointer formatting. | |
|  | |
|   **Example**:: | |
|  | |
|     auto s = fmt::format("{}", fmt::ptr(p)); | |
|   \endrst | |
|  */ | |
| template <typename T> auto ptr(T p) -> const void* { | |
|   static_assert(std::is_pointer<T>::value, ""); | |
|   return detail::bit_cast<const void*>(p); | |
| } | |
| template <typename T> auto ptr(const std::unique_ptr<T>& p) -> const void* { | |
|   return p.get(); | |
| } | |
| template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* { | |
|   return p.get(); | |
| } | |
| 
 | |
| /** | |
|   \rst | |
|   Converts ``e`` to the underlying type. | |
|  | |
|   **Example**:: | |
|  | |
|     enum class color { red, green, blue }; | |
|     auto s = fmt::format("{}", fmt::underlying(color::red)); | |
|   \endrst | |
|  */ | |
| template <typename Enum> | |
| constexpr auto underlying(Enum e) noexcept -> underlying_t<Enum> { | |
|   return static_cast<underlying_t<Enum>>(e); | |
| } | |
| 
 | |
| namespace enums { | |
| template <typename Enum, FMT_ENABLE_IF(std::is_enum<Enum>::value)> | |
| constexpr auto format_as(Enum e) noexcept -> underlying_t<Enum> { | |
|   return static_cast<underlying_t<Enum>>(e); | |
| } | |
| }  // namespace enums | |
|  | |
| class bytes { | |
|  private: | |
|   string_view data_; | |
|   friend struct formatter<bytes>; | |
| 
 | |
|  public: | |
|   explicit bytes(string_view data) : data_(data) {} | |
| }; | |
| 
 | |
| template <> struct formatter<bytes> { | |
|  private: | |
|   detail::dynamic_format_specs<char> specs_; | |
| 
 | |
|  public: | |
|   template <typename ParseContext> | |
|   FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { | |
|     using handler_type = detail::dynamic_specs_handler<ParseContext>; | |
|     detail::specs_checker<handler_type> handler(handler_type(specs_, ctx), | |
|                                                 detail::type::string_type); | |
|     auto it = parse_format_specs(ctx.begin(), ctx.end(), handler); | |
|     detail::check_string_type_spec(specs_.type, ctx.error_handler()); | |
|     return it; | |
|   } | |
| 
 | |
|   template <typename FormatContext> | |
|   auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) { | |
|     detail::handle_dynamic_spec<detail::width_checker>(specs_.width, | |
|                                                        specs_.width_ref, ctx); | |
|     detail::handle_dynamic_spec<detail::precision_checker>( | |
|         specs_.precision, specs_.precision_ref, ctx); | |
|     return detail::write_bytes(ctx.out(), b.data_, specs_); | |
|   } | |
| }; | |
| 
 | |
| // group_digits_view is not derived from view because it copies the argument. | |
| template <typename T> struct group_digits_view { T value; }; | |
| 
 | |
| /** | |
|   \rst | |
|   Returns a view that formats an integer value using ',' as a locale-independent | |
|   thousands separator. | |
|  | |
|   **Example**:: | |
|  | |
|     fmt::print("{}", fmt::group_digits(12345)); | |
|     // Output: "12,345" | |
|   \endrst | |
|  */ | |
| template <typename T> auto group_digits(T value) -> group_digits_view<T> { | |
|   return {value}; | |
| } | |
| 
 | |
| template <typename T> struct formatter<group_digits_view<T>> : formatter<T> { | |
|  private: | |
|   detail::dynamic_format_specs<char> specs_; | |
| 
 | |
|  public: | |
|   template <typename ParseContext> | |
|   FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { | |
|     using handler_type = detail::dynamic_specs_handler<ParseContext>; | |
|     detail::specs_checker<handler_type> handler(handler_type(specs_, ctx), | |
|                                                 detail::type::int_type); | |
|     auto it = parse_format_specs(ctx.begin(), ctx.end(), handler); | |
|     detail::check_string_type_spec(specs_.type, ctx.error_handler()); | |
|     return it; | |
|   } | |
| 
 | |
|   template <typename FormatContext> | |
|   auto format(group_digits_view<T> t, FormatContext& ctx) | |
|       -> decltype(ctx.out()) { | |
|     detail::handle_dynamic_spec<detail::width_checker>(specs_.width, | |
|                                                        specs_.width_ref, ctx); | |
|     detail::handle_dynamic_spec<detail::precision_checker>( | |
|         specs_.precision, specs_.precision_ref, ctx); | |
|     return detail::write_int_localized( | |
|         ctx.out(), static_cast<detail::uint64_or_128_t<T>>(t.value), 0, specs_, | |
|         detail::digit_grouping<char>({"\3", ','})); | |
|   } | |
| }; | |
| 
 | |
| template <typename It, typename Sentinel, typename Char = char> | |
| struct join_view : detail::view { | |
|   It begin; | |
|   Sentinel end; | |
|   basic_string_view<Char> sep; | |
| 
 | |
|   join_view(It b, Sentinel e, basic_string_view<Char> s) | |
|       : begin(b), end(e), sep(s) {} | |
| }; | |
| 
 | |
| template <typename It, typename Sentinel, typename Char> | |
| struct formatter<join_view<It, Sentinel, Char>, Char> { | |
|  private: | |
|   using value_type = | |
| #ifdef __cpp_lib_ranges | |
|       std::iter_value_t<It>; | |
| #else | |
|       typename std::iterator_traits<It>::value_type; | |
| #endif | |
|   using context = buffer_context<Char>; | |
|   using mapper = detail::arg_mapper<context>; | |
| 
 | |
|   template <typename T, FMT_ENABLE_IF(has_formatter<T, context>::value)> | |
|   static auto map(const T& value) -> const T& { | |
|     return value; | |
|   } | |
|   template <typename T, FMT_ENABLE_IF(!has_formatter<T, context>::value)> | |
|   static auto map(const T& value) -> decltype(mapper().map(value)) { | |
|     return mapper().map(value); | |
|   } | |
| 
 | |
|   using formatter_type = | |
|       conditional_t<is_formattable<value_type, Char>::value, | |
|                     formatter<remove_cvref_t<decltype(map( | |
|                                   std::declval<const value_type&>()))>, | |
|                               Char>, | |
|                     detail::fallback_formatter<value_type, Char>>; | |
| 
 | |
|   formatter_type value_formatter_; | |
| 
 | |
|  public: | |
|   template <typename ParseContext> | |
|   FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { | |
|     return value_formatter_.parse(ctx); | |
|   } | |
| 
 | |
|   template <typename FormatContext> | |
|   auto format(const join_view<It, Sentinel, Char>& value, | |
|               FormatContext& ctx) const -> decltype(ctx.out()) { | |
|     auto it = value.begin; | |
|     auto out = ctx.out(); | |
|     if (it != value.end) { | |
|       out = value_formatter_.format(map(*it), ctx); | |
|       ++it; | |
|       while (it != value.end) { | |
|         out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out); | |
|         ctx.advance_to(out); | |
|         out = value_formatter_.format(map(*it), ctx); | |
|         ++it; | |
|       } | |
|     } | |
|     return out; | |
|   } | |
| }; | |
| 
 | |
| /** | |
|   Returns a view that formats the iterator range `[begin, end)` with elements | |
|   separated by `sep`. | |
|  */ | |
| template <typename It, typename Sentinel> | |
| auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> { | |
|   return {begin, end, sep}; | |
| } | |
| 
 | |
| /** | |
|   \rst | |
|   Returns a view that formats `range` with elements separated by `sep`. | |
|  | |
|   **Example**:: | |
|  | |
|     std::vector<int> v = {1, 2, 3}; | |
|     fmt::print("{}", fmt::join(v, ", ")); | |
|     // Output: "1, 2, 3" | |
|  | |
|   ``fmt::join`` applies passed format specifiers to the range elements:: | |
|  | |
|     fmt::print("{:02}", fmt::join(v, ", ")); | |
|     // Output: "01, 02, 03" | |
|   \endrst | |
|  */ | |
| template <typename Range> | |
| auto join(Range&& range, string_view sep) | |
|     -> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> { | |
|   return join(std::begin(range), std::end(range), sep); | |
| } | |
| 
 | |
| /** | |
|   \rst | |
|   Converts *value* to ``std::string`` using the default format for type *T*. | |
|  | |
|   **Example**:: | |
|  | |
|     #include <fmt/format.h> | |
|  | |
|     std::string answer = fmt::to_string(42); | |
|   \endrst | |
|  */ | |
| template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> | |
| inline auto to_string(const T& value) -> std::string { | |
|   auto result = std::string(); | |
|   detail::write<char>(std::back_inserter(result), value); | |
|   return result; | |
| } | |
| 
 | |
| template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> | |
| FMT_NODISCARD inline auto to_string(T value) -> std::string { | |
|   // The buffer should be large enough to store the number including the sign | |
|   // or "false" for bool. | |
|   constexpr int max_size = detail::digits10<T>() + 2; | |
|   char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5]; | |
|   char* begin = buffer; | |
|   return std::string(begin, detail::write<char>(begin, value)); | |
| } | |
| 
 | |
| template <typename Char, size_t SIZE> | |
| FMT_NODISCARD auto to_string(const basic_memory_buffer<Char, SIZE>& buf) | |
|     -> std::basic_string<Char> { | |
|   auto size = buf.size(); | |
|   detail::assume(size < std::basic_string<Char>().max_size()); | |
|   return std::basic_string<Char>(buf.data(), size); | |
| } | |
| 
 | |
| FMT_BEGIN_DETAIL_NAMESPACE | |
| 
 | |
| template <typename Char> | |
| void vformat_to( | |
|     buffer<Char>& buf, basic_string_view<Char> fmt, | |
|     basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args, | |
|     locale_ref loc) { | |
|   // workaround for msvc bug regarding name-lookup in module | |
|   // link names into function scope | |
|   using detail::arg_formatter; | |
|   using detail::buffer_appender; | |
|   using detail::custom_formatter; | |
|   using detail::default_arg_formatter; | |
|   using detail::get_arg; | |
|   using detail::locale_ref; | |
|   using detail::parse_format_specs; | |
|   using detail::specs_checker; | |
|   using detail::specs_handler; | |
|   using detail::to_unsigned; | |
|   using detail::type; | |
|   using detail::write; | |
|   auto out = buffer_appender<Char>(buf); | |
|   if (fmt.size() == 2 && equal2(fmt.data(), "{}")) { | |
|     auto arg = args.get(0); | |
|     if (!arg) error_handler().on_error("argument not found"); | |
|     visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg); | |
|     return; | |
|   } | |
| 
 | |
|   struct format_handler : error_handler { | |
|     basic_format_parse_context<Char> parse_context; | |
|     buffer_context<Char> context; | |
| 
 | |
|     format_handler(buffer_appender<Char> p_out, basic_string_view<Char> str, | |
|                    basic_format_args<buffer_context<Char>> p_args, | |
|                    locale_ref p_loc) | |
|         : parse_context(str), context(p_out, p_args, p_loc) {} | |
| 
 | |
|     void on_text(const Char* begin, const Char* end) { | |
|       auto text = basic_string_view<Char>(begin, to_unsigned(end - begin)); | |
|       context.advance_to(write<Char>(context.out(), text)); | |
|     } | |
| 
 | |
|     FMT_CONSTEXPR auto on_arg_id() -> int { | |
|       return parse_context.next_arg_id(); | |
|     } | |
|     FMT_CONSTEXPR auto on_arg_id(int id) -> int { | |
|       return parse_context.check_arg_id(id), id; | |
|     } | |
|     FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int { | |
|       int arg_id = context.arg_id(id); | |
|       if (arg_id < 0) on_error("argument not found"); | |
|       return arg_id; | |
|     } | |
| 
 | |
|     FMT_INLINE void on_replacement_field(int id, const Char*) { | |
|       auto arg = get_arg(context, id); | |
|       context.advance_to(visit_format_arg( | |
|           default_arg_formatter<Char>{context.out(), context.args(), | |
|                                       context.locale()}, | |
|           arg)); | |
|     } | |
| 
 | |
|     auto on_format_specs(int id, const Char* begin, const Char* end) | |
|         -> const Char* { | |
|       auto arg = get_arg(context, id); | |
|       if (arg.type() == type::custom_type) { | |
|         parse_context.advance_to(parse_context.begin() + | |
|                                  (begin - &*parse_context.begin())); | |
|         visit_format_arg(custom_formatter<Char>{parse_context, context}, arg); | |
|         return parse_context.begin(); | |
|       } | |
|       auto specs = basic_format_specs<Char>(); | |
|       specs_checker<specs_handler<Char>> handler( | |
|           specs_handler<Char>(specs, parse_context, context), arg.type()); | |
|       begin = parse_format_specs(begin, end, handler); | |
|       if (begin == end || *begin != '}') | |
|         on_error("missing '}' in format string"); | |
|       auto f = arg_formatter<Char>{context.out(), specs, context.locale()}; | |
|       context.advance_to(visit_format_arg(f, arg)); | |
|       return begin; | |
|     } | |
|   }; | |
|   detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc)); | |
| } | |
| 
 | |
| #ifndef FMT_HEADER_ONLY | |
| extern template FMT_API auto thousands_sep_impl<char>(locale_ref) | |
|     -> thousands_sep_result<char>; | |
| extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref) | |
|     -> thousands_sep_result<wchar_t>; | |
| extern template FMT_API auto decimal_point_impl(locale_ref) -> char; | |
| extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t; | |
| #endif  // FMT_HEADER_ONLY | |
|  | |
| FMT_END_DETAIL_NAMESPACE | |
| 
 | |
| #if FMT_USE_USER_DEFINED_LITERALS | |
| inline namespace literals { | |
| /** | |
|   \rst | |
|   User-defined literal equivalent of :func:`fmt::arg`. | |
|  | |
|   **Example**:: | |
|  | |
|     using namespace fmt::literals; | |
|     fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23); | |
|   \endrst | |
|  */ | |
| #  if FMT_USE_NONTYPE_TEMPLATE_ARGS | |
| template <detail_exported::fixed_string Str> constexpr auto operator""_a() { | |
|   using char_t = remove_cvref_t<decltype(Str.data[0])>; | |
|   return detail::udl_arg<char_t, sizeof(Str.data) / sizeof(char_t), Str>(); | |
| } | |
| #  else | |
| constexpr auto operator"" _a(const char* s, size_t) -> detail::udl_arg<char> { | |
|   return {s}; | |
| } | |
| #  endif | |
| }  // namespace literals | |
| #endif  // FMT_USE_USER_DEFINED_LITERALS | |
|  | |
| template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)> | |
| inline auto vformat(const Locale& loc, string_view fmt, format_args args) | |
|     -> std::string { | |
|   return detail::vformat(loc, fmt, args); | |
| } | |
| 
 | |
| template <typename Locale, typename... T, | |
|           FMT_ENABLE_IF(detail::is_locale<Locale>::value)> | |
| inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args) | |
|     -> std::string { | |
|   return vformat(loc, string_view(fmt), fmt::make_format_args(args...)); | |
| } | |
| 
 | |
| template <typename OutputIt, typename Locale, | |
|           FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&& | |
|                             detail::is_locale<Locale>::value)> | |
| auto vformat_to(OutputIt out, const Locale& loc, string_view fmt, | |
|                 format_args args) -> OutputIt { | |
|   using detail::get_buffer; | |
|   auto&& buf = get_buffer<char>(out); | |
|   detail::vformat_to(buf, fmt, args, detail::locale_ref(loc)); | |
|   return detail::get_iterator(buf); | |
| } | |
| 
 | |
| template <typename OutputIt, typename Locale, typename... T, | |
|           FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&& | |
|                             detail::is_locale<Locale>::value)> | |
| FMT_INLINE auto format_to(OutputIt out, const Locale& loc, | |
|                           format_string<T...> fmt, T&&... args) -> OutputIt { | |
|   return vformat_to(out, loc, fmt, fmt::make_format_args(args...)); | |
| } | |
| 
 | |
| FMT_MODULE_EXPORT_END | |
| FMT_END_NAMESPACE | |
| 
 | |
| #ifdef FMT_HEADER_ONLY | |
| #  define FMT_FUNC inline | |
| #  include "format-inl.h" | |
| #else | |
| #  define FMT_FUNC | |
| #endif | |
|  | |
| #endif  // FMT_FORMAT_H_
 |