You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

427 lines
12 KiB

// Provides an efficient implementation of a semaphore (LightweightSemaphore).
// This is an extension of Jeff Preshing's sempahore implementation (licensed
// under the terms of its separate zlib license) that has been adapted and
// extended by Cameron Desrochers.
#pragma once
#include <cstddef> // For std::size_t
#include <atomic>
#include <type_traits> // For std::make_signed<T>
#if defined(_WIN32)
// Avoid including windows.h in a header; we only need a handful of
// items, so we'll redeclare them here (this is relatively safe since
// the API generally has to remain stable between Windows versions).
// I know this is an ugly hack but it still beats polluting the global
// namespace with thousands of generic names or adding a .cpp for nothing.
extern "C" {
struct _SECURITY_ATTRIBUTES;
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName);
__declspec(dllimport) int __stdcall CloseHandle(void* hObject);
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds);
__declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount);
}
#elif defined(__MACH__)
#include <mach/mach.h>
#elif defined(__MVS__)
#include <zos-semaphore.h>
#elif defined(__unix__)
#include <semaphore.h>
#if defined(__GLIBC_PREREQ) && defined(_GNU_SOURCE)
#if __GLIBC_PREREQ(2,30)
#define MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
#endif
#endif
#endif
namespace moodycamel
{
namespace details
{
// Code in the mpmc_sema namespace below is an adaptation of Jeff Preshing's
// portable + lightweight semaphore implementations, originally from
// https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h
// LICENSE:
// Copyright (c) 2015 Jeff Preshing
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgement in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
#if defined(_WIN32)
class Semaphore
{
private:
void* m_hSema;
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
public:
Semaphore(int initialCount = 0)
{
assert(initialCount >= 0);
const long maxLong = 0x7fffffff;
m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr);
assert(m_hSema);
}
~Semaphore()
{
CloseHandle(m_hSema);
}
bool wait()
{
const unsigned long infinite = 0xffffffff;
return WaitForSingleObject(m_hSema, infinite) == 0;
}
bool try_wait()
{
return WaitForSingleObject(m_hSema, 0) == 0;
}
bool timed_wait(std::uint64_t usecs)
{
return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) == 0;
}
void signal(int count = 1)
{
while (!ReleaseSemaphore(m_hSema, count, nullptr));
}
};
#elif defined(__MACH__)
//---------------------------------------------------------
// Semaphore (Apple iOS and OSX)
// Can't use POSIX semaphores due to http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html
//---------------------------------------------------------
class Semaphore
{
private:
semaphore_t m_sema;
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
public:
Semaphore(int initialCount = 0)
{
assert(initialCount >= 0);
kern_return_t rc = semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount);
assert(rc == KERN_SUCCESS);
(void)rc;
}
~Semaphore()
{
semaphore_destroy(mach_task_self(), m_sema);
}
bool wait()
{
return semaphore_wait(m_sema) == KERN_SUCCESS;
}
bool try_wait()
{
return timed_wait(0);
}
bool timed_wait(std::uint64_t timeout_usecs)
{
mach_timespec_t ts;
ts.tv_sec = static_cast<unsigned int>(timeout_usecs / 1000000);
ts.tv_nsec = static_cast<int>((timeout_usecs % 1000000) * 1000);
// added in OSX 10.10: https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html
kern_return_t rc = semaphore_timedwait(m_sema, ts);
return rc == KERN_SUCCESS;
}
void signal()
{
while (semaphore_signal(m_sema) != KERN_SUCCESS);
}
void signal(int count)
{
while (count-- > 0)
{
while (semaphore_signal(m_sema) != KERN_SUCCESS);
}
}
};
#elif defined(__unix__) || defined(__MVS__)
//---------------------------------------------------------
// Semaphore (POSIX, Linux, zOS)
//---------------------------------------------------------
class Semaphore
{
private:
sem_t m_sema;
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
public:
Semaphore(int initialCount = 0)
{
assert(initialCount >= 0);
int rc = sem_init(&m_sema, 0, static_cast<unsigned int>(initialCount));
assert(rc == 0);
(void)rc;
}
~Semaphore()
{
sem_destroy(&m_sema);
}
bool wait()
{
// http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error
int rc;
do {
rc = sem_wait(&m_sema);
} while (rc == -1 && errno == EINTR);
return rc == 0;
}
bool try_wait()
{
int rc;
do {
rc = sem_trywait(&m_sema);
} while (rc == -1 && errno == EINTR);
return rc == 0;
}
bool timed_wait(std::uint64_t usecs)
{
struct timespec ts;
const int usecs_in_1_sec = 1000000;
const int nsecs_in_1_sec = 1000000000;
#ifdef MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
clock_gettime(CLOCK_MONOTONIC, &ts);
#else
clock_gettime(CLOCK_REALTIME, &ts);
#endif
ts.tv_sec += (time_t)(usecs / usecs_in_1_sec);
ts.tv_nsec += (long)(usecs % usecs_in_1_sec) * 1000;
// sem_timedwait bombs if you have more than 1e9 in tv_nsec
// so we have to clean things up before passing it in
if (ts.tv_nsec >= nsecs_in_1_sec) {
ts.tv_nsec -= nsecs_in_1_sec;
++ts.tv_sec;
}
int rc;
do {
#ifdef MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
rc = sem_clockwait(&m_sema, CLOCK_MONOTONIC, &ts);
#else
rc = sem_timedwait(&m_sema, &ts);
#endif
} while (rc == -1 && errno == EINTR);
return rc == 0;
}
void signal()
{
while (sem_post(&m_sema) == -1);
}
void signal(int count)
{
while (count-- > 0)
{
while (sem_post(&m_sema) == -1);
}
}
};
#else
#error Unsupported platform! (No semaphore wrapper available)
#endif
} // end namespace details
//---------------------------------------------------------
// LightweightSemaphore
//---------------------------------------------------------
class LightweightSemaphore
{
public:
typedef std::make_signed<std::size_t>::type ssize_t;
private:
std::atomic<ssize_t> m_count;
details::Semaphore m_sema;
int m_maxSpins;
bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1)
{
ssize_t oldCount;
int spin = m_maxSpins;
while (--spin >= 0)
{
oldCount = m_count.load(std::memory_order_relaxed);
if ((oldCount > 0) && m_count.compare_exchange_strong(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
return true;
std::atomic_signal_fence(std::memory_order_acquire); // Prevent the compiler from collapsing the loop.
}
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
if (oldCount > 0)
return true;
if (timeout_usecs < 0)
{
if (m_sema.wait())
return true;
}
if (timeout_usecs > 0 && m_sema.timed_wait((std::uint64_t)timeout_usecs))
return true;
// At this point, we've timed out waiting for the semaphore, but the
// count is still decremented indicating we may still be waiting on
// it. So we have to re-adjust the count, but only if the semaphore
// wasn't signaled enough times for us too since then. If it was, we
// need to release the semaphore too.
while (true)
{
oldCount = m_count.load(std::memory_order_acquire);
if (oldCount >= 0 && m_sema.try_wait())
return true;
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
return false;
}
}
ssize_t waitManyWithPartialSpinning(ssize_t max, std::int64_t timeout_usecs = -1)
{
assert(max > 0);
ssize_t oldCount;
int spin = m_maxSpins;
while (--spin >= 0)
{
oldCount = m_count.load(std::memory_order_relaxed);
if (oldCount > 0)
{
ssize_t newCount = oldCount > max ? oldCount - max : 0;
if (m_count.compare_exchange_strong(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
return oldCount - newCount;
}
std::atomic_signal_fence(std::memory_order_acquire);
}
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
if (oldCount <= 0)
{
if ((timeout_usecs == 0) || (timeout_usecs < 0 && !m_sema.wait()) || (timeout_usecs > 0 && !m_sema.timed_wait((std::uint64_t)timeout_usecs)))
{
while (true)
{
oldCount = m_count.load(std::memory_order_acquire);
if (oldCount >= 0 && m_sema.try_wait())
break;
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
return 0;
}
}
}
if (max > 1)
return 1 + tryWaitMany(max - 1);
return 1;
}
public:
LightweightSemaphore(ssize_t initialCount = 0, int maxSpins = 10000) : m_count(initialCount), m_maxSpins(maxSpins)
{
assert(initialCount >= 0);
assert(maxSpins >= 0);
}
bool tryWait()
{
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
while (oldCount > 0)
{
if (m_count.compare_exchange_weak(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
return true;
}
return false;
}
bool wait()
{
return tryWait() || waitWithPartialSpinning();
}
bool wait(std::int64_t timeout_usecs)
{
return tryWait() || waitWithPartialSpinning(timeout_usecs);
}
// Acquires between 0 and (greedily) max, inclusive
ssize_t tryWaitMany(ssize_t max)
{
assert(max >= 0);
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
while (oldCount > 0)
{
ssize_t newCount = oldCount > max ? oldCount - max : 0;
if (m_count.compare_exchange_weak(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
return oldCount - newCount;
}
return 0;
}
// Acquires at least one, and (greedily) at most max
ssize_t waitMany(ssize_t max, std::int64_t timeout_usecs)
{
assert(max >= 0);
ssize_t result = tryWaitMany(max);
if (result == 0 && max > 0)
result = waitManyWithPartialSpinning(max, timeout_usecs);
return result;
}
ssize_t waitMany(ssize_t max)
{
ssize_t result = waitMany(max, -1);
assert(result > 0);
return result;
}
void signal(ssize_t count = 1)
{
assert(count >= 0);
ssize_t oldCount = m_count.fetch_add(count, std::memory_order_release);
ssize_t toRelease = -oldCount < count ? -oldCount : count;
if (toRelease > 0)
{
m_sema.signal((int)toRelease);
}
}
std::size_t availableApprox() const
{
ssize_t count = m_count.load(std::memory_order_relaxed);
return count > 0 ? static_cast<std::size_t>(count) : 0;
}
};
} // end namespace moodycamel