mirror of https://github.com/trapexit/mergerfs.git
				
				
			
			You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							582 lines
						
					
					
						
							21 KiB
						
					
					
				
			
		
		
		
			
			
			
		
		
	
	
							582 lines
						
					
					
						
							21 KiB
						
					
					
				| // Provides an efficient blocking version of moodycamel::ConcurrentQueue. | |
| // ©2015-2020 Cameron Desrochers. Distributed under the terms of the simplified | |
| // BSD license, available at the top of concurrentqueue.h. | |
| // Also dual-licensed under the Boost Software License (see LICENSE.md) | |
| // Uses Jeff Preshing's semaphore implementation (under the terms of its | |
| // separate zlib license, see lightweightsemaphore.h). | |
|  | |
| #pragma once | |
|  | |
| #include "concurrentqueue.h" | |
| #include "lightweightsemaphore.h" | |
|  | |
| #include <type_traits> | |
| #include <cerrno> | |
| #include <memory> | |
| #include <chrono> | |
| #include <ctime> | |
|  | |
| namespace moodycamel | |
| { | |
| // This is a blocking version of the queue. It has an almost identical interface to | |
| // the normal non-blocking version, with the addition of various wait_dequeue() methods | |
| // and the removal of producer-specific dequeue methods. | |
| template<typename T, typename Traits = ConcurrentQueueDefaultTraits> | |
| class BlockingConcurrentQueue | |
| { | |
| private: | |
| 	typedef ::moodycamel::ConcurrentQueue<T, Traits> ConcurrentQueue; | |
| 	typedef ::moodycamel::LightweightSemaphore LightweightSemaphore; | |
| 
 | |
| public: | |
| 	typedef typename ConcurrentQueue::producer_token_t producer_token_t; | |
| 	typedef typename ConcurrentQueue::consumer_token_t consumer_token_t; | |
| 	 | |
| 	typedef typename ConcurrentQueue::index_t index_t; | |
| 	typedef typename ConcurrentQueue::size_t size_t; | |
| 	typedef typename std::make_signed<size_t>::type ssize_t; | |
| 	 | |
| 	static const size_t BLOCK_SIZE = ConcurrentQueue::BLOCK_SIZE; | |
| 	static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = ConcurrentQueue::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD; | |
| 	static const size_t EXPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::EXPLICIT_INITIAL_INDEX_SIZE; | |
| 	static const size_t IMPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::IMPLICIT_INITIAL_INDEX_SIZE; | |
| 	static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = ConcurrentQueue::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE; | |
| 	static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = ConcurrentQueue::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE; | |
| 	static const size_t MAX_SUBQUEUE_SIZE = ConcurrentQueue::MAX_SUBQUEUE_SIZE; | |
| 	 | |
| public: | |
| 	// Creates a queue with at least `capacity` element slots; note that the | |
| 	// actual number of elements that can be inserted without additional memory | |
| 	// allocation depends on the number of producers and the block size (e.g. if | |
| 	// the block size is equal to `capacity`, only a single block will be allocated | |
| 	// up-front, which means only a single producer will be able to enqueue elements | |
| 	// without an extra allocation -- blocks aren't shared between producers). | |
| 	// This method is not thread safe -- it is up to the user to ensure that the | |
| 	// queue is fully constructed before it starts being used by other threads (this | |
| 	// includes making the memory effects of construction visible, possibly with a | |
| 	// memory barrier). | |
| 	explicit BlockingConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE) | |
| 		: inner(capacity), sema(create<LightweightSemaphore, ssize_t, int>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>) | |
| 	{ | |
| 		assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member"); | |
| 		if (!sema) { | |
| 			MOODYCAMEL_THROW(std::bad_alloc()); | |
| 		} | |
| 	} | |
| 	 | |
| 	BlockingConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers, size_t maxImplicitProducers) | |
| 		: inner(minCapacity, maxExplicitProducers, maxImplicitProducers), sema(create<LightweightSemaphore, ssize_t, int>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>) | |
| 	{ | |
| 		assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member"); | |
| 		if (!sema) { | |
| 			MOODYCAMEL_THROW(std::bad_alloc()); | |
| 		} | |
| 	} | |
| 	 | |
| 	// Disable copying and copy assignment | |
| 	BlockingConcurrentQueue(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION; | |
| 	BlockingConcurrentQueue& operator=(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION; | |
| 	 | |
| 	// Moving is supported, but note that it is *not* a thread-safe operation. | |
| 	// Nobody can use the queue while it's being moved, and the memory effects | |
| 	// of that move must be propagated to other threads before they can use it. | |
| 	// Note: When a queue is moved, its tokens are still valid but can only be | |
| 	// used with the destination queue (i.e. semantically they are moved along | |
| 	// with the queue itself). | |
| 	BlockingConcurrentQueue(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT | |
| 		: inner(std::move(other.inner)), sema(std::move(other.sema)) | |
| 	{ } | |
| 	 | |
| 	inline BlockingConcurrentQueue& operator=(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT | |
| 	{ | |
| 		return swap_internal(other); | |
| 	} | |
| 	 | |
| 	// Swaps this queue's state with the other's. Not thread-safe. | |
| 	// Swapping two queues does not invalidate their tokens, however | |
| 	// the tokens that were created for one queue must be used with | |
| 	// only the swapped queue (i.e. the tokens are tied to the | |
| 	// queue's movable state, not the object itself). | |
| 	inline void swap(BlockingConcurrentQueue& other) MOODYCAMEL_NOEXCEPT | |
| 	{ | |
| 		swap_internal(other); | |
| 	} | |
| 	 | |
| private: | |
| 	BlockingConcurrentQueue& swap_internal(BlockingConcurrentQueue& other) | |
| 	{ | |
| 		if (this == &other) { | |
| 			return *this; | |
| 		} | |
| 		 | |
| 		inner.swap(other.inner); | |
| 		sema.swap(other.sema); | |
| 		return *this; | |
| 	} | |
| 	 | |
| public: | |
| 	// Enqueues a single item (by copying it). | |
| 	// Allocates memory if required. Only fails if memory allocation fails (or implicit | |
| 	// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0, | |
| 	// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). | |
| 	// Thread-safe. | |
| 	inline bool enqueue(T const& item) | |
| 	{ | |
| 		if ((details::likely)(inner.enqueue(item))) { | |
| 			sema->signal(); | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Enqueues a single item (by moving it, if possible). | |
| 	// Allocates memory if required. Only fails if memory allocation fails (or implicit | |
| 	// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0, | |
| 	// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). | |
| 	// Thread-safe. | |
| 	inline bool enqueue(T&& item) | |
| 	{ | |
| 		if ((details::likely)(inner.enqueue(std::move(item)))) { | |
| 			sema->signal(); | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Enqueues a single item (by copying it) using an explicit producer token. | |
| 	// Allocates memory if required. Only fails if memory allocation fails (or | |
| 	// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). | |
| 	// Thread-safe. | |
| 	inline bool enqueue(producer_token_t const& token, T const& item) | |
| 	{ | |
| 		if ((details::likely)(inner.enqueue(token, item))) { | |
| 			sema->signal(); | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Enqueues a single item (by moving it, if possible) using an explicit producer token. | |
| 	// Allocates memory if required. Only fails if memory allocation fails (or | |
| 	// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). | |
| 	// Thread-safe. | |
| 	inline bool enqueue(producer_token_t const& token, T&& item) | |
| 	{ | |
| 		if ((details::likely)(inner.enqueue(token, std::move(item)))) { | |
| 			sema->signal(); | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Enqueues several items. | |
| 	// Allocates memory if required. Only fails if memory allocation fails (or | |
| 	// implicit production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE | |
| 	// is 0, or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). | |
| 	// Note: Use std::make_move_iterator if the elements should be moved instead of copied. | |
| 	// Thread-safe. | |
| 	template<typename It> | |
| 	inline bool enqueue_bulk(It itemFirst, size_t count) | |
| 	{ | |
| 		if ((details::likely)(inner.enqueue_bulk(std::forward<It>(itemFirst), count))) { | |
| 			sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count); | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Enqueues several items using an explicit producer token. | |
| 	// Allocates memory if required. Only fails if memory allocation fails | |
| 	// (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). | |
| 	// Note: Use std::make_move_iterator if the elements should be moved | |
| 	// instead of copied. | |
| 	// Thread-safe. | |
| 	template<typename It> | |
| 	inline bool enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count) | |
| 	{ | |
| 		if ((details::likely)(inner.enqueue_bulk(token, std::forward<It>(itemFirst), count))) { | |
| 			sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count); | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Enqueues a single item (by copying it). | |
| 	// Does not allocate memory. Fails if not enough room to enqueue (or implicit | |
| 	// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE | |
| 	// is 0). | |
| 	// Thread-safe. | |
| 	inline bool try_enqueue(T const& item) | |
| 	{ | |
| 		if (inner.try_enqueue(item)) { | |
| 			sema->signal(); | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Enqueues a single item (by moving it, if possible). | |
| 	// Does not allocate memory (except for one-time implicit producer). | |
| 	// Fails if not enough room to enqueue (or implicit production is | |
| 	// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0). | |
| 	// Thread-safe. | |
| 	inline bool try_enqueue(T&& item) | |
| 	{ | |
| 		if (inner.try_enqueue(std::move(item))) { | |
| 			sema->signal(); | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Enqueues a single item (by copying it) using an explicit producer token. | |
| 	// Does not allocate memory. Fails if not enough room to enqueue. | |
| 	// Thread-safe. | |
| 	inline bool try_enqueue(producer_token_t const& token, T const& item) | |
| 	{ | |
| 		if (inner.try_enqueue(token, item)) { | |
| 			sema->signal(); | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Enqueues a single item (by moving it, if possible) using an explicit producer token. | |
| 	// Does not allocate memory. Fails if not enough room to enqueue. | |
| 	// Thread-safe. | |
| 	inline bool try_enqueue(producer_token_t const& token, T&& item) | |
| 	{ | |
| 		if (inner.try_enqueue(token, std::move(item))) { | |
| 			sema->signal(); | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Enqueues several items. | |
| 	// Does not allocate memory (except for one-time implicit producer). | |
| 	// Fails if not enough room to enqueue (or implicit production is | |
| 	// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0). | |
| 	// Note: Use std::make_move_iterator if the elements should be moved | |
| 	// instead of copied. | |
| 	// Thread-safe. | |
| 	template<typename It> | |
| 	inline bool try_enqueue_bulk(It itemFirst, size_t count) | |
| 	{ | |
| 		if (inner.try_enqueue_bulk(std::forward<It>(itemFirst), count)) { | |
| 			sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count); | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Enqueues several items using an explicit producer token. | |
| 	// Does not allocate memory. Fails if not enough room to enqueue. | |
| 	// Note: Use std::make_move_iterator if the elements should be moved | |
| 	// instead of copied. | |
| 	// Thread-safe. | |
| 	template<typename It> | |
| 	inline bool try_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count) | |
| 	{ | |
| 		if (inner.try_enqueue_bulk(token, std::forward<It>(itemFirst), count)) { | |
| 			sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count); | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	 | |
| 	// Attempts to dequeue from the queue. | |
| 	// Returns false if all producer streams appeared empty at the time they | |
| 	// were checked (so, the queue is likely but not guaranteed to be empty). | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename U> | |
| 	inline bool try_dequeue(U& item) | |
| 	{ | |
| 		if (sema->tryWait()) { | |
| 			while (!inner.try_dequeue(item)) { | |
| 				continue; | |
| 			} | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Attempts to dequeue from the queue using an explicit consumer token. | |
| 	// Returns false if all producer streams appeared empty at the time they | |
| 	// were checked (so, the queue is likely but not guaranteed to be empty). | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename U> | |
| 	inline bool try_dequeue(consumer_token_t& token, U& item) | |
| 	{ | |
| 		if (sema->tryWait()) { | |
| 			while (!inner.try_dequeue(token, item)) { | |
| 				continue; | |
| 			} | |
| 			return true; | |
| 		} | |
| 		return false; | |
| 	} | |
| 	 | |
| 	// Attempts to dequeue several elements from the queue. | |
| 	// Returns the number of items actually dequeued. | |
| 	// Returns 0 if all producer streams appeared empty at the time they | |
| 	// were checked (so, the queue is likely but not guaranteed to be empty). | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename It> | |
| 	inline size_t try_dequeue_bulk(It itemFirst, size_t max) | |
| 	{ | |
| 		size_t count = 0; | |
| 		max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max); | |
| 		while (count != max) { | |
| 			count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count); | |
| 		} | |
| 		return count; | |
| 	} | |
| 	 | |
| 	// Attempts to dequeue several elements from the queue using an explicit consumer token. | |
| 	// Returns the number of items actually dequeued. | |
| 	// Returns 0 if all producer streams appeared empty at the time they | |
| 	// were checked (so, the queue is likely but not guaranteed to be empty). | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename It> | |
| 	inline size_t try_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max) | |
| 	{ | |
| 		size_t count = 0; | |
| 		max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max); | |
| 		while (count != max) { | |
| 			count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count); | |
| 		} | |
| 		return count; | |
| 	} | |
| 	 | |
| 	 | |
| 	 | |
| 	// Blocks the current thread until there's something to dequeue, then | |
| 	// dequeues it. | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename U> | |
| 	inline void wait_dequeue(U& item) | |
| 	{ | |
| 		while (!sema->wait()) { | |
| 			continue; | |
| 		} | |
| 		while (!inner.try_dequeue(item)) { | |
| 			continue; | |
| 		} | |
| 	} | |
| 
 | |
| 	// Blocks the current thread until either there's something to dequeue | |
| 	// or the timeout (specified in microseconds) expires. Returns false | |
| 	// without setting `item` if the timeout expires, otherwise assigns | |
| 	// to `item` and returns true. | |
| 	// Using a negative timeout indicates an indefinite timeout, | |
| 	// and is thus functionally equivalent to calling wait_dequeue. | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename U> | |
| 	inline bool wait_dequeue_timed(U& item, std::int64_t timeout_usecs) | |
| 	{ | |
| 		if (!sema->wait(timeout_usecs)) { | |
| 			return false; | |
| 		} | |
| 		while (!inner.try_dequeue(item)) { | |
| 			continue; | |
| 		} | |
| 		return true; | |
| 	} | |
|      | |
|     // Blocks the current thread until either there's something to dequeue | |
| 	// or the timeout expires. Returns false without setting `item` if the | |
|     // timeout expires, otherwise assigns to `item` and returns true. | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename U, typename Rep, typename Period> | |
| 	inline bool wait_dequeue_timed(U& item, std::chrono::duration<Rep, Period> const& timeout) | |
|     { | |
|         return wait_dequeue_timed(item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count()); | |
|     } | |
| 	 | |
| 	// Blocks the current thread until there's something to dequeue, then | |
| 	// dequeues it using an explicit consumer token. | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename U> | |
| 	inline void wait_dequeue(consumer_token_t& token, U& item) | |
| 	{ | |
| 		while (!sema->wait()) { | |
| 			continue; | |
| 		} | |
| 		while (!inner.try_dequeue(token, item)) { | |
| 			continue; | |
| 		} | |
| 	} | |
| 	 | |
| 	// Blocks the current thread until either there's something to dequeue | |
| 	// or the timeout (specified in microseconds) expires. Returns false | |
| 	// without setting `item` if the timeout expires, otherwise assigns | |
| 	// to `item` and returns true. | |
| 	// Using a negative timeout indicates an indefinite timeout, | |
| 	// and is thus functionally equivalent to calling wait_dequeue. | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename U> | |
| 	inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::int64_t timeout_usecs) | |
| 	{ | |
| 		if (!sema->wait(timeout_usecs)) { | |
| 			return false; | |
| 		} | |
| 		while (!inner.try_dequeue(token, item)) { | |
| 			continue; | |
| 		} | |
| 		return true; | |
| 	} | |
|      | |
|     // Blocks the current thread until either there's something to dequeue | |
| 	// or the timeout expires. Returns false without setting `item` if the | |
|     // timeout expires, otherwise assigns to `item` and returns true. | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename U, typename Rep, typename Period> | |
| 	inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::chrono::duration<Rep, Period> const& timeout) | |
|     { | |
|         return wait_dequeue_timed(token, item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count()); | |
|     } | |
| 	 | |
| 	// Attempts to dequeue several elements from the queue. | |
| 	// Returns the number of items actually dequeued, which will | |
| 	// always be at least one (this method blocks until the queue | |
| 	// is non-empty) and at most max. | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename It> | |
| 	inline size_t wait_dequeue_bulk(It itemFirst, size_t max) | |
| 	{ | |
| 		size_t count = 0; | |
| 		max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max); | |
| 		while (count != max) { | |
| 			count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count); | |
| 		} | |
| 		return count; | |
| 	} | |
| 	 | |
| 	// Attempts to dequeue several elements from the queue. | |
| 	// Returns the number of items actually dequeued, which can | |
| 	// be 0 if the timeout expires while waiting for elements, | |
| 	// and at most max. | |
| 	// Using a negative timeout indicates an indefinite timeout, | |
| 	// and is thus functionally equivalent to calling wait_dequeue_bulk. | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename It> | |
| 	inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::int64_t timeout_usecs) | |
| 	{ | |
| 		size_t count = 0; | |
| 		max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs); | |
| 		while (count != max) { | |
| 			count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count); | |
| 		} | |
| 		return count; | |
| 	} | |
|      | |
|     // Attempts to dequeue several elements from the queue. | |
| 	// Returns the number of items actually dequeued, which can | |
| 	// be 0 if the timeout expires while waiting for elements, | |
| 	// and at most max. | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename It, typename Rep, typename Period> | |
| 	inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout) | |
|     { | |
|         return wait_dequeue_bulk_timed<It&>(itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count()); | |
|     } | |
| 	 | |
| 	// Attempts to dequeue several elements from the queue using an explicit consumer token. | |
| 	// Returns the number of items actually dequeued, which will | |
| 	// always be at least one (this method blocks until the queue | |
| 	// is non-empty) and at most max. | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename It> | |
| 	inline size_t wait_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max) | |
| 	{ | |
| 		size_t count = 0; | |
| 		max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max); | |
| 		while (count != max) { | |
| 			count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count); | |
| 		} | |
| 		return count; | |
| 	} | |
| 	 | |
| 	// Attempts to dequeue several elements from the queue using an explicit consumer token. | |
| 	// Returns the number of items actually dequeued, which can | |
| 	// be 0 if the timeout expires while waiting for elements, | |
| 	// and at most max. | |
| 	// Using a negative timeout indicates an indefinite timeout, | |
| 	// and is thus functionally equivalent to calling wait_dequeue_bulk. | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename It> | |
| 	inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::int64_t timeout_usecs) | |
| 	{ | |
| 		size_t count = 0; | |
| 		max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs); | |
| 		while (count != max) { | |
| 			count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count); | |
| 		} | |
| 		return count; | |
| 	} | |
| 	 | |
| 	// Attempts to dequeue several elements from the queue using an explicit consumer token. | |
| 	// Returns the number of items actually dequeued, which can | |
| 	// be 0 if the timeout expires while waiting for elements, | |
| 	// and at most max. | |
| 	// Never allocates. Thread-safe. | |
| 	template<typename It, typename Rep, typename Period> | |
| 	inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout) | |
|     { | |
|         return wait_dequeue_bulk_timed<It&>(token, itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count()); | |
|     } | |
| 	 | |
| 	 | |
| 	// Returns an estimate of the total number of elements currently in the queue. This | |
| 	// estimate is only accurate if the queue has completely stabilized before it is called | |
| 	// (i.e. all enqueue and dequeue operations have completed and their memory effects are | |
| 	// visible on the calling thread, and no further operations start while this method is | |
| 	// being called). | |
| 	// Thread-safe. | |
| 	inline size_t size_approx() const | |
| 	{ | |
| 		return (size_t)sema->availableApprox(); | |
| 	} | |
| 	 | |
| 	 | |
| 	// Returns true if the underlying atomic variables used by | |
| 	// the queue are lock-free (they should be on most platforms). | |
| 	// Thread-safe. | |
| 	static constexpr bool is_lock_free() | |
| 	{ | |
| 		return ConcurrentQueue::is_lock_free(); | |
| 	} | |
| 	 | |
| 
 | |
| private: | |
| 	template<typename U, typename A1, typename A2> | |
| 	static inline U* create(A1&& a1, A2&& a2) | |
| 	{ | |
| 		void* p = (Traits::malloc)(sizeof(U)); | |
| 		return p != nullptr ? new (p) U(std::forward<A1>(a1), std::forward<A2>(a2)) : nullptr; | |
| 	} | |
| 	 | |
| 	template<typename U> | |
| 	static inline void destroy(U* p) | |
| 	{ | |
| 		if (p != nullptr) { | |
| 			p->~U(); | |
| 		} | |
| 		(Traits::free)(p); | |
| 	} | |
| 	 | |
| private: | |
| 	ConcurrentQueue inner; | |
| 	std::unique_ptr<LightweightSemaphore, void (*)(LightweightSemaphore*)> sema; | |
| }; | |
| 
 | |
| 
 | |
| template<typename T, typename Traits> | |
| inline void swap(BlockingConcurrentQueue<T, Traits>& a, BlockingConcurrentQueue<T, Traits>& b) MOODYCAMEL_NOEXCEPT | |
| { | |
| 	a.swap(b); | |
| } | |
| 
 | |
| }	// end namespace moodycamel
 |