// This is free and unencumbered software released into the public domain under The Unlicense (http://unlicense.org/) // main repo: https://github.com/wangyi-fudan/wyhash // author: 王一 Wang Yi // contributors: Reini Urban, Dietrich Epp, Joshua Haberman, Tommy Ettinger, Daniel Lemire, Otmar Ertl, cocowalla, leo-yuriev, Diego Barrios Romero, paulie-g, dumblob, Yann Collet, ivte-ms, hyb, James Z.M. Gao, easyaspi314 (Devin), TheOneric /* quick example: string s="fjsakfdsjkf"; uint64_t hash=wyhash(s.c_str(), s.size(), 0, _wyp); */ #ifndef wyhash_final_version_4_2 #define wyhash_final_version_4_2 #ifndef WYHASH_CONDOM //protections that produce different results: //1: normal valid behavior //2: extra protection against entropy loss (probability=2^-63), aka. "blind multiplication" #define WYHASH_CONDOM 1 #endif #ifndef WYHASH_32BIT_MUM //0: normal version, slow on 32 bit systems //1: faster on 32 bit systems but produces different results, incompatible with wy2u0k function #define WYHASH_32BIT_MUM 0 #endif //includes #include #include #if defined(_MSC_VER) && defined(_M_X64) #include #pragma intrinsic(_umul128) #endif //likely and unlikely macros #if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__) #define _likely_(x) __builtin_expect(x,1) #define _unlikely_(x) __builtin_expect(x,0) #else #define _likely_(x) (x) #define _unlikely_(x) (x) #endif //128bit multiply function static inline uint64_t _wyrot(uint64_t x) { return (x>>32)|(x<<32); } static inline void _wymum(uint64_t *A, uint64_t *B){ #if(WYHASH_32BIT_MUM) uint64_t hh=(*A>>32)*(*B>>32), hl=(*A>>32)*(uint32_t)*B, lh=(uint32_t)*A*(*B>>32), ll=(uint64_t)(uint32_t)*A*(uint32_t)*B; #if(WYHASH_CONDOM>1) *A^=_wyrot(hl)^hh; *B^=_wyrot(lh)^ll; #else *A=_wyrot(hl)^hh; *B=_wyrot(lh)^ll; #endif #elif defined(__SIZEOF_INT128__) __uint128_t r=*A; r*=*B; #if(WYHASH_CONDOM>1) *A^=(uint64_t)r; *B^=(uint64_t)(r>>64); #else *A=(uint64_t)r; *B=(uint64_t)(r>>64); #endif #elif defined(_MSC_VER) && defined(_M_X64) #if(WYHASH_CONDOM>1) uint64_t a, b; a=_umul128(*A,*B,&b); *A^=a; *B^=b; #else *A=_umul128(*A,*B,B); #endif #else uint64_t ha=*A>>32, hb=*B>>32, la=(uint32_t)*A, lb=(uint32_t)*B, hi, lo; uint64_t rh=ha*hb, rm0=ha*lb, rm1=hb*la, rl=la*lb, t=rl+(rm0<<32), c=t>32)+(rm1>>32)+c; #if(WYHASH_CONDOM>1) *A^=lo; *B^=hi; #else *A=lo; *B=hi; #endif #endif } //multiply and xor mix function, aka MUM static inline uint64_t _wymix(uint64_t A, uint64_t B){ _wymum(&A,&B); return A^B; } //endian macros #ifndef WYHASH_LITTLE_ENDIAN #if defined(_WIN32) || defined(__LITTLE_ENDIAN__) || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) #define WYHASH_LITTLE_ENDIAN 1 #elif defined(__BIG_ENDIAN__) || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) #define WYHASH_LITTLE_ENDIAN 0 #else #warning could not determine endianness! Falling back to little endian. #define WYHASH_LITTLE_ENDIAN 1 #endif #endif //read functions #if (WYHASH_LITTLE_ENDIAN) static inline uint64_t _wyr8(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return v;} static inline uint64_t _wyr4(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return v;} #elif defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__) static inline uint64_t _wyr8(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return __builtin_bswap64(v);} static inline uint64_t _wyr4(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return __builtin_bswap32(v);} #elif defined(_MSC_VER) static inline uint64_t _wyr8(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return _byteswap_uint64(v);} static inline uint64_t _wyr4(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return _byteswap_ulong(v);} #else static inline uint64_t _wyr8(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return (((v >> 56) & 0xff)| ((v >> 40) & 0xff00)| ((v >> 24) & 0xff0000)| ((v >> 8) & 0xff000000)| ((v << 8) & 0xff00000000)| ((v << 24) & 0xff0000000000)| ((v << 40) & 0xff000000000000)| ((v << 56) & 0xff00000000000000)); } static inline uint64_t _wyr4(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return (((v >> 24) & 0xff)| ((v >> 8) & 0xff00)| ((v << 8) & 0xff0000)| ((v << 24) & 0xff000000)); } #endif static inline uint64_t _wyr3(const uint8_t *p, size_t k) { return (((uint64_t)p[0])<<16)|(((uint64_t)p[k>>1])<<8)|p[k-1];} //wyhash main function static inline uint64_t wyhash(const void *key, size_t len, uint64_t seed, const uint64_t *secret){ const uint8_t *p=(const uint8_t *)key; seed^=_wymix(seed^secret[0],secret[1]); uint64_t a, b; if(_likely_(len<=16)){ if(_likely_(len>=4)){ a=(_wyr4(p)<<32)|_wyr4(p+((len>>3)<<2)); b=(_wyr4(p+len-4)<<32)|_wyr4(p+len-4-((len>>3)<<2)); } else if(_likely_(len>0)){ a=_wyr3(p,len); b=0;} else a=b=0; } else{ size_t i=len; if(_unlikely_(i>=48)){ uint64_t see1=seed, see2=seed; do{ seed=_wymix(_wyr8(p)^secret[1],_wyr8(p+8)^seed); see1=_wymix(_wyr8(p+16)^secret[2],_wyr8(p+24)^see1); see2=_wymix(_wyr8(p+32)^secret[3],_wyr8(p+40)^see2); p+=48; i-=48; }while(_likely_(i>=48)); seed^=see1^see2; } while(_unlikely_(i>16)){ seed=_wymix(_wyr8(p)^secret[1],_wyr8(p+8)^seed); i-=16; p+=16; } a=_wyr8(p+i-16); b=_wyr8(p+i-8); } a^=secret[1]; b^=seed; _wymum(&a,&b); return _wymix(a^secret[0]^len,b^secret[1]); } //the default secret parameters static const uint64_t _wyp[4] = {0x2d358dccaa6c78a5ull, 0x8bb84b93962eacc9ull, 0x4b33a62ed433d4a3ull, 0x4d5a2da51de1aa47ull}; //a useful 64bit-64bit mix function to produce deterministic pseudo random numbers that can pass BigCrush and PractRand static inline uint64_t wyhash64(uint64_t A, uint64_t B){ A^=0x2d358dccaa6c78a5ull; B^=0x8bb84b93962eacc9ull; _wymum(&A,&B); return _wymix(A^0x2d358dccaa6c78a5ull,B^0x8bb84b93962eacc9ull);} //The wyrand PRNG that pass BigCrush and PractRand static inline uint64_t wyrand(uint64_t *seed){ *seed+=0x2d358dccaa6c78a5ull; return _wymix(*seed,*seed^0x8bb84b93962eacc9ull);} //convert any 64 bit pseudo random numbers to uniform distribution [0,1). It can be combined with wyrand, wyhash64 or wyhash. static inline double wy2u01(uint64_t r){ const double _wynorm=1.0/(1ull<<52); return (r>>12)*_wynorm;} //convert any 64 bit pseudo random numbers to APPROXIMATE Gaussian distribution. It can be combined with wyrand, wyhash64 or wyhash. static inline double wy2gau(uint64_t r){ const double _wynorm=1.0/(1ull<<20); return ((r&0x1fffff)+((r>>21)&0x1fffff)+((r>>42)&0x1fffff))*_wynorm-3.0;} #ifdef WYTRNG #include //The wytrand true random number generator, passed BigCrush. static inline uint64_t wytrand(uint64_t *seed){ struct timeval t; gettimeofday(&t,0); uint64_t teed=(((uint64_t)t.tv_sec)<<32)|t.tv_usec; teed=_wymix(teed^_wyp[0],*seed^_wyp[1]); *seed=_wymix(teed^_wyp[0],_wyp[2]); return _wymix(*seed,*seed^_wyp[3]); } #endif #if(!WYHASH_32BIT_MUM) //fast range integer random number generation on [0,k) credit to Daniel Lemire. May not work when WYHASH_32BIT_MUM=1. It can be combined with wyrand, wyhash64 or wyhash. static inline uint64_t wy2u0k(uint64_t r, uint64_t k){ _wymum(&r,&k); return k; } #endif // modified from https://github.com/going-digital/Prime64 static inline unsigned long long mul_mod(unsigned long long a, unsigned long long b, unsigned long long m) { unsigned long long r=0; while (b) { if (b & 1) { unsigned long long r2 = r + a; if (r2 < r) r2 -= m; r = r2 % m; } b >>= 1; if (b) { unsigned long long a2 = a + a; if (a2 < a) a2 -= m; a = a2 % m; } } return r; } static inline unsigned long long pow_mod(unsigned long long a, unsigned long long b, unsigned long long m) { unsigned long long r=1; while (b) { if (b&1) r=mul_mod(r,a,m); b>>=1; if (b) a=mul_mod(a,a,m); } return r; } static inline unsigned sprp(unsigned long long n, unsigned long long a) { unsigned long long d=n-1; unsigned char s=0; while (!(d & 0xff)) { d>>=8; s+=8; } if (!(d & 0xf)) { d>>=4; s+=4; } if (!(d & 0x3)) { d>>=2; s+=2; } if (!(d & 0x1)) { d>>=1; s+=1; } unsigned long long b=pow_mod(a,d,n); if ((b==1) || (b==(n-1))) return 1; unsigned char r; for (r=1; r> 1) & 0x5555555555555555; x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; x = (x * 0x0101010101010101) >> 56; if(x!=32){ ok=0; break; } #endif } if(ok&&!is_prime(secret[i])) ok=0; }while(!ok); } } #endif /* The Unlicense This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. For more information, please refer to */