/* FUSE: Filesystem in Userspace Copyright (C) 2001-2007 Miklos Szeredi This program can be distributed under the terms of the GNU LGPLv2. See the file COPYING.LIB */ /* For pthread_rwlock_t */ #define _GNU_SOURCE #include "crc32b.h" #include "fuse_node.h" #include "khash.h" #include "kvec.h" #include "lfmp.h" #include "config.h" #include "fuse_dirents.h" #include "fuse_i.h" #include "fuse_kernel.h" #include "fuse_lowlevel.h" #include "fuse_misc.h" #include "fuse_opt.h" #include "fuse_pollhandle.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_MALLOC_TRIM #include #endif #define FUSE_UNKNOWN_INO UINT64_MAX #define OFFSET_MAX 0x7fffffffffffffffLL #define NODE_TABLE_MIN_SIZE 8192 #define PARAM(inarg) ((void*)(((char*)(inarg)) + sizeof(*(inarg)))) static int g_LOG_METRICS = 0; struct fuse_config { unsigned int uid; unsigned int gid; unsigned int umask; int remember; int debug; int nogc; int set_mode; int set_uid; int set_gid; int help; int read_thread_count; int process_thread_count; }; struct fuse_fs { struct fuse_operations op; }; struct lock_queue_element { struct lock_queue_element *next; pthread_cond_t cond; uint64_t nodeid1; const char *name1; char **path1; struct node **wnode1; uint64_t nodeid2; const char *name2; char **path2; struct node **wnode2; int err; bool done : 1; }; struct node_table { struct node **array; size_t use; size_t size; size_t split; }; #define container_of(ptr,type,member) ({ \ const typeof( ((type *)0)->member ) *__mptr = (ptr); \ (type *)( (char *)__mptr - offsetof(type,member) );}) #define list_entry(ptr,type,member) \ container_of(ptr,type,member) struct list_head { struct list_head *next; struct list_head *prev; }; typedef struct remembered_node_t remembered_node_t; struct remembered_node_t { struct node *node; time_t time; }; typedef struct nodeid_gen_t nodeid_gen_t; struct nodeid_gen_t { uint64_t nodeid; uint64_t generation; }; struct fuse { struct fuse_session *se; struct node_table name_table; struct node_table id_table; nodeid_gen_t nodeid_gen; unsigned int hidectr; pthread_mutex_t lock; struct fuse_config conf; struct fuse_fs *fs; struct lock_queue_element *lockq; pthread_t maintenance_thread; lfmp_t node_fmp; kvec_t(remembered_node_t) remembered_nodes; }; struct lock { int type; off_t start; off_t end; pid_t pid; uint64_t owner; struct lock *next; }; struct node { struct node *name_next; struct node *id_next; uint64_t nodeid; char *name; struct node *parent; uint64_t nlookup; uint32_t refctr; uint32_t open_count; uint64_t hidden_fh; int32_t treelock; struct lock *locks; uint32_t stat_crc32b; uint8_t is_hidden:1; uint8_t is_stat_cache_valid:1; }; #define TREELOCK_WRITE -1 #define TREELOCK_WAIT_OFFSET INT_MIN struct fuse_dh { pthread_mutex_t lock; uint64_t fh; fuse_dirents_t d; }; struct fuse_context_i { struct fuse_context ctx; fuse_req_t req; }; static pthread_key_t fuse_context_key; static pthread_mutex_t fuse_context_lock = PTHREAD_MUTEX_INITIALIZER; static int fuse_context_ref; /* Why was the nodeid:generation logic simplified? nodeid is uint64_t: max value of 18446744073709551616 If nodes were created at a rate of 1048576 per second it would take over 500 thousand years to roll over. I'm fine with risking that. */ static uint64_t generate_nodeid(nodeid_gen_t *ng_) { ng_->nodeid++; return ng_->nodeid; } static char* filename_strdup(struct fuse *f_, const char *fn_) { return strdup(fn_); } static void filename_free(struct fuse *f_, char *fn_) { free(fn_); } static void* fuse_hdr_arg(const struct fuse_in_header *hdr_) { return (void*)&hdr_[1]; } static void list_add(struct list_head *new, struct list_head *prev, struct list_head *next) { next->prev = new; new->next = next; new->prev = prev; prev->next = new; } static inline void list_add_head(struct list_head *new, struct list_head *head) { list_add(new,head,head->next); } static inline void list_add_tail(struct list_head *new, struct list_head *head) { list_add(new,head->prev,head); } static inline void list_del(struct list_head *entry) { struct list_head *prev = entry->prev; struct list_head *next = entry->next; next->prev = prev; prev->next = next; } static struct node* alloc_node(struct fuse *f) { return lfmp_calloc(&f->node_fmp); } static void free_node_mem(struct fuse *f, struct node *node) { return lfmp_free(&f->node_fmp,node); } static size_t id_hash(struct fuse *f, uint64_t ino) { uint64_t hash = ((uint32_t)ino * 2654435761U) % f->id_table.size; uint64_t oldhash = hash % (f->id_table.size / 2); if(oldhash >= f->id_table.split) return oldhash; else return hash; } static struct node* get_node_nocheck(struct fuse *f, uint64_t nodeid) { size_t hash = id_hash(f,nodeid); struct node *node; for(node = f->id_table.array[hash]; node != NULL; node = node->id_next) if(node->nodeid == nodeid) return node; return NULL; } static struct node* get_node(struct fuse *f, const uint64_t nodeid) { struct node *node = get_node_nocheck(f,nodeid); if(!node) { fprintf(stderr,"fuse internal error: node %llu not found\n", (unsigned long long)nodeid); abort(); } return node; } static void remove_remembered_node(struct fuse *f_, struct node *node_) { for(size_t i = 0; i < kv_size(f_->remembered_nodes); i++) { if(kv_A(f_->remembered_nodes,i).node != node_) continue; kv_delete(f_->remembered_nodes,i); break; } } static uint32_t stat_crc32b(const struct stat *st_) { uint32_t crc; crc = crc32b_start(); crc = crc32b_continue(&st_->st_ino,sizeof(st_->st_ino),crc); crc = crc32b_continue(&st_->st_size,sizeof(st_->st_size),crc); crc = crc32b_continue(&st_->st_mtim,sizeof(st_->st_mtim),crc); crc = crc32b_finish(crc); return crc; } #ifndef CLOCK_MONOTONIC # define CLOCK_MONOTONIC CLOCK_REALTIME #endif static time_t current_time() { int rv; struct timespec now; static clockid_t clockid = CLOCK_MONOTONIC; rv = clock_gettime(clockid,&now); if((rv == -1) && (errno == EINVAL)) { clockid = CLOCK_REALTIME; rv = clock_gettime(clockid,&now); } if(rv == -1) now.tv_sec = time(NULL); return now.tv_sec; } static void free_node(struct fuse *f_, struct node *node_) { filename_free(f_,node_->name); if(node_->is_hidden) f_->fs->op.free_hide(node_->hidden_fh); free_node_mem(f_,node_); } static void node_table_reduce(struct node_table *t) { size_t newsize = t->size / 2; void *newarray; if(newsize < NODE_TABLE_MIN_SIZE) return; newarray = realloc(t->array,sizeof(struct node *)* newsize); if(newarray != NULL) t->array = newarray; t->size = newsize; t->split = t->size / 2; } static void remerge_id(struct fuse *f) { struct node_table *t = &f->id_table; int iter; if(t->split == 0) node_table_reduce(t); for(iter = 8; t->split > 0 && iter; iter--) { struct node **upper; t->split--; upper = &t->array[t->split + t->size / 2]; if(*upper) { struct node **nodep; for(nodep = &t->array[t->split]; *nodep; nodep = &(*nodep)->id_next); *nodep = *upper; *upper = NULL; break; } } } static void unhash_id(struct fuse *f, struct node *node) { struct node **nodep = &f->id_table.array[id_hash(f,node->nodeid)]; for(; *nodep != NULL; nodep = &(*nodep)->id_next) if(*nodep == node) { *nodep = node->id_next; f->id_table.use--; if(f->id_table.use < f->id_table.size / 4) remerge_id(f); return; } } static int node_table_resize(struct node_table *t) { size_t newsize = t->size * 2; void *newarray; newarray = realloc(t->array,sizeof(struct node *)* newsize); if(newarray == NULL) return -1; t->array = newarray; memset(t->array + t->size,0,t->size * sizeof(struct node *)); t->size = newsize; t->split = 0; return 0; } static void rehash_id(struct fuse *f) { struct node_table *t = &f->id_table; struct node **nodep; struct node **next; size_t hash; if(t->split == t->size / 2) return; hash = t->split; t->split++; for(nodep = &t->array[hash]; *nodep != NULL; nodep = next) { struct node *node = *nodep; size_t newhash = id_hash(f,node->nodeid); if(newhash != hash) { next = nodep; *nodep = node->id_next; node->id_next = t->array[newhash]; t->array[newhash] = node; } else { next = &node->id_next; } } if(t->split == t->size / 2) node_table_resize(t); } static void hash_id(struct fuse *f, struct node *node) { size_t hash; hash = id_hash(f,node->nodeid); node->id_next = f->id_table.array[hash]; f->id_table.array[hash] = node; f->id_table.use++; if(f->id_table.use >= f->id_table.size / 2) rehash_id(f); } static size_t name_hash(struct fuse *f, uint64_t parent, const char *name) { uint64_t hash = parent; uint64_t oldhash; for(; *name; name++) hash = hash * 31 + (unsigned char)*name; hash %= f->name_table.size; oldhash = hash % (f->name_table.size / 2); if(oldhash >= f->name_table.split) return oldhash; else return hash; } static void unref_node(struct fuse *f, struct node *node); static void remerge_name(struct fuse *f) { int iter; struct node_table *t = &f->name_table; if(t->split == 0) node_table_reduce(t); for(iter = 8; t->split > 0 && iter; iter--) { struct node **upper; t->split--; upper = &t->array[t->split + t->size / 2]; if(*upper) { struct node **nodep; for(nodep = &t->array[t->split]; *nodep; nodep = &(*nodep)->name_next); *nodep = *upper; *upper = NULL; break; } } } static void unhash_name(struct fuse *f, struct node *node) { if(node->name) { size_t hash = name_hash(f,node->parent->nodeid,node->name); struct node **nodep = &f->name_table.array[hash]; for(; *nodep != NULL; nodep = &(*nodep)->name_next) if(*nodep == node) { *nodep = node->name_next; node->name_next = NULL; unref_node(f,node->parent); filename_free(f,node->name); node->name = NULL; node->parent = NULL; f->name_table.use--; if(f->name_table.use < f->name_table.size / 4) remerge_name(f); return; } fprintf(stderr, "fuse internal error: unable to unhash node: %llu\n", (unsigned long long)node->nodeid); abort(); } } static void rehash_name(struct fuse *f) { struct node_table *t = &f->name_table; struct node **nodep; struct node **next; size_t hash; if(t->split == t->size / 2) return; hash = t->split; t->split++; for(nodep = &t->array[hash]; *nodep != NULL; nodep = next) { struct node *node = *nodep; size_t newhash = name_hash(f,node->parent->nodeid,node->name); if(newhash != hash) { next = nodep; *nodep = node->name_next; node->name_next = t->array[newhash]; t->array[newhash] = node; } else { next = &node->name_next; } } if(t->split == t->size / 2) node_table_resize(t); } static int hash_name(struct fuse *f, struct node *node, uint64_t parentid, const char *name) { size_t hash = name_hash(f,parentid,name); struct node *parent = get_node(f,parentid); node->name = filename_strdup(f,name); if(node->name == NULL) return -1; parent->refctr++; node->parent = parent; node->name_next = f->name_table.array[hash]; f->name_table.array[hash] = node; f->name_table.use++; if(f->name_table.use >= f->name_table.size / 2) rehash_name(f); return 0; } static inline int remember_nodes(struct fuse *f_) { return (f_->conf.remember > 0); } static void delete_node(struct fuse *f, struct node *node) { assert(node->treelock == 0); unhash_name(f,node); if(remember_nodes(f)) remove_remembered_node(f,node); unhash_id(f,node); free_node(f,node); } static void unref_node(struct fuse *f, struct node *node) { assert(node->refctr > 0); node->refctr--; if(!node->refctr) delete_node(f,node); } static uint64_t rand64(void) { uint64_t rv; rv = rand(); rv <<= 32; rv |= rand(); return rv; } static struct node* lookup_node(struct fuse *f, uint64_t parent, const char *name) { size_t hash; struct node *node; hash = name_hash(f,parent,name); for(node = f->name_table.array[hash]; node != NULL; node = node->name_next) if(node->parent->nodeid == parent && strcmp(node->name,name) == 0) return node; return NULL; } static void inc_nlookup(struct node *node) { if(!node->nlookup) node->refctr++; node->nlookup++; } static struct node* find_node(struct fuse *f, uint64_t parent, const char *name) { struct node *node; pthread_mutex_lock(&f->lock); if(!name) node = get_node(f,parent); else node = lookup_node(f,parent,name); if(node == NULL) { node = alloc_node(f); if(node == NULL) goto out_err; node->nodeid = generate_nodeid(&f->nodeid_gen); if(f->conf.remember) inc_nlookup(node); if(hash_name(f,node,parent,name) == -1) { free_node(f,node); node = NULL; goto out_err; } hash_id(f,node); } else if((node->nlookup == 1) && remember_nodes(f)) { remove_remembered_node(f,node); } inc_nlookup(node); out_err: pthread_mutex_unlock(&f->lock); return node; } static char* add_name(char **buf, unsigned *bufsize, char *s, const char *name) { size_t len = strlen(name); if(s - len <= *buf) { unsigned pathlen = *bufsize - (s - *buf); unsigned newbufsize = *bufsize; char *newbuf; while(newbufsize < pathlen + len + 1) { if(newbufsize >= 0x80000000) newbufsize = 0xffffffff; else newbufsize *= 2; } newbuf = realloc(*buf,newbufsize); if(newbuf == NULL) return NULL; *buf = newbuf; s = newbuf + newbufsize - pathlen; memmove(s,newbuf + *bufsize - pathlen,pathlen); *bufsize = newbufsize; } s -= len; strncpy(s,name,len); s--; *s = '/'; return s; } static void unlock_path(struct fuse *f, uint64_t nodeid, struct node *wnode, struct node *end) { struct node *node; if(wnode) { assert(wnode->treelock == TREELOCK_WRITE); wnode->treelock = 0; } for(node = get_node(f,nodeid); node != end && node->nodeid != FUSE_ROOT_ID; node = node->parent) { assert(node->treelock != 0); assert(node->treelock != TREELOCK_WAIT_OFFSET); assert(node->treelock != TREELOCK_WRITE); node->treelock--; if(node->treelock == TREELOCK_WAIT_OFFSET) node->treelock = 0; } } static int try_get_path(struct fuse *f, uint64_t nodeid, const char *name, char **path, struct node **wnodep, bool need_lock) { unsigned bufsize = 256; char *buf; char *s; struct node *node; struct node *wnode = NULL; int err; *path = NULL; err = -ENOMEM; buf = malloc(bufsize); if(buf == NULL) goto out_err; s = buf + bufsize - 1; *s = '\0'; if(name != NULL) { s = add_name(&buf,&bufsize,s,name); err = -ENOMEM; if(s == NULL) goto out_free; } if(wnodep) { assert(need_lock); wnode = lookup_node(f,nodeid,name); if(wnode) { if(wnode->treelock != 0) { if(wnode->treelock > 0) wnode->treelock += TREELOCK_WAIT_OFFSET; err = -EAGAIN; goto out_free; } wnode->treelock = TREELOCK_WRITE; } } for(node = get_node(f,nodeid); node->nodeid != FUSE_ROOT_ID; node = node->parent) { err = -ESTALE; if(node->name == NULL || node->parent == NULL) goto out_unlock; err = -ENOMEM; s = add_name(&buf,&bufsize,s,node->name); if(s == NULL) goto out_unlock; if(need_lock) { err = -EAGAIN; if(node->treelock < 0) goto out_unlock; node->treelock++; } } if(s[0]) memmove(buf,s,bufsize - (s - buf)); else strcpy(buf,"/"); *path = buf; if(wnodep) *wnodep = wnode; return 0; out_unlock: if(need_lock) unlock_path(f,nodeid,wnode,node); out_free: free(buf); out_err: return err; } static int try_get_path2(struct fuse *f, uint64_t nodeid1, const char *name1, uint64_t nodeid2, const char *name2, char **path1, char **path2, struct node **wnode1, struct node **wnode2) { int err; err = try_get_path(f,nodeid1,name1,path1,wnode1,true); if(!err) { err = try_get_path(f,nodeid2,name2,path2,wnode2,true); if(err) { struct node *wn1 = wnode1 ? *wnode1 : NULL; unlock_path(f,nodeid1,wn1,NULL); free(*path1); } } return err; } static void queue_element_wakeup(struct fuse *f, struct lock_queue_element *qe) { int err; if(!qe->path1) { /* Just waiting for it to be unlocked */ if(get_node(f,qe->nodeid1)->treelock == 0) pthread_cond_signal(&qe->cond); return; } if(qe->done) return; if(!qe->path2) { err = try_get_path(f, qe->nodeid1, qe->name1, qe->path1, qe->wnode1, true); } else { err = try_get_path2(f, qe->nodeid1, qe->name1, qe->nodeid2, qe->name2, qe->path1, qe->path2, qe->wnode1, qe->wnode2); } if(err == -EAGAIN) return; qe->err = err; qe->done = true; pthread_cond_signal(&qe->cond); } static void wake_up_queued(struct fuse *f) { struct lock_queue_element *qe; for(qe = f->lockq; qe != NULL; qe = qe->next) queue_element_wakeup(f,qe); } static void queue_path(struct fuse *f, struct lock_queue_element *qe) { struct lock_queue_element **qp; qe->done = false; pthread_cond_init(&qe->cond,NULL); qe->next = NULL; for(qp = &f->lockq; *qp != NULL; qp = &(*qp)->next); *qp = qe; } static void dequeue_path(struct fuse *f, struct lock_queue_element *qe) { struct lock_queue_element **qp; pthread_cond_destroy(&qe->cond); for(qp = &f->lockq; *qp != qe; qp = &(*qp)->next); *qp = qe->next; } static int wait_path(struct fuse *f, struct lock_queue_element *qe) { queue_path(f,qe); do { pthread_cond_wait(&qe->cond,&f->lock); } while(!qe->done); dequeue_path(f,qe); return qe->err; } static int get_path_common(struct fuse *f, uint64_t nodeid, const char *name, char **path, struct node **wnode) { int err; pthread_mutex_lock(&f->lock); err = try_get_path(f,nodeid,name,path,wnode,true); if(err == -EAGAIN) { struct lock_queue_element qe = {0}; qe.nodeid1 = nodeid; qe.name1 = name; qe.path1 = path; qe.wnode1 = wnode; err = wait_path(f,&qe); } pthread_mutex_unlock(&f->lock); return err; } static int get_path(struct fuse *f, uint64_t nodeid, char **path) { return get_path_common(f,nodeid,NULL,path,NULL); } static int get_path_name(struct fuse *f, uint64_t nodeid, const char *name, char **path) { return get_path_common(f,nodeid,name,path,NULL); } static int get_path_wrlock(struct fuse *f, uint64_t nodeid, const char *name, char **path, struct node **wnode) { return get_path_common(f,nodeid,name,path,wnode); } static int get_path2(struct fuse *f, uint64_t nodeid1, const char *name1, uint64_t nodeid2, const char *name2, char **path1, char **path2, struct node **wnode1, struct node **wnode2) { int err; pthread_mutex_lock(&f->lock); err = try_get_path2(f,nodeid1,name1,nodeid2,name2, path1,path2,wnode1,wnode2); if(err == -EAGAIN) { struct lock_queue_element qe = {0}; qe.nodeid1 = nodeid1; qe.name1 = name1; qe.path1 = path1; qe.wnode1 = wnode1; qe.nodeid2 = nodeid2; qe.name2 = name2; qe.path2 = path2; qe.wnode2 = wnode2; err = wait_path(f,&qe); } pthread_mutex_unlock(&f->lock); return err; } static void free_path_wrlock(struct fuse *f, uint64_t nodeid, struct node *wnode, char *path) { pthread_mutex_lock(&f->lock); unlock_path(f,nodeid,wnode,NULL); if(f->lockq) wake_up_queued(f); pthread_mutex_unlock(&f->lock); free(path); } static void free_path(struct fuse *f, uint64_t nodeid, char *path) { if(path) free_path_wrlock(f,nodeid,NULL,path); } static void free_path2(struct fuse *f, uint64_t nodeid1, uint64_t nodeid2, struct node *wnode1, struct node *wnode2, char *path1, char *path2) { pthread_mutex_lock(&f->lock); unlock_path(f,nodeid1,wnode1,NULL); unlock_path(f,nodeid2,wnode2,NULL); wake_up_queued(f); pthread_mutex_unlock(&f->lock); free(path1); free(path2); } static void forget_node(struct fuse *f, const uint64_t nodeid, const uint64_t nlookup) { struct node *node; if(nodeid == FUSE_ROOT_ID) return; pthread_mutex_lock(&f->lock); node = get_node(f,nodeid); /* * Node may still be locked due to interrupt idiocy in open, * create and opendir */ while(node->nlookup == nlookup && node->treelock) { struct lock_queue_element qe = {0}; qe.nodeid1 = nodeid; queue_path(f,&qe); do { pthread_cond_wait(&qe.cond,&f->lock); } while((node->nlookup == nlookup) && node->treelock); dequeue_path(f,&qe); } assert(node->nlookup >= nlookup); node->nlookup -= nlookup; if(node->nlookup == 0) { unref_node(f,node); } else if((node->nlookup == 1) && remember_nodes(f)) { remembered_node_t fn; fn.node = node; fn.time = current_time(); kv_push(remembered_node_t,f->remembered_nodes,fn); } pthread_mutex_unlock(&f->lock); } static void unlink_node(struct fuse *f, struct node *node) { if(remember_nodes(f)) { assert(node->nlookup > 1); node->nlookup--; } unhash_name(f,node); } static void remove_node(struct fuse *f, uint64_t dir, const char *name) { struct node *node; pthread_mutex_lock(&f->lock); node = lookup_node(f,dir,name); if(node != NULL) unlink_node(f,node); pthread_mutex_unlock(&f->lock); } static int rename_node(struct fuse *f, uint64_t olddir, const char *oldname, uint64_t newdir, const char *newname) { struct node *node; struct node *newnode; int err = 0; pthread_mutex_lock(&f->lock); node = lookup_node(f,olddir,oldname); newnode = lookup_node(f,newdir,newname); if(node == NULL) goto out; if(newnode != NULL) unlink_node(f,newnode); unhash_name(f,node); if(hash_name(f,node,newdir,newname) == -1) { err = -ENOMEM; goto out; } out: pthread_mutex_unlock(&f->lock); return err; } static void set_stat(struct fuse *f, uint64_t nodeid, struct stat *stbuf) { if(f->conf.set_mode) stbuf->st_mode = (stbuf->st_mode & S_IFMT) | (0777 & ~f->conf.umask); if(f->conf.set_uid) stbuf->st_uid = f->conf.uid; if(f->conf.set_gid) stbuf->st_gid = f->conf.gid; } static struct fuse* req_fuse(fuse_req_t req) { return (struct fuse*)fuse_req_userdata(req); } static void fuse_free_buf(struct fuse_bufvec *buf) { if(buf != NULL) { size_t i; for(i = 0; i < buf->count; i++) free(buf->buf[i].mem); free(buf); } } static int node_open(const struct node *node_) { return ((node_ != NULL) && (node_->open_count > 0)); } static void update_stat(struct node *node_, const struct stat *stnew_) { uint32_t crc32b; crc32b = stat_crc32b(stnew_); if(node_->is_stat_cache_valid && (crc32b != node_->stat_crc32b)) node_->is_stat_cache_valid = 0; node_->stat_crc32b = crc32b; } static int set_path_info(struct fuse *f, uint64_t nodeid, const char *name, struct fuse_entry_param *e) { struct node *node; node = find_node(f,nodeid,name); if(node == NULL) return -ENOMEM; e->ino = node->nodeid; e->generation = f->nodeid_gen.generation; pthread_mutex_lock(&f->lock); update_stat(node,&e->attr); pthread_mutex_unlock(&f->lock); set_stat(f,e->ino,&e->attr); return 0; } static int lookup_path(struct fuse *f, uint64_t nodeid, const char *name, const char *path, struct fuse_entry_param *e, fuse_file_info_t *fi) { int rv; memset(e,0,sizeof(struct fuse_entry_param)); rv = ((fi == NULL) ? f->fs->op.getattr(path,&e->attr,&e->timeout) : f->fs->op.fgetattr(fi,&e->attr,&e->timeout)); if(rv) return rv; return set_path_info(f,nodeid,name,e); } static struct fuse_context_i* fuse_get_context_internal(void) { struct fuse_context_i *c; c = (struct fuse_context_i *)pthread_getspecific(fuse_context_key); if(c == NULL) { c = (struct fuse_context_i*)calloc(1,sizeof(struct fuse_context_i)); if(c == NULL) { /* This is hard to deal with properly,so just abort. If memory is so low that the context cannot be allocated,there's not much hope for the filesystem anyway */ fprintf(stderr,"fuse: failed to allocate thread specific data\n"); abort(); } pthread_setspecific(fuse_context_key,c); } return c; } static void fuse_freecontext(void *data) { free(data); } static int fuse_create_context_key(void) { int err = 0; pthread_mutex_lock(&fuse_context_lock); if(!fuse_context_ref) { err = pthread_key_create(&fuse_context_key,fuse_freecontext); if(err) { fprintf(stderr,"fuse: failed to create thread specific key: %s\n", strerror(err)); pthread_mutex_unlock(&fuse_context_lock); return -1; } } fuse_context_ref++; pthread_mutex_unlock(&fuse_context_lock); return 0; } static void fuse_delete_context_key(void) { pthread_mutex_lock(&fuse_context_lock); fuse_context_ref--; if(!fuse_context_ref) { free(pthread_getspecific(fuse_context_key)); pthread_key_delete(fuse_context_key); } pthread_mutex_unlock(&fuse_context_lock); } static struct fuse* req_fuse_prepare(fuse_req_t req) { struct fuse_context_i *c = fuse_get_context_internal(); const struct fuse_ctx *ctx = fuse_req_ctx(req); c->req = req; c->ctx.fuse = req_fuse(req); c->ctx.uid = ctx->uid; c->ctx.gid = ctx->gid; c->ctx.pid = ctx->pid; c->ctx.umask = ctx->umask; return c->ctx.fuse; } static inline void reply_err(fuse_req_t req, int err) { /* fuse_reply_err() uses non-negated errno values */ fuse_reply_err(req,-err); } static void reply_entry(fuse_req_t req, const struct fuse_entry_param *e, int err) { if(!err) { struct fuse *f = req_fuse(req); if(fuse_reply_entry(req,e) == -ENOENT) { /* Skip forget for negative result */ if(e->ino != 0) forget_node(f,e->ino,1); } } else { reply_err(req,err); } } static void fuse_lib_init(void *data, struct fuse_conn_info *conn) { struct fuse *f = (struct fuse *)data; struct fuse_context_i *c = fuse_get_context_internal(); memset(c,0,sizeof(*c)); c->ctx.fuse = f; conn->want |= FUSE_CAP_EXPORT_SUPPORT; f->fs->op.init(conn); } static void fuse_lib_destroy(void *data) { struct fuse *f = (struct fuse *)data; struct fuse_context_i *c = fuse_get_context_internal(); memset(c,0,sizeof(*c)); c->ctx.fuse = f; f->fs->op.destroy(); free(f->fs); f->fs = NULL; } static void fuse_lib_lookup(fuse_req_t req, struct fuse_in_header *hdr_) { int err; uint64_t nodeid; char *path; const char *name; struct fuse *f; struct node *dot = NULL; struct fuse_entry_param e = {0}; name = fuse_hdr_arg(hdr_); nodeid = hdr_->nodeid; f = req_fuse_prepare(req); if(name[0] == '.') { if(name[1] == '\0') { name = NULL; pthread_mutex_lock(&f->lock); dot = get_node_nocheck(f,nodeid); if(dot == NULL) { pthread_mutex_unlock(&f->lock); reply_entry(req,&e,-ESTALE); return; } dot->refctr++; pthread_mutex_unlock(&f->lock); } else if((name[1] == '.') && (name[2] == '\0')) { if(nodeid == 1) { reply_entry(req,&e,-ENOENT); return; } name = NULL; pthread_mutex_lock(&f->lock); nodeid = get_node(f,nodeid)->parent->nodeid; pthread_mutex_unlock(&f->lock); } } err = get_path_name(f,nodeid,name,&path); if(!err) { err = lookup_path(f,nodeid,name,path,&e,NULL); if(err == -ENOENT) { e.ino = 0; err = 0; } free_path(f,nodeid,path); } if(dot) { pthread_mutex_lock(&f->lock); unref_node(f,dot); pthread_mutex_unlock(&f->lock); } reply_entry(req,&e,err); } static void fuse_lib_forget(fuse_req_t req, struct fuse_in_header *hdr_) { struct fuse *f; struct fuse_forget_in *arg; f = req_fuse(req); arg = fuse_hdr_arg(hdr_); forget_node(f,hdr_->nodeid,arg->nlookup); fuse_reply_none(req); } static void fuse_lib_forget_multi(fuse_req_t req, struct fuse_in_header *hdr_) { struct fuse *f; struct fuse_batch_forget_in *arg; struct fuse_forget_one *entry; f = req_fuse(req); arg = fuse_hdr_arg(hdr_); entry = PARAM(arg); for(uint32_t i = 0; i < arg->count; i++) forget_node(f, entry[i].nodeid, entry[i].nlookup); fuse_reply_none(req); } static void fuse_lib_getattr(fuse_req_t req, struct fuse_in_header *hdr_) { int err; char *path; struct fuse *f; struct stat buf; struct node *node; fuse_timeouts_t timeout; fuse_file_info_t ffi = {0}; const struct fuse_getattr_in *arg; arg = fuse_hdr_arg(hdr_); f = req_fuse_prepare(req); if(arg->getattr_flags & FUSE_GETATTR_FH) { ffi.fh = arg->fh; } else { pthread_mutex_lock(&f->lock); node = get_node(f,hdr_->nodeid); if(node->is_hidden) ffi.fh = node->hidden_fh; pthread_mutex_unlock(&f->lock); } memset(&buf,0,sizeof(buf)); err = 0; path = NULL; if(ffi.fh == 0) err = get_path(f,hdr_->nodeid,&path); if(!err) { err = ((ffi.fh == 0) ? f->fs->op.getattr(path,&buf,&timeout) : f->fs->op.fgetattr(&ffi,&buf,&timeout)); free_path(f,hdr_->nodeid,path); } if(!err) { pthread_mutex_lock(&f->lock); node = get_node(f,hdr_->nodeid); update_stat(node,&buf); pthread_mutex_unlock(&f->lock); set_stat(f,hdr_->nodeid,&buf); fuse_reply_attr(req,&buf,timeout.attr); } else { reply_err(req,err); } } static void fuse_lib_setattr(fuse_req_t req, struct fuse_in_header *hdr_) { struct fuse *f = req_fuse_prepare(req); struct stat stbuf = {0}; char *path; int err; struct node *node; fuse_timeouts_t timeout; fuse_file_info_t *fi; fuse_file_info_t ffi = {0}; struct fuse_setattr_in *arg; arg = fuse_hdr_arg(hdr_); fi = NULL; if(arg->valid & FATTR_FH) { fi = &ffi; fi->fh = arg->fh; } else { pthread_mutex_lock(&f->lock); node = get_node(f,hdr_->nodeid); if(node->is_hidden) { fi = &ffi; fi->fh = node->hidden_fh; } pthread_mutex_unlock(&f->lock); } err = 0; path = NULL; if(fi == NULL) err = get_path(f,hdr_->nodeid,&path); if(!err) { err = 0; if(!err && (arg->valid & FATTR_MODE)) err = ((fi == NULL) ? f->fs->op.chmod(path,arg->mode) : f->fs->op.fchmod(fi,arg->mode)); if(!err && (arg->valid & (FATTR_UID | FATTR_GID))) { uid_t uid = ((arg->valid & FATTR_UID) ? arg->uid : (uid_t)-1); gid_t gid = ((arg->valid & FATTR_GID) ? arg->gid : (gid_t)-1); err = ((fi == NULL) ? f->fs->op.chown(path,uid,gid) : f->fs->op.fchown(fi,uid,gid)); } if(!err && (arg->valid & FATTR_SIZE)) err = ((fi == NULL) ? f->fs->op.truncate(path,arg->size) : f->fs->op.ftruncate(fi,arg->size)); #ifdef HAVE_UTIMENSAT if(!err && (arg->valid & (FATTR_ATIME | FATTR_MTIME))) { struct timespec tv[2]; tv[0].tv_sec = 0; tv[1].tv_sec = 0; tv[0].tv_nsec = UTIME_OMIT; tv[1].tv_nsec = UTIME_OMIT; if(arg->valid & FATTR_ATIME_NOW) tv[0].tv_nsec = UTIME_NOW; else if(arg->valid & FATTR_ATIME) tv[0] = (struct timespec){ arg->atime, arg->atimensec }; if(arg->valid & FATTR_MTIME_NOW) tv[1].tv_nsec = UTIME_NOW; else if(arg->valid & FATTR_MTIME) tv[1] = (struct timespec){ arg->mtime, arg->mtimensec }; err = ((fi == NULL) ? f->fs->op.utimens(path,tv) : f->fs->op.futimens(fi,tv)); } else #endif if(!err && ((arg->valid & (FATTR_ATIME|FATTR_MTIME)) == (FATTR_ATIME|FATTR_MTIME))) { struct timespec tv[2]; tv[0].tv_sec = arg->atime; tv[0].tv_nsec = arg->atimensec; tv[1].tv_sec = arg->mtime; tv[1].tv_nsec = arg->mtimensec; err = ((fi == NULL) ? f->fs->op.utimens(path,tv) : f->fs->op.futimens(fi,tv)); } if(!err) err = ((fi == NULL) ? f->fs->op.getattr(path,&stbuf,&timeout) : f->fs->op.fgetattr(fi,&stbuf,&timeout)); free_path(f,hdr_->nodeid,path); } if(!err) { pthread_mutex_lock(&f->lock); update_stat(get_node(f,hdr_->nodeid),&stbuf); pthread_mutex_unlock(&f->lock); set_stat(f,hdr_->nodeid,&stbuf); fuse_reply_attr(req,&stbuf,timeout.attr); } else { reply_err(req,err); } } static void fuse_lib_access(fuse_req_t req, struct fuse_in_header *hdr_) { int err; char *path; struct fuse *f; struct fuse_access_in *arg; arg = fuse_hdr_arg(hdr_); f = req_fuse_prepare(req); err = get_path(f,hdr_->nodeid,&path); if(!err) { err = f->fs->op.access(path,arg->mask); free_path(f,hdr_->nodeid,path); } reply_err(req,err); } static void fuse_lib_readlink(fuse_req_t req, struct fuse_in_header *hdr_) { int err; char *path; struct fuse *f; char linkname[PATH_MAX + 1]; f = req_fuse_prepare(req); err = get_path(f,hdr_->nodeid,&path); if(!err) { err = f->fs->op.readlink(path,linkname,sizeof(linkname)); free_path(f,hdr_->nodeid,path); } if(!err) { linkname[PATH_MAX] = '\0'; fuse_reply_readlink(req,linkname); } else { reply_err(req,err); } } static void fuse_lib_mknod(fuse_req_t req, struct fuse_in_header *hdr_) { int err; char *path; struct fuse *f; const char* name; struct fuse_entry_param e; struct fuse_mknod_in *arg; arg = fuse_hdr_arg(hdr_); name = PARAM(arg); if(req->f->conn.proto_minor >= 12) req->ctx.umask = arg->umask; else name = (char*)arg + FUSE_COMPAT_MKNOD_IN_SIZE; f = req_fuse_prepare(req); err = get_path_name(f,hdr_->nodeid,name,&path); if(!err) { err = -ENOSYS; if(S_ISREG(arg->mode)) { fuse_file_info_t fi; memset(&fi,0,sizeof(fi)); fi.flags = O_CREAT | O_EXCL | O_WRONLY; err = f->fs->op.create(path,arg->mode,&fi); if(!err) { err = lookup_path(f,hdr_->nodeid,name,path,&e,&fi); f->fs->op.release(&fi); } } if(err == -ENOSYS) { err = f->fs->op.mknod(path,arg->mode,arg->rdev); if(!err) err = lookup_path(f,hdr_->nodeid,name,path,&e,NULL); } free_path(f,hdr_->nodeid,path); } reply_entry(req,&e,err); } static void fuse_lib_mkdir(fuse_req_t req, struct fuse_in_header *hdr_) { int err; char *path; struct fuse *f; const char *name; struct fuse_entry_param e; struct fuse_mkdir_in *arg; arg = fuse_hdr_arg(hdr_); name = PARAM(arg); if(req->f->conn.proto_minor >= 12) req->ctx.umask = arg->umask; f = req_fuse_prepare(req); err = get_path_name(f,hdr_->nodeid,name,&path); if(!err) { err = f->fs->op.mkdir(path,arg->mode); if(!err) err = lookup_path(f,hdr_->nodeid,name,path,&e,NULL); free_path(f,hdr_->nodeid,path); } reply_entry(req,&e,err); } static void fuse_lib_unlink(fuse_req_t req, struct fuse_in_header *hdr_) { int err; char *path; struct fuse *f; const char *name; struct node *wnode; name = PARAM(hdr_); f = req_fuse_prepare(req); err = get_path_wrlock(f,hdr_->nodeid,name,&path,&wnode); if(!err) { pthread_mutex_lock(&f->lock); if(node_open(wnode)) { err = f->fs->op.prepare_hide(path,&wnode->hidden_fh); if(!err) wnode->is_hidden = 1; } pthread_mutex_unlock(&f->lock); err = f->fs->op.unlink(path); if(!err) remove_node(f,hdr_->nodeid,name); free_path_wrlock(f,hdr_->nodeid,wnode,path); } reply_err(req,err); } static void fuse_lib_rmdir(fuse_req_t req, struct fuse_in_header *hdr_) { int err; char *path; struct fuse *f; const char *name; struct node *wnode; name = PARAM(hdr_); f = req_fuse_prepare(req); err = get_path_wrlock(f,hdr_->nodeid,name,&path,&wnode); if(!err) { err = f->fs->op.rmdir(path); if(!err) remove_node(f,hdr_->nodeid,name); free_path_wrlock(f,hdr_->nodeid,wnode,path); } reply_err(req,err); } static void fuse_lib_symlink(fuse_req_t req_, struct fuse_in_header *hdr_) { int rv; char *path; struct fuse *f; const char *name; const char *linkname; struct fuse_entry_param e = {0}; name = fuse_hdr_arg(hdr_); linkname = (name + strlen(name) + 1); f = req_fuse_prepare(req_); rv = get_path_name(f,hdr_->nodeid,name,&path); if(rv == 0) { rv = f->fs->op.symlink(linkname,path,&e.attr,&e.timeout); if(rv == 0) rv = set_path_info(f,hdr_->nodeid,name,&e); free_path(f,hdr_->nodeid,path); } reply_entry(req_,&e,rv); } static void fuse_lib_rename(fuse_req_t req, struct fuse_in_header *hdr_) { int err; struct fuse *f; char *oldpath; char *newpath; const char *oldname; const char *newname; struct node *wnode1; struct node *wnode2; struct fuse_rename_in *arg; arg = fuse_hdr_arg(hdr_); oldname = PARAM(arg); newname = (oldname + strlen(oldname) + 1); f = req_fuse_prepare(req); err = get_path2(f,hdr_->nodeid,oldname,arg->newdir,newname, &oldpath,&newpath,&wnode1,&wnode2); if(!err) { pthread_mutex_lock(&f->lock); if(node_open(wnode2)) { err = f->fs->op.prepare_hide(newpath,&wnode2->hidden_fh); if(!err) wnode2->is_hidden = 1; } pthread_mutex_unlock(&f->lock); err = f->fs->op.rename(oldpath,newpath); if(!err) err = rename_node(f,hdr_->nodeid,oldname,arg->newdir,newname); free_path2(f,hdr_->nodeid,arg->newdir,wnode1,wnode2,oldpath,newpath); } reply_err(req,err); } static void fuse_lib_link(fuse_req_t req, struct fuse_in_header *hdr_) { int rv; char *oldpath; char *newpath; struct fuse *f; const char *newname; struct fuse_link_in *arg; struct fuse_entry_param e = {0}; arg = fuse_hdr_arg(hdr_); newname = PARAM(arg); f = req_fuse_prepare(req); rv = get_path2(f, arg->oldnodeid,NULL, hdr_->nodeid,newname, &oldpath,&newpath,NULL,NULL); if(!rv) { rv = f->fs->op.link(oldpath,newpath,&e.attr,&e.timeout); if(rv == 0) rv = set_path_info(f,hdr_->nodeid,newname,&e); free_path2(f,arg->oldnodeid,hdr_->nodeid,NULL,NULL,oldpath,newpath); } reply_entry(req,&e,rv); } static void fuse_do_release(struct fuse *f, uint64_t ino, fuse_file_info_t *fi) { struct node *node; uint64_t fh; int was_hidden; fh = 0; f->fs->op.release(fi); pthread_mutex_lock(&f->lock); node = get_node(f,ino); assert(node->open_count > 0); node->open_count--; was_hidden = 0; if(node->is_hidden && (node->open_count == 0)) { was_hidden = 1; node->is_hidden = 0; fh = node->hidden_fh; } pthread_mutex_unlock(&f->lock); if(was_hidden) f->fs->op.free_hide(fh); } static void fuse_lib_create(fuse_req_t req, struct fuse_in_header *hdr_) { int err; char *path; struct fuse *f; const char *name; fuse_file_info_t ffi = {0}; struct fuse_entry_param e; struct fuse_create_in *arg; arg = fuse_hdr_arg(hdr_); name = PARAM(arg); ffi.flags = arg->flags; if(req->f->conn.proto_minor >= 12) req->ctx.umask = arg->umask; else name = (char*)arg + sizeof(struct fuse_open_in); f = req_fuse_prepare(req); err = get_path_name(f,hdr_->nodeid,name,&path); if(!err) { err = f->fs->op.create(path,arg->mode,&ffi); if(!err) { err = lookup_path(f,hdr_->nodeid,name,path,&e,&ffi); if(err) { f->fs->op.release(&ffi); } else if(!S_ISREG(e.attr.st_mode)) { err = -EIO; f->fs->op.release(&ffi); forget_node(f,e.ino,1); } } } if(!err) { pthread_mutex_lock(&f->lock); get_node(f,e.ino)->open_count++; pthread_mutex_unlock(&f->lock); if(fuse_reply_create(req,&e,&ffi) == -ENOENT) { /* The open syscall was interrupted,so it must be cancelled */ fuse_do_release(f,e.ino,&ffi); forget_node(f,e.ino,1); } } else { reply_err(req,err); } free_path(f,hdr_->nodeid,path); } static void open_auto_cache(struct fuse *f, uint64_t ino, const char *path, fuse_file_info_t *fi) { struct node *node; fuse_timeouts_t timeout; pthread_mutex_lock(&f->lock); node = get_node(f,ino); if(node->is_stat_cache_valid) { int err; struct stat stbuf; pthread_mutex_unlock(&f->lock); err = f->fs->op.fgetattr(fi,&stbuf,&timeout); pthread_mutex_lock(&f->lock); if(!err) update_stat(node,&stbuf); else node->is_stat_cache_valid = 0; } if(node->is_stat_cache_valid) fi->keep_cache = 1; node->is_stat_cache_valid = 1; pthread_mutex_unlock(&f->lock); } static void fuse_lib_open(fuse_req_t req, struct fuse_in_header *hdr_) { int err; char *path; struct fuse *f; fuse_file_info_t ffi = {0}; struct fuse_open_in *arg; arg = fuse_hdr_arg(hdr_); ffi.flags = arg->flags; f = req_fuse_prepare(req); err = get_path(f,hdr_->nodeid,&path); if(!err) { err = f->fs->op.open(path,&ffi); if(!err) { if(ffi.auto_cache) open_auto_cache(f,hdr_->nodeid,path,&ffi); } } if(!err) { pthread_mutex_lock(&f->lock); get_node(f,hdr_->nodeid)->open_count++; pthread_mutex_unlock(&f->lock); /* The open syscall was interrupted,so it must be cancelled */ if(fuse_reply_open(req,&ffi) == -ENOENT) fuse_do_release(f,hdr_->nodeid,&ffi); } else { reply_err(req,err); } free_path(f,hdr_->nodeid,path); } static void fuse_lib_read(fuse_req_t req, struct fuse_in_header *hdr_) { int res; struct fuse *f; fuse_file_info_t ffi = {0}; struct fuse_bufvec *buf = NULL; struct fuse_read_in *arg; arg = fuse_hdr_arg(hdr_); ffi.fh = arg->fh; if(req->f->conn.proto_minor >= 9) { ffi.flags = arg->flags; ffi.lock_owner = arg->lock_owner; } f = req_fuse_prepare(req); res = f->fs->op.read_buf(&ffi,&buf,arg->size,arg->offset); if(res >= 0) fuse_reply_data(req,buf,FUSE_BUF_SPLICE_MOVE); else reply_err(req,res); fuse_free_buf(buf); } static void fuse_lib_write(fuse_req_t req, struct fuse_in_header *hdr_) { int res; char *data; struct fuse *f; fuse_file_info_t ffi = {0}; struct fuse_write_in *arg; arg = fuse_hdr_arg(hdr_); ffi.fh = arg->fh; ffi.writepage = !!(arg->write_flags & 1); if(req->f->conn.proto_minor < 9) { data = ((char*)arg) + FUSE_COMPAT_WRITE_IN_SIZE; } else { ffi.flags = arg->flags; ffi.lock_owner = arg->lock_owner; data = PARAM(arg); } f = req_fuse_prepare(req); res = f->fs->op.write(&ffi,data,arg->size,arg->offset); free_path(f,hdr_->nodeid,NULL); if(res >= 0) fuse_reply_write(req,res); else reply_err(req,res); } static void fuse_lib_fsync(fuse_req_t req, struct fuse_in_header *hdr_) { int err; struct fuse *f; struct fuse_fsync_in *arg; fuse_file_info_t ffi = {0}; arg = fuse_hdr_arg(hdr_); ffi.fh = arg->fh; f = req_fuse_prepare(req); err = f->fs->op.fsync(&ffi, !!(arg->fsync_flags & 1)); reply_err(req,err); } static struct fuse_dh* get_dirhandle(const fuse_file_info_t *llfi, fuse_file_info_t *fi) { struct fuse_dh *dh = (struct fuse_dh *)(uintptr_t)llfi->fh; memset(fi,0,sizeof(fuse_file_info_t)); fi->fh = dh->fh; return dh; } static void fuse_lib_opendir(fuse_req_t req, struct fuse_in_header *hdr_) { int err; char *path; struct fuse_dh *dh; fuse_file_info_t llffi = {0}; fuse_file_info_t ffi = {0}; struct fuse *f; struct fuse_open_in *arg; arg = fuse_hdr_arg(hdr_); llffi.flags = arg->flags; f = req_fuse_prepare(req); dh = (struct fuse_dh *)calloc(1,sizeof(struct fuse_dh)); if(dh == NULL) { reply_err(req,-ENOMEM); return; } fuse_dirents_init(&dh->d); fuse_mutex_init(&dh->lock); llffi.fh = (uintptr_t)dh; ffi.flags = llffi.flags; err = get_path(f,hdr_->nodeid,&path); if(!err) { err = f->fs->op.opendir(path,&ffi); dh->fh = ffi.fh; llffi.keep_cache = ffi.keep_cache; llffi.cache_readdir = ffi.cache_readdir; } if(!err) { if(fuse_reply_open(req,&llffi) == -ENOENT) { /* The opendir syscall was interrupted,so it must be cancelled */ f->fs->op.releasedir(&ffi); pthread_mutex_destroy(&dh->lock); free(dh); } } else { reply_err(req,err); pthread_mutex_destroy(&dh->lock); free(dh); } free_path(f,hdr_->nodeid,path); } static size_t readdir_buf_size(fuse_dirents_t *d_, size_t size_, off_t off_) { if(off_ >= kv_size(d_->offs)) return 0; if((kv_A(d_->offs,off_) + size_) > kv_size(d_->data)) return (kv_size(d_->data) - kv_A(d_->offs,off_)); return size_; } static char* readdir_buf(fuse_dirents_t *d_, off_t off_) { size_t i; i = kv_A(d_->offs,off_); return &kv_A(d_->data,i); } static void fuse_lib_readdir(fuse_req_t req_, struct fuse_in_header *hdr_) { int rv; size_t size; struct fuse *f; fuse_dirents_t *d; struct fuse_dh *dh; fuse_file_info_t ffi = {0}; fuse_file_info_t llffi = {0}; struct fuse_read_in *arg; arg = fuse_hdr_arg(hdr_); size = arg->size; llffi.fh = arg->fh; f = req_fuse_prepare(req_); dh = get_dirhandle(&llffi,&ffi); d = &dh->d; pthread_mutex_lock(&dh->lock); rv = 0; if((arg->offset == 0) || (kv_size(d->data) == 0)) rv = f->fs->op.readdir(&ffi,d); if(rv) { reply_err(req_,rv); goto out; } size = readdir_buf_size(d,size,arg->offset); fuse_reply_buf(req_, readdir_buf(d,arg->offset), size); out: pthread_mutex_unlock(&dh->lock); } static void fuse_lib_readdir_plus(fuse_req_t req_, struct fuse_in_header *hdr_) { int rv; size_t size; struct fuse *f; fuse_dirents_t *d; struct fuse_dh *dh; fuse_file_info_t ffi = {0}; fuse_file_info_t llffi = {0}; struct fuse_read_in *arg; arg = fuse_hdr_arg(hdr_); size = arg->size; llffi.fh = arg->fh; f = req_fuse_prepare(req_); dh = get_dirhandle(&llffi,&ffi); d = &dh->d; pthread_mutex_lock(&dh->lock); rv = 0; if((arg->offset == 0) || (kv_size(d->data) == 0)) rv = f->fs->op.readdir_plus(&ffi,d); if(rv) { reply_err(req_,rv); goto out; } size = readdir_buf_size(d,size,arg->offset); fuse_reply_buf(req_, readdir_buf(d,arg->offset), size); out: pthread_mutex_unlock(&dh->lock); } static void fuse_lib_releasedir(fuse_req_t req_, struct fuse_in_header *hdr_) { struct fuse *f; struct fuse_dh *dh; fuse_file_info_t ffi; fuse_file_info_t llffi = {0}; struct fuse_release_in *arg; arg = fuse_hdr_arg(hdr_); llffi.fh = arg->fh; llffi.flags = arg->flags; f = req_fuse_prepare(req_); dh = get_dirhandle(&llffi,&ffi); f->fs->op.releasedir(&ffi); /* Done to keep race condition between last readdir reply and the unlock */ pthread_mutex_lock(&dh->lock); pthread_mutex_unlock(&dh->lock); pthread_mutex_destroy(&dh->lock); fuse_dirents_free(&dh->d); free(dh); reply_err(req_,0); } static void fuse_lib_fsyncdir(fuse_req_t req, struct fuse_in_header *hdr_) { int err; struct fuse *f; fuse_file_info_t ffi; fuse_file_info_t llffi = {0}; struct fuse_fsync_in *arg; arg = fuse_hdr_arg(hdr_); llffi.fh = arg->fh; f = req_fuse_prepare(req); get_dirhandle(&llffi,&ffi); err = f->fs->op.fsyncdir(&ffi, !!(arg->fsync_flags & FUSE_FSYNC_FDATASYNC)); reply_err(req,err); } static void fuse_lib_statfs(fuse_req_t req, struct fuse_in_header *hdr_) { int err = 0; char *path = NULL; struct fuse *f; struct statvfs buf = {0}; f = req_fuse_prepare(req); if(hdr_->nodeid) err = get_path(f,hdr_->nodeid,&path); if(!err) { err = f->fs->op.statfs(path ? path : "/",&buf); free_path(f,hdr_->nodeid,path); } if(!err) fuse_reply_statfs(req,&buf); else reply_err(req,err); } static void fuse_lib_setxattr(fuse_req_t req, struct fuse_in_header *hdr_) { int err; char *path; const char *name; const char *value; struct fuse *f; struct fuse_setxattr_in *arg; arg = fuse_hdr_arg(hdr_); if((req->f->conn.capable & FUSE_SETXATTR_EXT) && (req->f->conn.want & FUSE_SETXATTR_EXT)) name = PARAM(arg); else name = (((char*)arg) + FUSE_COMPAT_SETXATTR_IN_SIZE); value = (name + strlen(name) + 1); f = req_fuse_prepare(req); err = get_path(f,hdr_->nodeid,&path); if(!err) { err = f->fs->op.setxattr(path,name,value,arg->size,arg->flags); free_path(f,hdr_->nodeid,path); } reply_err(req,err); } static int common_getxattr(struct fuse *f, fuse_req_t req, uint64_t ino, const char *name, char *value, size_t size) { int err; char *path; err = get_path(f,ino,&path); if(!err) { err = f->fs->op.getxattr(path,name,value,size); free_path(f,ino,path); } return err; } static void fuse_lib_getxattr(fuse_req_t req, struct fuse_in_header *hdr_) { int res; struct fuse *f; const char* name; struct fuse_getxattr_in *arg; arg = fuse_hdr_arg(hdr_); name = PARAM(arg); f = req_fuse_prepare(req); if(arg->size) { char *value = (char*)malloc(arg->size); if(value == NULL) { reply_err(req,-ENOMEM); return; } res = common_getxattr(f,req,hdr_->nodeid,name,value,arg->size); if(res > 0) fuse_reply_buf(req,value,res); else reply_err(req,res); free(value); } else { res = common_getxattr(f,req,hdr_->nodeid,name,NULL,0); if(res >= 0) fuse_reply_xattr(req,res); else reply_err(req,res); } } static int common_listxattr(struct fuse *f, fuse_req_t req, uint64_t ino, char *list, size_t size) { char *path; int err; err = get_path(f,ino,&path); if(!err) { err = f->fs->op.listxattr(path,list,size); free_path(f,ino,path); } return err; } static void fuse_lib_listxattr(fuse_req_t req, struct fuse_in_header *hdr_) { int res; struct fuse *f; struct fuse_getxattr_in *arg; arg = fuse_hdr_arg(hdr_); f = req_fuse_prepare(req); if(arg->size) { char *list = (char*)malloc(arg->size); if(list == NULL) { reply_err(req,-ENOMEM); return; } res = common_listxattr(f,req,hdr_->nodeid,list,arg->size); if(res > 0) fuse_reply_buf(req,list,res); else reply_err(req,res); free(list); } else { res = common_listxattr(f,req,hdr_->nodeid,NULL,0); if(res >= 0) fuse_reply_xattr(req,res); else reply_err(req,res); } } static void fuse_lib_removexattr(fuse_req_t req, const struct fuse_in_header *hdr_) { int err; char *path; const char *name; struct fuse *f; name = fuse_hdr_arg(hdr_); f = req_fuse_prepare(req); err = get_path(f,hdr_->nodeid,&path); if(!err) { err = f->fs->op.removexattr(path,name); free_path(f,hdr_->nodeid,path); } reply_err(req,err); } static void fuse_lib_copy_file_range(fuse_req_t req_, const struct fuse_in_header *hdr_) { ssize_t rv; struct fuse *f; fuse_file_info_t ffi_in = {0}; fuse_file_info_t ffi_out = {0}; const struct fuse_copy_file_range_in *arg; arg = fuse_hdr_arg(hdr_); ffi_in.fh = arg->fh_in; ffi_out.fh = arg->fh_out; f = req_fuse_prepare(req_); rv = f->fs->op.copy_file_range(&ffi_in, arg->off_in, &ffi_out, arg->off_out, arg->len, arg->flags); if(rv >= 0) fuse_reply_write(req_,rv); else reply_err(req_,rv); } static struct lock* locks_conflict(struct node *node, const struct lock *lock) { struct lock *l; for(l = node->locks; l; l = l->next) if(l->owner != lock->owner && lock->start <= l->end && l->start <= lock->end && (l->type == F_WRLCK || lock->type == F_WRLCK)) break; return l; } static void delete_lock(struct lock **lockp) { struct lock *l = *lockp; *lockp = l->next; free(l); } static void insert_lock(struct lock **pos, struct lock *lock) { lock->next = *pos; *pos = lock; } static int locks_insert(struct node *node, struct lock *lock) { struct lock **lp; struct lock *newl1 = NULL; struct lock *newl2 = NULL; if(lock->type != F_UNLCK || lock->start != 0 || lock->end != OFFSET_MAX) { newl1 = malloc(sizeof(struct lock)); newl2 = malloc(sizeof(struct lock)); if(!newl1 || !newl2) { free(newl1); free(newl2); return -ENOLCK; } } for(lp = &node->locks; *lp;) { struct lock *l = *lp; if(l->owner != lock->owner) goto skip; if(lock->type == l->type) { if(l->end < lock->start - 1) goto skip; if(lock->end < l->start - 1) break; if(l->start <= lock->start && lock->end <= l->end) goto out; if(l->start < lock->start) lock->start = l->start; if(lock->end < l->end) lock->end = l->end; goto delete; } else { if(l->end < lock->start) goto skip; if(lock->end < l->start) break; if(lock->start <= l->start && l->end <= lock->end) goto delete; if(l->end <= lock->end) { l->end = lock->start - 1; goto skip; } if(lock->start <= l->start) { l->start = lock->end + 1; break; } *newl2 = *l; newl2->start = lock->end + 1; l->end = lock->start - 1; insert_lock(&l->next,newl2); newl2 = NULL; } skip: lp = &l->next; continue; delete: delete_lock(lp); } if(lock->type != F_UNLCK) { *newl1 = *lock; insert_lock(lp,newl1); newl1 = NULL; } out: free(newl1); free(newl2); return 0; } static void flock_to_lock(struct flock *flock, struct lock *lock) { memset(lock,0,sizeof(struct lock)); lock->type = flock->l_type; lock->start = flock->l_start; lock->end = flock->l_len ? flock->l_start + flock->l_len - 1 : OFFSET_MAX; lock->pid = flock->l_pid; } static void lock_to_flock(struct lock *lock, struct flock *flock) { flock->l_type = lock->type; flock->l_start = lock->start; flock->l_len = (lock->end == OFFSET_MAX) ? 0 : lock->end - lock->start + 1; flock->l_pid = lock->pid; } static int fuse_flush_common(struct fuse *f, fuse_req_t req, uint64_t ino, fuse_file_info_t *fi) { struct flock lock; struct lock l; int err; int errlock; memset(&lock,0,sizeof(lock)); lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; err = f->fs->op.flush(fi); errlock = f->fs->op.lock(fi,F_SETLK,&lock); if(errlock != -ENOSYS) { flock_to_lock(&lock,&l); l.owner = fi->lock_owner; pthread_mutex_lock(&f->lock); locks_insert(get_node(f,ino),&l); pthread_mutex_unlock(&f->lock); /* if op.lock() is defined FLUSH is needed regardless of op.flush() */ if(err == -ENOSYS) err = 0; } return err; } static void fuse_lib_release(fuse_req_t req, struct fuse_in_header *hdr_) { int err = 0; struct fuse *f; fuse_file_info_t ffi = {0}; struct fuse_release_in *arg; arg = fuse_hdr_arg(hdr_); ffi.fh = arg->fh; ffi.flags = arg->flags; if(req->f->conn.proto_minor >= 8) { ffi.flush = !!(arg->release_flags & FUSE_RELEASE_FLUSH); ffi.lock_owner = arg->lock_owner; } else { ffi.flock_release = 1; ffi.lock_owner = arg->lock_owner; } f = req_fuse_prepare(req); if(ffi.flush) { err = fuse_flush_common(f,req,hdr_->nodeid,&ffi); if(err == -ENOSYS) err = 0; } fuse_do_release(f,hdr_->nodeid,&ffi); reply_err(req,err); } static void fuse_lib_flush(fuse_req_t req, struct fuse_in_header *hdr_) { int err; struct fuse *f; fuse_file_info_t ffi = {0}; struct fuse_flush_in *arg; arg = fuse_hdr_arg(hdr_); ffi.fh = arg->fh; ffi.flush = 1; if(req->f->conn.proto_minor >= 7) ffi.lock_owner = arg->lock_owner; f = req_fuse_prepare(req); err = fuse_flush_common(f,req,hdr_->nodeid,&ffi); reply_err(req,err); } static int fuse_lock_common(fuse_req_t req, uint64_t ino, fuse_file_info_t *fi, struct flock *lock, int cmd) { int err; struct fuse *f = req_fuse_prepare(req); err = f->fs->op.lock(fi,cmd,lock); return err; } static void convert_fuse_file_lock(const struct fuse_file_lock *fl, struct flock *flock) { memset(flock, 0, sizeof(struct flock)); flock->l_type = fl->type; flock->l_whence = SEEK_SET; flock->l_start = fl->start; if (fl->end == OFFSET_MAX) flock->l_len = 0; else flock->l_len = fl->end - fl->start + 1; flock->l_pid = fl->pid; } static void fuse_lib_getlk(fuse_req_t req, const struct fuse_in_header *hdr_) { int err; struct fuse *f; struct lock lk; struct flock flk; struct lock *conflict; fuse_file_info_t ffi = {0}; const struct fuse_lk_in *arg; arg = fuse_hdr_arg(hdr_); ffi.fh = arg->fh; ffi.lock_owner = arg->owner; convert_fuse_file_lock(&arg->lk,&flk); f = req_fuse(req); flock_to_lock(&flk,&lk); lk.owner = ffi.lock_owner; pthread_mutex_lock(&f->lock); conflict = locks_conflict(get_node(f,hdr_->nodeid),&lk); if(conflict) lock_to_flock(conflict,&flk); pthread_mutex_unlock(&f->lock); if(!conflict) err = fuse_lock_common(req,hdr_->nodeid,&ffi,&flk,F_GETLK); else err = 0; if(!err) fuse_reply_lock(req,&flk); else reply_err(req,err); } static void fuse_lib_setlk(fuse_req_t req, uint64_t ino, fuse_file_info_t *fi, struct flock *lock, int sleep) { int err = fuse_lock_common(req,ino,fi,lock, sleep ? F_SETLKW : F_SETLK); if(!err) { struct fuse *f = req_fuse(req); struct lock l; flock_to_lock(lock,&l); l.owner = fi->lock_owner; pthread_mutex_lock(&f->lock); locks_insert(get_node(f,ino),&l); pthread_mutex_unlock(&f->lock); } reply_err(req,err); } static void fuse_lib_flock(fuse_req_t req, uint64_t ino, fuse_file_info_t *fi, int op) { int err; struct fuse *f = req_fuse_prepare(req); err = f->fs->op.flock(fi,op); reply_err(req,err); } static void fuse_lib_bmap(fuse_req_t req, const struct fuse_in_header *hdr_) { int err; char *path; struct fuse *f; uint64_t block; const struct fuse_bmap_in *arg; arg = fuse_hdr_arg(hdr_); block = arg->block; f = req_fuse_prepare(req); err = get_path(f,hdr_->nodeid,&path); if(!err) { err = f->fs->op.bmap(path,arg->blocksize,&block); free_path(f,hdr_->nodeid,path); } if(!err) fuse_reply_bmap(req,block); else reply_err(req,err); } static void fuse_lib_ioctl(fuse_req_t req, const struct fuse_in_header *hdr_) { int err; char *out_buf = NULL; struct fuse *f = req_fuse_prepare(req); fuse_file_info_t ffi; fuse_file_info_t llffi = {0}; const void *in_buf; uint32_t out_size; const struct fuse_ioctl_in *arg; arg = fuse_hdr_arg(hdr_); if((arg->flags & FUSE_IOCTL_DIR) && !(req->f->conn.want & FUSE_CAP_IOCTL_DIR)) { fuse_reply_err(req,ENOTTY); return; } if((sizeof(void*) == 4) && (req->f->conn.proto_minor >= 16) && !(arg->flags & FUSE_IOCTL_32BIT)) { req->ioctl_64bit = 1; } llffi.fh = arg->fh; out_size = arg->out_size; in_buf = (arg->in_size ? PARAM(arg) : NULL); err = -EPERM; if(arg->flags & FUSE_IOCTL_UNRESTRICTED) goto err; if(arg->flags & FUSE_IOCTL_DIR) get_dirhandle(&llffi,&ffi); else ffi = llffi; if(out_size) { err = -ENOMEM; out_buf = malloc(out_size); if(!out_buf) goto err; } assert(!arg->in_size || !out_size || arg->in_size == out_size); if(out_buf) memcpy(out_buf,in_buf,arg->in_size); err = f->fs->op.ioctl(&ffi, arg->cmd, (void*)(uintptr_t)arg->arg, arg->flags, out_buf ?: (void *)in_buf, &out_size); if(err < 0) goto err; fuse_reply_ioctl(req,err,out_buf,out_size); goto out; err: reply_err(req,err); out: free(out_buf); } static void fuse_lib_poll(fuse_req_t req, const struct fuse_in_header *hdr_) { int err; struct fuse *f = req_fuse_prepare(req); unsigned revents = 0; fuse_file_info_t ffi = {0}; fuse_pollhandle_t *ph = NULL; const struct fuse_poll_in *arg; arg = fuse_hdr_arg(hdr_); ffi.fh = arg->fh; if(arg->flags & FUSE_POLL_SCHEDULE_NOTIFY) { ph = (fuse_pollhandle_t*)malloc(sizeof(fuse_pollhandle_t)); if(ph == NULL) { fuse_reply_err(req,ENOMEM); return; } ph->kh = arg->kh; ph->ch = req->ch; ph->f = req->f; } err = f->fs->op.poll(&ffi,ph,&revents); if(!err) fuse_reply_poll(req,revents); else reply_err(req,err); } static void fuse_lib_fallocate(fuse_req_t req, const struct fuse_in_header *hdr_) { int err; struct fuse *f; fuse_file_info_t ffi = {0}; const struct fuse_fallocate_in *arg; arg = fuse_hdr_arg(hdr_); ffi.fh = arg->fh; f = req_fuse_prepare(req); err = f->fs->op.fallocate(&ffi, arg->mode, arg->offset, arg->length); reply_err(req,err); } static int remembered_node_cmp(const void *a_, const void *b_) { const remembered_node_t *a = a_; const remembered_node_t *b = b_; return (a->time - b->time); } static void remembered_nodes_sort(struct fuse *f_) { pthread_mutex_lock(&f_->lock); qsort(&kv_first(f_->remembered_nodes), kv_size(f_->remembered_nodes), sizeof(remembered_node_t), remembered_node_cmp); pthread_mutex_unlock(&f_->lock); } #define MAX_PRUNE 100 #define MAX_CHECK 1000 int fuse_prune_some_remembered_nodes(struct fuse *f_, int *offset_) { time_t now; int pruned; int checked; pthread_mutex_lock(&f_->lock); pruned = 0; checked = 0; now = current_time(); while(*offset_ < kv_size(f_->remembered_nodes)) { time_t age; remembered_node_t *fn = &kv_A(f_->remembered_nodes,*offset_); if(pruned >= MAX_PRUNE) break; if(checked >= MAX_CHECK) break; checked++; age = (now - fn->time); if(f_->conf.remember > age) break; assert(fn->node->nlookup == 1); /* Don't forget active directories */ if(fn->node->refctr > 1) { (*offset_)++; continue; } fn->node->nlookup = 0; unref_node(f_,fn->node); kv_delete(f_->remembered_nodes,*offset_); pruned++; } pthread_mutex_unlock(&f_->lock); if((pruned < MAX_PRUNE) && (checked < MAX_CHECK)) *offset_ = -1; return pruned; } #undef MAX_PRUNE #undef MAX_CHECK static void sleep_100ms(void) { const struct timespec ms100 = {0,100 * 1000000}; nanosleep(&ms100,NULL); } void fuse_prune_remembered_nodes(struct fuse *f_) { int offset; int pruned; offset = 0; pruned = 0; for(;;) { pruned += fuse_prune_some_remembered_nodes(f_,&offset); if(offset >= 0) { sleep_100ms(); continue; } break; } if(pruned > 0) remembered_nodes_sort(f_); } static struct fuse_lowlevel_ops fuse_path_ops = { .access = fuse_lib_access, .bmap = fuse_lib_bmap, .copy_file_range = fuse_lib_copy_file_range, .create = fuse_lib_create, .destroy = fuse_lib_destroy, .fallocate = fuse_lib_fallocate, .flock = fuse_lib_flock, .flush = fuse_lib_flush, .forget = fuse_lib_forget, .forget_multi = fuse_lib_forget_multi, .fsync = fuse_lib_fsync, .fsyncdir = fuse_lib_fsyncdir, .getattr = fuse_lib_getattr, .getlk = fuse_lib_getlk, .getxattr = fuse_lib_getxattr, .init = fuse_lib_init, .ioctl = fuse_lib_ioctl, .link = fuse_lib_link, .listxattr = fuse_lib_listxattr, .lookup = fuse_lib_lookup, .mkdir = fuse_lib_mkdir, .mknod = fuse_lib_mknod, .open = fuse_lib_open, .opendir = fuse_lib_opendir, .poll = fuse_lib_poll, .read = fuse_lib_read, .readdir = fuse_lib_readdir, .readdir_plus = fuse_lib_readdir_plus, .readlink = fuse_lib_readlink, .release = fuse_lib_release, .releasedir = fuse_lib_releasedir, .removexattr = fuse_lib_removexattr, .rename = fuse_lib_rename, .retrieve_reply = NULL, .rmdir = fuse_lib_rmdir, .setattr = fuse_lib_setattr, .setlk = fuse_lib_setlk, .setxattr = fuse_lib_setxattr, .statfs = fuse_lib_statfs, .symlink = fuse_lib_symlink, .unlink = fuse_lib_unlink, .write = fuse_lib_write, }; int fuse_notify_poll(fuse_pollhandle_t *ph) { return fuse_lowlevel_notify_poll(ph); } int fuse_exited(struct fuse *f) { return fuse_session_exited(f->se); } struct fuse_session* fuse_get_session(struct fuse *f) { return f->se; } void fuse_exit(struct fuse *f) { f->se->exited = 1; } struct fuse_context* fuse_get_context(void) { return &fuse_get_context_internal()->ctx; } enum { KEY_HELP, }; #define FUSE_LIB_OPT(t,p,v) { t,offsetof(struct fuse_config,p),v } static const struct fuse_opt fuse_lib_opts[] = { FUSE_OPT_KEY("-h", KEY_HELP), FUSE_OPT_KEY("--help", KEY_HELP), FUSE_OPT_KEY("debug", FUSE_OPT_KEY_KEEP), FUSE_OPT_KEY("-d", FUSE_OPT_KEY_KEEP), FUSE_LIB_OPT("debug", debug,1), FUSE_LIB_OPT("-d", debug,1), FUSE_LIB_OPT("nogc", nogc,1), FUSE_LIB_OPT("umask=", set_mode,1), FUSE_LIB_OPT("umask=%o", umask,0), FUSE_LIB_OPT("uid=", set_uid,1), FUSE_LIB_OPT("uid=%d", uid,0), FUSE_LIB_OPT("gid=", set_gid,1), FUSE_LIB_OPT("gid=%d", gid,0), FUSE_LIB_OPT("noforget", remember,-1), FUSE_LIB_OPT("remember=%u", remember,0), FUSE_LIB_OPT("threads=%d", read_thread_count,0), FUSE_LIB_OPT("read-thread-count=%d", read_thread_count,0), FUSE_LIB_OPT("process-thread-count=%d", process_thread_count,-1), FUSE_OPT_END }; static void fuse_lib_help(void) { fprintf(stderr, " -o umask=M set file permissions (octal)\n" " -o uid=N set file owner\n" " -o gid=N set file group\n" " -o noforget never forget cached inodes\n" " -o remember=T remember cached inodes for T seconds (0s)\n" " -o threads=NUM number of worker threads. 0 = autodetect.\n" " Negative values autodetect then divide by\n" " absolute value. default = 0\n" "\n"); } static int fuse_lib_opt_proc(void *data, const char *arg, int key, struct fuse_args *outargs) { (void)arg; (void)outargs; if(key == KEY_HELP) { struct fuse_config *conf = (struct fuse_config *)data; fuse_lib_help(); conf->help = 1; } return 1; } int fuse_is_lib_option(const char *opt) { return fuse_lowlevel_is_lib_option(opt) || fuse_opt_match(fuse_lib_opts,opt); } struct fuse_fs* fuse_fs_new(const struct fuse_operations *op, size_t op_size) { struct fuse_fs *fs; if(sizeof(struct fuse_operations) < op_size) { fprintf(stderr,"fuse: warning: library too old,some operations may not not work\n"); op_size = sizeof(struct fuse_operations); } fs = (struct fuse_fs *)calloc(1,sizeof(struct fuse_fs)); if(!fs) { fprintf(stderr,"fuse: failed to allocate fuse_fs object\n"); return NULL; } if(op) memcpy(&fs->op,op,op_size); return fs; } static int node_table_init(struct node_table *t) { t->size = NODE_TABLE_MIN_SIZE; t->array = (struct node **)calloc(1,sizeof(struct node *) * t->size); if(t->array == NULL) { fprintf(stderr,"fuse: memory allocation failed\n"); return -1; } t->use = 0; t->split = 0; return 0; } static void metrics_log_nodes_info(struct fuse *f_, FILE *file_) { char buf[1024]; lfmp_lock(&f_->node_fmp); snprintf(buf,sizeof(buf), "time: %"PRIu64"\n" "sizeof(node): %"PRIu64"\n" "node id_table size: %"PRIu64"\n" "node id_table usage: %"PRIu64"\n" "node id_table total allocated memory: %"PRIu64"\n" "node name_table size: %"PRIu64"\n" "node name_table usage: %"PRIu64"\n" "node name_table total allocated memory: %"PRIu64"\n" "node memory pool slab count: %"PRIu64"\n" "node memory pool usage ratio: %f\n" "node memory pool avail objs: %"PRIu64"\n" "node memory pool total allocated memory: %"PRIu64"\n" "\n" , (uint64_t)time(NULL), (uint64_t)sizeof(struct node), (uint64_t)f_->id_table.size, (uint64_t)f_->id_table.use, (uint64_t)(f_->id_table.size * sizeof(struct node*)), (uint64_t)f_->name_table.size, (uint64_t)f_->name_table.use, (uint64_t)(f_->name_table.size * sizeof(struct node*)), (uint64_t)fmp_slab_count(&f_->node_fmp.fmp), fmp_slab_usage_ratio(&f_->node_fmp.fmp), (uint64_t)fmp_avail_objs(&f_->node_fmp.fmp), (uint64_t)fmp_total_allocated_memory(&f_->node_fmp.fmp) ); lfmp_unlock(&f_->node_fmp); fputs(buf,file_); } static void metrics_log_nodes_info_to_tmp_dir(struct fuse *f_) { FILE *file; char filepath[256]; sprintf(filepath,"/tmp/mergerfs.%d.info",getpid()); file = fopen(filepath,"w"); if(file == NULL) return; metrics_log_nodes_info(f_,file); fclose(file); } static void fuse_malloc_trim(void) { #ifdef HAVE_MALLOC_TRIM malloc_trim(1024 * 1024); #endif } static void* fuse_maintenance_loop(void *fuse_) { int gc; int loops; int sleep_time; struct fuse *f = (struct fuse*)fuse_; gc = 0; loops = 0; sleep_time = 60; while(1) { if(remember_nodes(f)) fuse_prune_remembered_nodes(f); if((loops % 15) == 0) { fuse_malloc_trim(); gc = 1; } // Trigger a followup gc if this gc succeeds if(!f->conf.nogc && gc) gc = lfmp_gc(&f->node_fmp); if(g_LOG_METRICS) metrics_log_nodes_info_to_tmp_dir(f); loops++; sleep(sleep_time); } return NULL; } int fuse_start_maintenance_thread(struct fuse *f_) { return fuse_start_thread(&f_->maintenance_thread,fuse_maintenance_loop,f_); } void fuse_stop_maintenance_thread(struct fuse *f_) { pthread_mutex_lock(&f_->lock); pthread_cancel(f_->maintenance_thread); pthread_mutex_unlock(&f_->lock); pthread_join(f_->maintenance_thread,NULL); } struct fuse* fuse_new_common(struct fuse_chan *ch, struct fuse_args *args, const struct fuse_operations *op, size_t op_size) { struct fuse *f; struct node *root; struct fuse_fs *fs; struct fuse_lowlevel_ops llop = fuse_path_ops; if(fuse_create_context_key() == -1) goto out; f = (struct fuse *)calloc(1,sizeof(struct fuse)); if(f == NULL) { fprintf(stderr,"fuse: failed to allocate fuse object\n"); goto out_delete_context_key; } fs = fuse_fs_new(op,op_size); if(!fs) goto out_free; f->fs = fs; /* Oh f**k,this is ugly! */ if(!fs->op.lock) { llop.getlk = NULL; llop.setlk = NULL; } if(fuse_opt_parse(args,&f->conf,fuse_lib_opts,fuse_lib_opt_proc) == -1) goto out_free_fs; g_LOG_METRICS = f->conf.debug; f->se = fuse_lowlevel_new_common(args,&llop,sizeof(llop),f); if(f->se == NULL) goto out_free_fs; fuse_session_add_chan(f->se,ch); /* Trace topmost layer by default */ srand(time(NULL)); f->nodeid_gen.nodeid = FUSE_ROOT_ID; f->nodeid_gen.generation = rand64(); if(node_table_init(&f->name_table) == -1) goto out_free_session; if(node_table_init(&f->id_table) == -1) goto out_free_name_table; fuse_mutex_init(&f->lock); lfmp_init(&f->node_fmp,sizeof(struct node),256); kv_init(f->remembered_nodes); root = alloc_node(f); if(root == NULL) { fprintf(stderr,"fuse: memory allocation failed\n"); goto out_free_id_table; } root->name = filename_strdup(f,"/"); root->parent = NULL; root->nodeid = FUSE_ROOT_ID; inc_nlookup(root); hash_id(f,root); return f; out_free_id_table: free(f->id_table.array); out_free_name_table: free(f->name_table.array); out_free_session: fuse_session_destroy(f->se); out_free_fs: /* Horrible compatibility hack to stop the destructor from being called on the filesystem without init being called first */ fs->op.destroy = NULL; free(f->fs); out_free: free(f); out_delete_context_key: fuse_delete_context_key(); out: return NULL; } struct fuse* fuse_new(struct fuse_chan *ch, struct fuse_args *args, const struct fuse_operations *op, size_t op_size) { return fuse_new_common(ch,args,op,op_size); } void fuse_destroy(struct fuse *f) { size_t i; if(f->fs) { struct fuse_context_i *c = fuse_get_context_internal(); memset(c,0,sizeof(*c)); c->ctx.fuse = f; for(i = 0; i < f->id_table.size; i++) { struct node *node; for(node = f->id_table.array[i]; node != NULL; node = node->id_next) { if(node->is_hidden) f->fs->op.free_hide(node->hidden_fh); } } } for(i = 0; i < f->id_table.size; i++) { struct node *node; struct node *next; for(node = f->id_table.array[i]; node != NULL; node = next) { next = node->id_next; free_node(f,node); f->id_table.use--; } } free(f->id_table.array); free(f->name_table.array); pthread_mutex_destroy(&f->lock); fuse_session_destroy(f->se); lfmp_destroy(&f->node_fmp); kv_destroy(f->remembered_nodes); free(f); fuse_delete_context_key(); } int fuse_config_read_thread_count(const struct fuse *f_) { return f_->conf.read_thread_count; } int fuse_config_process_thread_count(const struct fuse *f_) { return f_->conf.process_thread_count; } void fuse_log_metrics_set(int log_) { g_LOG_METRICS = log_; } int fuse_log_metrics_get(void) { return g_LOG_METRICS; }