// Formatting library for C++ - chrono support // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_CHRONO_H_ #define FMT_CHRONO_H_ #include <algorithm> #include <chrono> #include <cmath> // std::isfinite #include <cstring> // std::memcpy #include <ctime> #include <iterator> #include <locale> #include <ostream> #include <type_traits> #include "format.h" FMT_BEGIN_NAMESPACE // Enable tzset. #ifndef FMT_USE_TZSET // UWP doesn't provide _tzset. # if FMT_HAS_INCLUDE("winapifamily.h") # include <winapifamily.h> # endif # if defined(_WIN32) && (!defined(WINAPI_FAMILY) || \ (WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP)) # define FMT_USE_TZSET 1 # else # define FMT_USE_TZSET 0 # endif #endif // Enable safe chrono durations, unless explicitly disabled. #ifndef FMT_SAFE_DURATION_CAST # define FMT_SAFE_DURATION_CAST 1 #endif #if FMT_SAFE_DURATION_CAST // For conversion between std::chrono::durations without undefined // behaviour or erroneous results. // This is a stripped down version of duration_cast, for inclusion in fmt. // See https://github.com/pauldreik/safe_duration_cast // // Copyright Paul Dreik 2019 namespace safe_duration_cast { template <typename To, typename From, FMT_ENABLE_IF(!std::is_same<From, To>::value && std::numeric_limits<From>::is_signed == std::numeric_limits<To>::is_signed)> FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) { ec = 0; using F = std::numeric_limits<From>; using T = std::numeric_limits<To>; static_assert(F::is_integer, "From must be integral"); static_assert(T::is_integer, "To must be integral"); // A and B are both signed, or both unsigned. if (detail::const_check(F::digits <= T::digits)) { // From fits in To without any problem. } else { // From does not always fit in To, resort to a dynamic check. if (from < (T::min)() || from > (T::max)()) { // outside range. ec = 1; return {}; } } return static_cast<To>(from); } /** * converts From to To, without loss. If the dynamic value of from * can't be converted to To without loss, ec is set. */ template <typename To, typename From, FMT_ENABLE_IF(!std::is_same<From, To>::value && std::numeric_limits<From>::is_signed != std::numeric_limits<To>::is_signed)> FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) { ec = 0; using F = std::numeric_limits<From>; using T = std::numeric_limits<To>; static_assert(F::is_integer, "From must be integral"); static_assert(T::is_integer, "To must be integral"); if (detail::const_check(F::is_signed && !T::is_signed)) { // From may be negative, not allowed! if (fmt::detail::is_negative(from)) { ec = 1; return {}; } // From is positive. Can it always fit in To? if (detail::const_check(F::digits > T::digits) && from > static_cast<From>(detail::max_value<To>())) { ec = 1; return {}; } } if (detail::const_check(!F::is_signed && T::is_signed && F::digits >= T::digits) && from > static_cast<From>(detail::max_value<To>())) { ec = 1; return {}; } return static_cast<To>(from); // Lossless conversion. } template <typename To, typename From, FMT_ENABLE_IF(std::is_same<From, To>::value)> FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) { ec = 0; return from; } // function // clang-format off /** * converts From to To if possible, otherwise ec is set. * * input | output * ---------------------------------|--------------- * NaN | NaN * Inf | Inf * normal, fits in output | converted (possibly lossy) * normal, does not fit in output | ec is set * subnormal | best effort * -Inf | -Inf */ // clang-format on template <typename To, typename From, FMT_ENABLE_IF(!std::is_same<From, To>::value)> FMT_CONSTEXPR To safe_float_conversion(const From from, int& ec) { ec = 0; using T = std::numeric_limits<To>; static_assert(std::is_floating_point<From>::value, "From must be floating"); static_assert(std::is_floating_point<To>::value, "To must be floating"); // catch the only happy case if (std::isfinite(from)) { if (from >= T::lowest() && from <= (T::max)()) { return static_cast<To>(from); } // not within range. ec = 1; return {}; } // nan and inf will be preserved return static_cast<To>(from); } // function template <typename To, typename From, FMT_ENABLE_IF(std::is_same<From, To>::value)> FMT_CONSTEXPR To safe_float_conversion(const From from, int& ec) { ec = 0; static_assert(std::is_floating_point<From>::value, "From must be floating"); return from; } /** * safe duration cast between integral durations */ template <typename To, typename FromRep, typename FromPeriod, FMT_ENABLE_IF(std::is_integral<FromRep>::value), FMT_ENABLE_IF(std::is_integral<typename To::rep>::value)> To safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from, int& ec) { using From = std::chrono::duration<FromRep, FromPeriod>; ec = 0; // the basic idea is that we need to convert from count() in the from type // to count() in the To type, by multiplying it with this: struct Factor : std::ratio_divide<typename From::period, typename To::period> {}; static_assert(Factor::num > 0, "num must be positive"); static_assert(Factor::den > 0, "den must be positive"); // the conversion is like this: multiply from.count() with Factor::num // /Factor::den and convert it to To::rep, all this without // overflow/underflow. let's start by finding a suitable type that can hold // both To, From and Factor::num using IntermediateRep = typename std::common_type<typename From::rep, typename To::rep, decltype(Factor::num)>::type; // safe conversion to IntermediateRep IntermediateRep count = lossless_integral_conversion<IntermediateRep>(from.count(), ec); if (ec) return {}; // multiply with Factor::num without overflow or underflow if (detail::const_check(Factor::num != 1)) { const auto max1 = detail::max_value<IntermediateRep>() / Factor::num; if (count > max1) { ec = 1; return {}; } const auto min1 = (std::numeric_limits<IntermediateRep>::min)() / Factor::num; if (!std::is_unsigned<IntermediateRep>::value && count < min1) { ec = 1; return {}; } count *= Factor::num; } if (detail::const_check(Factor::den != 1)) count /= Factor::den; auto tocount = lossless_integral_conversion<typename To::rep>(count, ec); return ec ? To() : To(tocount); } /** * safe duration_cast between floating point durations */ template <typename To, typename FromRep, typename FromPeriod, FMT_ENABLE_IF(std::is_floating_point<FromRep>::value), FMT_ENABLE_IF(std::is_floating_point<typename To::rep>::value)> To safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from, int& ec) { using From = std::chrono::duration<FromRep, FromPeriod>; ec = 0; if (std::isnan(from.count())) { // nan in, gives nan out. easy. return To{std::numeric_limits<typename To::rep>::quiet_NaN()}; } // maybe we should also check if from is denormal, and decide what to do about // it. // +-inf should be preserved. if (std::isinf(from.count())) { return To{from.count()}; } // the basic idea is that we need to convert from count() in the from type // to count() in the To type, by multiplying it with this: struct Factor : std::ratio_divide<typename From::period, typename To::period> {}; static_assert(Factor::num > 0, "num must be positive"); static_assert(Factor::den > 0, "den must be positive"); // the conversion is like this: multiply from.count() with Factor::num // /Factor::den and convert it to To::rep, all this without // overflow/underflow. let's start by finding a suitable type that can hold // both To, From and Factor::num using IntermediateRep = typename std::common_type<typename From::rep, typename To::rep, decltype(Factor::num)>::type; // force conversion of From::rep -> IntermediateRep to be safe, // even if it will never happen be narrowing in this context. IntermediateRep count = safe_float_conversion<IntermediateRep>(from.count(), ec); if (ec) { return {}; } // multiply with Factor::num without overflow or underflow if (detail::const_check(Factor::num != 1)) { constexpr auto max1 = detail::max_value<IntermediateRep>() / static_cast<IntermediateRep>(Factor::num); if (count > max1) { ec = 1; return {}; } constexpr auto min1 = std::numeric_limits<IntermediateRep>::lowest() / static_cast<IntermediateRep>(Factor::num); if (count < min1) { ec = 1; return {}; } count *= static_cast<IntermediateRep>(Factor::num); } // this can't go wrong, right? den>0 is checked earlier. if (detail::const_check(Factor::den != 1)) { using common_t = typename std::common_type<IntermediateRep, intmax_t>::type; count /= static_cast<common_t>(Factor::den); } // convert to the to type, safely using ToRep = typename To::rep; const ToRep tocount = safe_float_conversion<ToRep>(count, ec); if (ec) { return {}; } return To{tocount}; } } // namespace safe_duration_cast #endif // Prevents expansion of a preceding token as a function-style macro. // Usage: f FMT_NOMACRO() #define FMT_NOMACRO namespace detail { template <typename T = void> struct null {}; inline null<> localtime_r FMT_NOMACRO(...) { return null<>(); } inline null<> localtime_s(...) { return null<>(); } inline null<> gmtime_r(...) { return null<>(); } inline null<> gmtime_s(...) { return null<>(); } inline const std::locale& get_classic_locale() { static const auto& locale = std::locale::classic(); return locale; } template <typename CodeUnit> struct codecvt_result { static constexpr const size_t max_size = 32; CodeUnit buf[max_size]; CodeUnit* end; }; template <typename CodeUnit> constexpr const size_t codecvt_result<CodeUnit>::max_size; template <typename CodeUnit> void write_codecvt(codecvt_result<CodeUnit>& out, string_view in_buf, const std::locale& loc) { #if FMT_CLANG_VERSION # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wdeprecated" auto& f = std::use_facet<std::codecvt<CodeUnit, char, std::mbstate_t>>(loc); # pragma clang diagnostic pop #else auto& f = std::use_facet<std::codecvt<CodeUnit, char, std::mbstate_t>>(loc); #endif auto mb = std::mbstate_t(); const char* from_next = nullptr; auto result = f.in(mb, in_buf.begin(), in_buf.end(), from_next, std::begin(out.buf), std::end(out.buf), out.end); if (result != std::codecvt_base::ok) FMT_THROW(format_error("failed to format time")); } template <typename OutputIt> auto write_encoded_tm_str(OutputIt out, string_view in, const std::locale& loc) -> OutputIt { if (detail::is_utf8() && loc != get_classic_locale()) { // char16_t and char32_t codecvts are broken in MSVC (linkage errors) and // gcc-4. #if FMT_MSC_VERSION != 0 || \ (defined(__GLIBCXX__) && !defined(_GLIBCXX_USE_DUAL_ABI)) // The _GLIBCXX_USE_DUAL_ABI macro is always defined in libstdc++ from gcc-5 // and newer. using code_unit = wchar_t; #else using code_unit = char32_t; #endif using unit_t = codecvt_result<code_unit>; unit_t unit; write_codecvt(unit, in, loc); // In UTF-8 is used one to four one-byte code units. auto&& buf = basic_memory_buffer<char, unit_t::max_size * 4>(); for (code_unit* p = unit.buf; p != unit.end; ++p) { uint32_t c = static_cast<uint32_t>(*p); if (sizeof(code_unit) == 2 && c >= 0xd800 && c <= 0xdfff) { // surrogate pair ++p; if (p == unit.end || (c & 0xfc00) != 0xd800 || (*p & 0xfc00) != 0xdc00) { FMT_THROW(format_error("failed to format time")); } c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00; } if (c < 0x80) { buf.push_back(static_cast<char>(c)); } else if (c < 0x800) { buf.push_back(static_cast<char>(0xc0 | (c >> 6))); buf.push_back(static_cast<char>(0x80 | (c & 0x3f))); } else if ((c >= 0x800 && c <= 0xd7ff) || (c >= 0xe000 && c <= 0xffff)) { buf.push_back(static_cast<char>(0xe0 | (c >> 12))); buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6))); buf.push_back(static_cast<char>(0x80 | (c & 0x3f))); } else if (c >= 0x10000 && c <= 0x10ffff) { buf.push_back(static_cast<char>(0xf0 | (c >> 18))); buf.push_back(static_cast<char>(0x80 | ((c & 0x3ffff) >> 12))); buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6))); buf.push_back(static_cast<char>(0x80 | (c & 0x3f))); } else { FMT_THROW(format_error("failed to format time")); } } return copy_str<char>(buf.data(), buf.data() + buf.size(), out); } return copy_str<char>(in.data(), in.data() + in.size(), out); } template <typename Char, typename OutputIt, FMT_ENABLE_IF(!std::is_same<Char, char>::value)> auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc) -> OutputIt { codecvt_result<Char> unit; write_codecvt(unit, sv, loc); return copy_str<Char>(unit.buf, unit.end, out); } template <typename Char, typename OutputIt, FMT_ENABLE_IF(std::is_same<Char, char>::value)> auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc) -> OutputIt { return write_encoded_tm_str(out, sv, loc); } template <typename Char> inline void do_write(buffer<Char>& buf, const std::tm& time, const std::locale& loc, char format, char modifier) { auto&& format_buf = formatbuf<std::basic_streambuf<Char>>(buf); auto&& os = std::basic_ostream<Char>(&format_buf); os.imbue(loc); using iterator = std::ostreambuf_iterator<Char>; const auto& facet = std::use_facet<std::time_put<Char, iterator>>(loc); auto end = facet.put(os, os, Char(' '), &time, format, modifier); if (end.failed()) FMT_THROW(format_error("failed to format time")); } template <typename Char, typename OutputIt, FMT_ENABLE_IF(!std::is_same<Char, char>::value)> auto write(OutputIt out, const std::tm& time, const std::locale& loc, char format, char modifier = 0) -> OutputIt { auto&& buf = get_buffer<Char>(out); do_write<Char>(buf, time, loc, format, modifier); return buf.out(); } template <typename Char, typename OutputIt, FMT_ENABLE_IF(std::is_same<Char, char>::value)> auto write(OutputIt out, const std::tm& time, const std::locale& loc, char format, char modifier = 0) -> OutputIt { auto&& buf = basic_memory_buffer<Char>(); do_write<char>(buf, time, loc, format, modifier); return write_encoded_tm_str(out, string_view(buf.data(), buf.size()), loc); } } // namespace detail FMT_MODULE_EXPORT_BEGIN /** Converts given time since epoch as ``std::time_t`` value into calendar time, expressed in local time. Unlike ``std::localtime``, this function is thread-safe on most platforms. */ inline std::tm localtime(std::time_t time) { struct dispatcher { std::time_t time_; std::tm tm_; dispatcher(std::time_t t) : time_(t) {} bool run() { using namespace fmt::detail; return handle(localtime_r(&time_, &tm_)); } bool handle(std::tm* tm) { return tm != nullptr; } bool handle(detail::null<>) { using namespace fmt::detail; return fallback(localtime_s(&tm_, &time_)); } bool fallback(int res) { return res == 0; } #if !FMT_MSC_VERSION bool fallback(detail::null<>) { using namespace fmt::detail; std::tm* tm = std::localtime(&time_); if (tm) tm_ = *tm; return tm != nullptr; } #endif }; dispatcher lt(time); // Too big time values may be unsupported. if (!lt.run()) FMT_THROW(format_error("time_t value out of range")); return lt.tm_; } inline std::tm localtime( std::chrono::time_point<std::chrono::system_clock> time_point) { return localtime(std::chrono::system_clock::to_time_t(time_point)); } /** Converts given time since epoch as ``std::time_t`` value into calendar time, expressed in Coordinated Universal Time (UTC). Unlike ``std::gmtime``, this function is thread-safe on most platforms. */ inline std::tm gmtime(std::time_t time) { struct dispatcher { std::time_t time_; std::tm tm_; dispatcher(std::time_t t) : time_(t) {} bool run() { using namespace fmt::detail; return handle(gmtime_r(&time_, &tm_)); } bool handle(std::tm* tm) { return tm != nullptr; } bool handle(detail::null<>) { using namespace fmt::detail; return fallback(gmtime_s(&tm_, &time_)); } bool fallback(int res) { return res == 0; } #if !FMT_MSC_VERSION bool fallback(detail::null<>) { std::tm* tm = std::gmtime(&time_); if (tm) tm_ = *tm; return tm != nullptr; } #endif }; dispatcher gt(time); // Too big time values may be unsupported. if (!gt.run()) FMT_THROW(format_error("time_t value out of range")); return gt.tm_; } inline std::tm gmtime( std::chrono::time_point<std::chrono::system_clock> time_point) { return gmtime(std::chrono::system_clock::to_time_t(time_point)); } FMT_BEGIN_DETAIL_NAMESPACE // Writes two-digit numbers a, b and c separated by sep to buf. // The method by Pavel Novikov based on // https://johnnylee-sde.github.io/Fast-unsigned-integer-to-time-string/. inline void write_digit2_separated(char* buf, unsigned a, unsigned b, unsigned c, char sep) { unsigned long long digits = a | (b << 24) | (static_cast<unsigned long long>(c) << 48); // Convert each value to BCD. // We have x = a * 10 + b and we want to convert it to BCD y = a * 16 + b. // The difference is // y - x = a * 6 // a can be found from x: // a = floor(x / 10) // then // y = x + a * 6 = x + floor(x / 10) * 6 // floor(x / 10) is (x * 205) >> 11 (needs 16 bits). digits += (((digits * 205) >> 11) & 0x000f00000f00000f) * 6; // Put low nibbles to high bytes and high nibbles to low bytes. digits = ((digits & 0x00f00000f00000f0) >> 4) | ((digits & 0x000f00000f00000f) << 8); auto usep = static_cast<unsigned long long>(sep); // Add ASCII '0' to each digit byte and insert separators. digits |= 0x3030003030003030 | (usep << 16) | (usep << 40); constexpr const size_t len = 8; if (const_check(is_big_endian())) { char tmp[len]; std::memcpy(tmp, &digits, len); std::reverse_copy(tmp, tmp + len, buf); } else { std::memcpy(buf, &digits, len); } } template <typename Period> FMT_CONSTEXPR inline const char* get_units() { if (std::is_same<Period, std::atto>::value) return "as"; if (std::is_same<Period, std::femto>::value) return "fs"; if (std::is_same<Period, std::pico>::value) return "ps"; if (std::is_same<Period, std::nano>::value) return "ns"; if (std::is_same<Period, std::micro>::value) return "µs"; if (std::is_same<Period, std::milli>::value) return "ms"; if (std::is_same<Period, std::centi>::value) return "cs"; if (std::is_same<Period, std::deci>::value) return "ds"; if (std::is_same<Period, std::ratio<1>>::value) return "s"; if (std::is_same<Period, std::deca>::value) return "das"; if (std::is_same<Period, std::hecto>::value) return "hs"; if (std::is_same<Period, std::kilo>::value) return "ks"; if (std::is_same<Period, std::mega>::value) return "Ms"; if (std::is_same<Period, std::giga>::value) return "Gs"; if (std::is_same<Period, std::tera>::value) return "Ts"; if (std::is_same<Period, std::peta>::value) return "Ps"; if (std::is_same<Period, std::exa>::value) return "Es"; if (std::is_same<Period, std::ratio<60>>::value) return "m"; if (std::is_same<Period, std::ratio<3600>>::value) return "h"; return nullptr; } enum class numeric_system { standard, // Alternative numeric system, e.g. 十二 instead of 12 in ja_JP locale. alternative }; // Parses a put_time-like format string and invokes handler actions. template <typename Char, typename Handler> FMT_CONSTEXPR const Char* parse_chrono_format(const Char* begin, const Char* end, Handler&& handler) { auto ptr = begin; while (ptr != end) { auto c = *ptr; if (c == '}') break; if (c != '%') { ++ptr; continue; } if (begin != ptr) handler.on_text(begin, ptr); ++ptr; // consume '%' if (ptr == end) FMT_THROW(format_error("invalid format")); c = *ptr++; switch (c) { case '%': handler.on_text(ptr - 1, ptr); break; case 'n': { const Char newline[] = {'\n'}; handler.on_text(newline, newline + 1); break; } case 't': { const Char tab[] = {'\t'}; handler.on_text(tab, tab + 1); break; } // Year: case 'Y': handler.on_year(numeric_system::standard); break; case 'y': handler.on_short_year(numeric_system::standard); break; case 'C': handler.on_century(numeric_system::standard); break; case 'G': handler.on_iso_week_based_year(); break; case 'g': handler.on_iso_week_based_short_year(); break; // Day of the week: case 'a': handler.on_abbr_weekday(); break; case 'A': handler.on_full_weekday(); break; case 'w': handler.on_dec0_weekday(numeric_system::standard); break; case 'u': handler.on_dec1_weekday(numeric_system::standard); break; // Month: case 'b': case 'h': handler.on_abbr_month(); break; case 'B': handler.on_full_month(); break; case 'm': handler.on_dec_month(numeric_system::standard); break; // Day of the year/month: case 'U': handler.on_dec0_week_of_year(numeric_system::standard); break; case 'W': handler.on_dec1_week_of_year(numeric_system::standard); break; case 'V': handler.on_iso_week_of_year(numeric_system::standard); break; case 'j': handler.on_day_of_year(); break; case 'd': handler.on_day_of_month(numeric_system::standard); break; case 'e': handler.on_day_of_month_space(numeric_system::standard); break; // Hour, minute, second: case 'H': handler.on_24_hour(numeric_system::standard); break; case 'I': handler.on_12_hour(numeric_system::standard); break; case 'M': handler.on_minute(numeric_system::standard); break; case 'S': handler.on_second(numeric_system::standard); break; // Other: case 'c': handler.on_datetime(numeric_system::standard); break; case 'x': handler.on_loc_date(numeric_system::standard); break; case 'X': handler.on_loc_time(numeric_system::standard); break; case 'D': handler.on_us_date(); break; case 'F': handler.on_iso_date(); break; case 'r': handler.on_12_hour_time(); break; case 'R': handler.on_24_hour_time(); break; case 'T': handler.on_iso_time(); break; case 'p': handler.on_am_pm(); break; case 'Q': handler.on_duration_value(); break; case 'q': handler.on_duration_unit(); break; case 'z': handler.on_utc_offset(); break; case 'Z': handler.on_tz_name(); break; // Alternative representation: case 'E': { if (ptr == end) FMT_THROW(format_error("invalid format")); c = *ptr++; switch (c) { case 'Y': handler.on_year(numeric_system::alternative); break; case 'y': handler.on_offset_year(); break; case 'C': handler.on_century(numeric_system::alternative); break; case 'c': handler.on_datetime(numeric_system::alternative); break; case 'x': handler.on_loc_date(numeric_system::alternative); break; case 'X': handler.on_loc_time(numeric_system::alternative); break; default: FMT_THROW(format_error("invalid format")); } break; } case 'O': if (ptr == end) FMT_THROW(format_error("invalid format")); c = *ptr++; switch (c) { case 'y': handler.on_short_year(numeric_system::alternative); break; case 'm': handler.on_dec_month(numeric_system::alternative); break; case 'U': handler.on_dec0_week_of_year(numeric_system::alternative); break; case 'W': handler.on_dec1_week_of_year(numeric_system::alternative); break; case 'V': handler.on_iso_week_of_year(numeric_system::alternative); break; case 'd': handler.on_day_of_month(numeric_system::alternative); break; case 'e': handler.on_day_of_month_space(numeric_system::alternative); break; case 'w': handler.on_dec0_weekday(numeric_system::alternative); break; case 'u': handler.on_dec1_weekday(numeric_system::alternative); break; case 'H': handler.on_24_hour(numeric_system::alternative); break; case 'I': handler.on_12_hour(numeric_system::alternative); break; case 'M': handler.on_minute(numeric_system::alternative); break; case 'S': handler.on_second(numeric_system::alternative); break; default: FMT_THROW(format_error("invalid format")); } break; default: FMT_THROW(format_error("invalid format")); } begin = ptr; } if (begin != ptr) handler.on_text(begin, ptr); return ptr; } template <typename Derived> struct null_chrono_spec_handler { FMT_CONSTEXPR void unsupported() { static_cast<Derived*>(this)->unsupported(); } FMT_CONSTEXPR void on_year(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_short_year(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_offset_year() { unsupported(); } FMT_CONSTEXPR void on_century(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_iso_week_based_year() { unsupported(); } FMT_CONSTEXPR void on_iso_week_based_short_year() { unsupported(); } FMT_CONSTEXPR void on_abbr_weekday() { unsupported(); } FMT_CONSTEXPR void on_full_weekday() { unsupported(); } FMT_CONSTEXPR void on_dec0_weekday(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_dec1_weekday(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_abbr_month() { unsupported(); } FMT_CONSTEXPR void on_full_month() { unsupported(); } FMT_CONSTEXPR void on_dec_month(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_iso_week_of_year(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_day_of_year() { unsupported(); } FMT_CONSTEXPR void on_day_of_month(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_day_of_month_space(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_24_hour(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_12_hour(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_minute(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_second(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_datetime(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_loc_date(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_loc_time(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_us_date() { unsupported(); } FMT_CONSTEXPR void on_iso_date() { unsupported(); } FMT_CONSTEXPR void on_12_hour_time() { unsupported(); } FMT_CONSTEXPR void on_24_hour_time() { unsupported(); } FMT_CONSTEXPR void on_iso_time() { unsupported(); } FMT_CONSTEXPR void on_am_pm() { unsupported(); } FMT_CONSTEXPR void on_duration_value() { unsupported(); } FMT_CONSTEXPR void on_duration_unit() { unsupported(); } FMT_CONSTEXPR void on_utc_offset() { unsupported(); } FMT_CONSTEXPR void on_tz_name() { unsupported(); } }; struct tm_format_checker : null_chrono_spec_handler<tm_format_checker> { FMT_NORETURN void unsupported() { FMT_THROW(format_error("no format")); } template <typename Char> FMT_CONSTEXPR void on_text(const Char*, const Char*) {} FMT_CONSTEXPR void on_year(numeric_system) {} FMT_CONSTEXPR void on_short_year(numeric_system) {} FMT_CONSTEXPR void on_offset_year() {} FMT_CONSTEXPR void on_century(numeric_system) {} FMT_CONSTEXPR void on_iso_week_based_year() {} FMT_CONSTEXPR void on_iso_week_based_short_year() {} FMT_CONSTEXPR void on_abbr_weekday() {} FMT_CONSTEXPR void on_full_weekday() {} FMT_CONSTEXPR void on_dec0_weekday(numeric_system) {} FMT_CONSTEXPR void on_dec1_weekday(numeric_system) {} FMT_CONSTEXPR void on_abbr_month() {} FMT_CONSTEXPR void on_full_month() {} FMT_CONSTEXPR void on_dec_month(numeric_system) {} FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system) {} FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system) {} FMT_CONSTEXPR void on_iso_week_of_year(numeric_system) {} FMT_CONSTEXPR void on_day_of_year() {} FMT_CONSTEXPR void on_day_of_month(numeric_system) {} FMT_CONSTEXPR void on_day_of_month_space(numeric_system) {} FMT_CONSTEXPR void on_24_hour(numeric_system) {} FMT_CONSTEXPR void on_12_hour(numeric_system) {} FMT_CONSTEXPR void on_minute(numeric_system) {} FMT_CONSTEXPR void on_second(numeric_system) {} FMT_CONSTEXPR void on_datetime(numeric_system) {} FMT_CONSTEXPR void on_loc_date(numeric_system) {} FMT_CONSTEXPR void on_loc_time(numeric_system) {} FMT_CONSTEXPR void on_us_date() {} FMT_CONSTEXPR void on_iso_date() {} FMT_CONSTEXPR void on_12_hour_time() {} FMT_CONSTEXPR void on_24_hour_time() {} FMT_CONSTEXPR void on_iso_time() {} FMT_CONSTEXPR void on_am_pm() {} FMT_CONSTEXPR void on_utc_offset() {} FMT_CONSTEXPR void on_tz_name() {} }; inline const char* tm_wday_full_name(int wday) { static constexpr const char* full_name_list[] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"}; return wday >= 0 && wday <= 6 ? full_name_list[wday] : "?"; } inline const char* tm_wday_short_name(int wday) { static constexpr const char* short_name_list[] = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}; return wday >= 0 && wday <= 6 ? short_name_list[wday] : "???"; } inline const char* tm_mon_full_name(int mon) { static constexpr const char* full_name_list[] = { "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"}; return mon >= 0 && mon <= 11 ? full_name_list[mon] : "?"; } inline const char* tm_mon_short_name(int mon) { static constexpr const char* short_name_list[] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", }; return mon >= 0 && mon <= 11 ? short_name_list[mon] : "???"; } template <typename T, typename = void> struct has_member_data_tm_gmtoff : std::false_type {}; template <typename T> struct has_member_data_tm_gmtoff<T, void_t<decltype(T::tm_gmtoff)>> : std::true_type {}; template <typename T, typename = void> struct has_member_data_tm_zone : std::false_type {}; template <typename T> struct has_member_data_tm_zone<T, void_t<decltype(T::tm_zone)>> : std::true_type {}; #if FMT_USE_TZSET inline void tzset_once() { static bool init = []() -> bool { _tzset(); return true; }(); ignore_unused(init); } #endif template <typename OutputIt, typename Char> class tm_writer { private: static constexpr int days_per_week = 7; const std::locale& loc_; const bool is_classic_; OutputIt out_; const std::tm& tm_; auto tm_sec() const noexcept -> int { FMT_ASSERT(tm_.tm_sec >= 0 && tm_.tm_sec <= 61, ""); return tm_.tm_sec; } auto tm_min() const noexcept -> int { FMT_ASSERT(tm_.tm_min >= 0 && tm_.tm_min <= 59, ""); return tm_.tm_min; } auto tm_hour() const noexcept -> int { FMT_ASSERT(tm_.tm_hour >= 0 && tm_.tm_hour <= 23, ""); return tm_.tm_hour; } auto tm_mday() const noexcept -> int { FMT_ASSERT(tm_.tm_mday >= 1 && tm_.tm_mday <= 31, ""); return tm_.tm_mday; } auto tm_mon() const noexcept -> int { FMT_ASSERT(tm_.tm_mon >= 0 && tm_.tm_mon <= 11, ""); return tm_.tm_mon; } auto tm_year() const noexcept -> long long { return 1900ll + tm_.tm_year; } auto tm_wday() const noexcept -> int { FMT_ASSERT(tm_.tm_wday >= 0 && tm_.tm_wday <= 6, ""); return tm_.tm_wday; } auto tm_yday() const noexcept -> int { FMT_ASSERT(tm_.tm_yday >= 0 && tm_.tm_yday <= 365, ""); return tm_.tm_yday; } auto tm_hour12() const noexcept -> int { const auto h = tm_hour(); const auto z = h < 12 ? h : h - 12; return z == 0 ? 12 : z; } // POSIX and the C Standard are unclear or inconsistent about what %C and %y // do if the year is negative or exceeds 9999. Use the convention that %C // concatenated with %y yields the same output as %Y, and that %Y contains at // least 4 characters, with more only if necessary. auto split_year_lower(long long year) const noexcept -> int { auto l = year % 100; if (l < 0) l = -l; // l in [0, 99] return static_cast<int>(l); } // Algorithm: // https://en.wikipedia.org/wiki/ISO_week_date#Calculating_the_week_number_from_a_month_and_day_of_the_month_or_ordinal_date auto iso_year_weeks(long long curr_year) const noexcept -> int { const auto prev_year = curr_year - 1; const auto curr_p = (curr_year + curr_year / 4 - curr_year / 100 + curr_year / 400) % days_per_week; const auto prev_p = (prev_year + prev_year / 4 - prev_year / 100 + prev_year / 400) % days_per_week; return 52 + ((curr_p == 4 || prev_p == 3) ? 1 : 0); } auto iso_week_num(int tm_yday, int tm_wday) const noexcept -> int { return (tm_yday + 11 - (tm_wday == 0 ? days_per_week : tm_wday)) / days_per_week; } auto tm_iso_week_year() const noexcept -> long long { const auto year = tm_year(); const auto w = iso_week_num(tm_yday(), tm_wday()); if (w < 1) return year - 1; if (w > iso_year_weeks(year)) return year + 1; return year; } auto tm_iso_week_of_year() const noexcept -> int { const auto year = tm_year(); const auto w = iso_week_num(tm_yday(), tm_wday()); if (w < 1) return iso_year_weeks(year - 1); if (w > iso_year_weeks(year)) return 1; return w; } void write1(int value) { *out_++ = static_cast<char>('0' + to_unsigned(value) % 10); } void write2(int value) { const char* d = digits2(to_unsigned(value) % 100); *out_++ = *d++; *out_++ = *d; } void write_year_extended(long long year) { // At least 4 characters. int width = 4; if (year < 0) { *out_++ = '-'; year = 0 - year; --width; } uint32_or_64_or_128_t<long long> n = to_unsigned(year); const int num_digits = count_digits(n); if (width > num_digits) out_ = std::fill_n(out_, width - num_digits, '0'); out_ = format_decimal<Char>(out_, n, num_digits).end; } void write_year(long long year) { if (year >= 0 && year < 10000) { write2(static_cast<int>(year / 100)); write2(static_cast<int>(year % 100)); } else { write_year_extended(year); } } void write_utc_offset(long offset) { if (offset < 0) { *out_++ = '-'; offset = -offset; } else { *out_++ = '+'; } offset /= 60; write2(static_cast<int>(offset / 60)); write2(static_cast<int>(offset % 60)); } template <typename T, FMT_ENABLE_IF(has_member_data_tm_gmtoff<T>::value)> void format_utc_offset_impl(const T& tm) { write_utc_offset(tm.tm_gmtoff); } template <typename T, FMT_ENABLE_IF(!has_member_data_tm_gmtoff<T>::value)> void format_utc_offset_impl(const T& tm) { #if defined(_WIN32) && defined(_UCRT) # if FMT_USE_TZSET tzset_once(); # endif long offset = 0; _get_timezone(&offset); if (tm.tm_isdst) { long dstbias = 0; _get_dstbias(&dstbias); offset += dstbias; } write_utc_offset(-offset); #else ignore_unused(tm); format_localized('z'); #endif } template <typename T, FMT_ENABLE_IF(has_member_data_tm_zone<T>::value)> void format_tz_name_impl(const T& tm) { if (is_classic_) out_ = write_tm_str<Char>(out_, tm.tm_zone, loc_); else format_localized('Z'); } template <typename T, FMT_ENABLE_IF(!has_member_data_tm_zone<T>::value)> void format_tz_name_impl(const T&) { format_localized('Z'); } void format_localized(char format, char modifier = 0) { out_ = write<Char>(out_, tm_, loc_, format, modifier); } public: tm_writer(const std::locale& loc, OutputIt out, const std::tm& tm) : loc_(loc), is_classic_(loc_ == get_classic_locale()), out_(out), tm_(tm) {} OutputIt out() const { return out_; } FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) { out_ = copy_str<Char>(begin, end, out_); } void on_abbr_weekday() { if (is_classic_) out_ = write(out_, tm_wday_short_name(tm_wday())); else format_localized('a'); } void on_full_weekday() { if (is_classic_) out_ = write(out_, tm_wday_full_name(tm_wday())); else format_localized('A'); } void on_dec0_weekday(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write1(tm_wday()); format_localized('w', 'O'); } void on_dec1_weekday(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) { auto wday = tm_wday(); write1(wday == 0 ? days_per_week : wday); } else { format_localized('u', 'O'); } } void on_abbr_month() { if (is_classic_) out_ = write(out_, tm_mon_short_name(tm_mon())); else format_localized('b'); } void on_full_month() { if (is_classic_) out_ = write(out_, tm_mon_full_name(tm_mon())); else format_localized('B'); } void on_datetime(numeric_system ns) { if (is_classic_) { on_abbr_weekday(); *out_++ = ' '; on_abbr_month(); *out_++ = ' '; on_day_of_month_space(numeric_system::standard); *out_++ = ' '; on_iso_time(); *out_++ = ' '; on_year(numeric_system::standard); } else { format_localized('c', ns == numeric_system::standard ? '\0' : 'E'); } } void on_loc_date(numeric_system ns) { if (is_classic_) on_us_date(); else format_localized('x', ns == numeric_system::standard ? '\0' : 'E'); } void on_loc_time(numeric_system ns) { if (is_classic_) on_iso_time(); else format_localized('X', ns == numeric_system::standard ? '\0' : 'E'); } void on_us_date() { char buf[8]; write_digit2_separated(buf, to_unsigned(tm_mon() + 1), to_unsigned(tm_mday()), to_unsigned(split_year_lower(tm_year())), '/'); out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_); } void on_iso_date() { auto year = tm_year(); char buf[10]; size_t offset = 0; if (year >= 0 && year < 10000) { copy2(buf, digits2(static_cast<size_t>(year / 100))); } else { offset = 4; write_year_extended(year); year = 0; } write_digit2_separated(buf + 2, static_cast<unsigned>(year % 100), to_unsigned(tm_mon() + 1), to_unsigned(tm_mday()), '-'); out_ = copy_str<Char>(std::begin(buf) + offset, std::end(buf), out_); } void on_utc_offset() { format_utc_offset_impl(tm_); } void on_tz_name() { format_tz_name_impl(tm_); } void on_year(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write_year(tm_year()); format_localized('Y', 'E'); } void on_short_year(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2(split_year_lower(tm_year())); format_localized('y', 'O'); } void on_offset_year() { if (is_classic_) return write2(split_year_lower(tm_year())); format_localized('y', 'E'); } void on_century(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) { auto year = tm_year(); auto upper = year / 100; if (year >= -99 && year < 0) { // Zero upper on negative year. *out_++ = '-'; *out_++ = '0'; } else if (upper >= 0 && upper < 100) { write2(static_cast<int>(upper)); } else { out_ = write<Char>(out_, upper); } } else { format_localized('C', 'E'); } } void on_dec_month(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_mon() + 1); format_localized('m', 'O'); } void on_dec0_week_of_year(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2((tm_yday() + days_per_week - tm_wday()) / days_per_week); format_localized('U', 'O'); } void on_dec1_week_of_year(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) { auto wday = tm_wday(); write2((tm_yday() + days_per_week - (wday == 0 ? (days_per_week - 1) : (wday - 1))) / days_per_week); } else { format_localized('W', 'O'); } } void on_iso_week_of_year(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_iso_week_of_year()); format_localized('V', 'O'); } void on_iso_week_based_year() { write_year(tm_iso_week_year()); } void on_iso_week_based_short_year() { write2(split_year_lower(tm_iso_week_year())); } void on_day_of_year() { auto yday = tm_yday() + 1; write1(yday / 100); write2(yday % 100); } void on_day_of_month(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_mday()); format_localized('d', 'O'); } void on_day_of_month_space(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) { auto mday = to_unsigned(tm_mday()) % 100; const char* d2 = digits2(mday); *out_++ = mday < 10 ? ' ' : d2[0]; *out_++ = d2[1]; } else { format_localized('e', 'O'); } } void on_24_hour(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_hour()); format_localized('H', 'O'); } void on_12_hour(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_hour12()); format_localized('I', 'O'); } void on_minute(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_min()); format_localized('M', 'O'); } void on_second(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_sec()); format_localized('S', 'O'); } void on_12_hour_time() { if (is_classic_) { char buf[8]; write_digit2_separated(buf, to_unsigned(tm_hour12()), to_unsigned(tm_min()), to_unsigned(tm_sec()), ':'); out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_); *out_++ = ' '; on_am_pm(); } else { format_localized('r'); } } void on_24_hour_time() { write2(tm_hour()); *out_++ = ':'; write2(tm_min()); } void on_iso_time() { char buf[8]; write_digit2_separated(buf, to_unsigned(tm_hour()), to_unsigned(tm_min()), to_unsigned(tm_sec()), ':'); out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_); } void on_am_pm() { if (is_classic_) { *out_++ = tm_hour() < 12 ? 'A' : 'P'; *out_++ = 'M'; } else { format_localized('p'); } } // These apply to chrono durations but not tm. void on_duration_value() {} void on_duration_unit() {} }; struct chrono_format_checker : null_chrono_spec_handler<chrono_format_checker> { FMT_NORETURN void unsupported() { FMT_THROW(format_error("no date")); } template <typename Char> FMT_CONSTEXPR void on_text(const Char*, const Char*) {} FMT_CONSTEXPR void on_24_hour(numeric_system) {} FMT_CONSTEXPR void on_12_hour(numeric_system) {} FMT_CONSTEXPR void on_minute(numeric_system) {} FMT_CONSTEXPR void on_second(numeric_system) {} FMT_CONSTEXPR void on_12_hour_time() {} FMT_CONSTEXPR void on_24_hour_time() {} FMT_CONSTEXPR void on_iso_time() {} FMT_CONSTEXPR void on_am_pm() {} FMT_CONSTEXPR void on_duration_value() {} FMT_CONSTEXPR void on_duration_unit() {} }; template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> inline bool isfinite(T) { return true; } // Converts value to Int and checks that it's in the range [0, upper). template <typename T, typename Int, FMT_ENABLE_IF(std::is_integral<T>::value)> inline Int to_nonnegative_int(T value, Int upper) { FMT_ASSERT(std::is_unsigned<Int>::value || (value >= 0 && to_unsigned(value) <= to_unsigned(upper)), "invalid value"); (void)upper; return static_cast<Int>(value); } template <typename T, typename Int, FMT_ENABLE_IF(!std::is_integral<T>::value)> inline Int to_nonnegative_int(T value, Int upper) { if (value < 0 || value > static_cast<T>(upper)) FMT_THROW(format_error("invalid value")); return static_cast<Int>(value); } template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> inline T mod(T x, int y) { return x % static_cast<T>(y); } template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> inline T mod(T x, int y) { return std::fmod(x, static_cast<T>(y)); } // If T is an integral type, maps T to its unsigned counterpart, otherwise // leaves it unchanged (unlike std::make_unsigned). template <typename T, bool INTEGRAL = std::is_integral<T>::value> struct make_unsigned_or_unchanged { using type = T; }; template <typename T> struct make_unsigned_or_unchanged<T, true> { using type = typename std::make_unsigned<T>::type; }; #if FMT_SAFE_DURATION_CAST // throwing version of safe_duration_cast template <typename To, typename FromRep, typename FromPeriod> To fmt_safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from) { int ec; To to = safe_duration_cast::safe_duration_cast<To>(from, ec); if (ec) FMT_THROW(format_error("cannot format duration")); return to; } #endif template <typename Rep, typename Period, FMT_ENABLE_IF(std::is_integral<Rep>::value)> inline std::chrono::duration<Rep, std::milli> get_milliseconds( std::chrono::duration<Rep, Period> d) { // this may overflow and/or the result may not fit in the // target type. #if FMT_SAFE_DURATION_CAST using CommonSecondsType = typename std::common_type<decltype(d), std::chrono::seconds>::type; const auto d_as_common = fmt_safe_duration_cast<CommonSecondsType>(d); const auto d_as_whole_seconds = fmt_safe_duration_cast<std::chrono::seconds>(d_as_common); // this conversion should be nonproblematic const auto diff = d_as_common - d_as_whole_seconds; const auto ms = fmt_safe_duration_cast<std::chrono::duration<Rep, std::milli>>(diff); return ms; #else auto s = std::chrono::duration_cast<std::chrono::seconds>(d); return std::chrono::duration_cast<std::chrono::milliseconds>(d - s); #endif } // Counts the number of fractional digits in the range [0, 18] according to the // C++20 spec. If more than 18 fractional digits are required then returns 6 for // microseconds precision. template <long long Num, long long Den, int N = 0, bool Enabled = (N < 19) && (Num <= max_value<long long>() / 10)> struct count_fractional_digits { static constexpr int value = Num % Den == 0 ? N : count_fractional_digits<Num * 10, Den, N + 1>::value; }; // Base case that doesn't instantiate any more templates // in order to avoid overflow. template <long long Num, long long Den, int N> struct count_fractional_digits<Num, Den, N, false> { static constexpr int value = (Num % Den == 0) ? N : 6; }; constexpr long long pow10(std::uint32_t n) { return n == 0 ? 1 : 10 * pow10(n - 1); } template <class Rep, class Period, FMT_ENABLE_IF(std::numeric_limits<Rep>::is_signed)> constexpr std::chrono::duration<Rep, Period> abs( std::chrono::duration<Rep, Period> d) { // We need to compare the duration using the count() method directly // due to a compiler bug in clang-11 regarding the spaceship operator, // when -Wzero-as-null-pointer-constant is enabled. // In clang-12 the bug has been fixed. See // https://bugs.llvm.org/show_bug.cgi?id=46235 and the reproducible example: // https://www.godbolt.org/z/Knbb5joYx. return d.count() >= d.zero().count() ? d : -d; } template <class Rep, class Period, FMT_ENABLE_IF(!std::numeric_limits<Rep>::is_signed)> constexpr std::chrono::duration<Rep, Period> abs( std::chrono::duration<Rep, Period> d) { return d; } template <typename Char, typename Rep, typename OutputIt, FMT_ENABLE_IF(std::is_integral<Rep>::value)> OutputIt format_duration_value(OutputIt out, Rep val, int) { return write<Char>(out, val); } template <typename Char, typename Rep, typename OutputIt, FMT_ENABLE_IF(std::is_floating_point<Rep>::value)> OutputIt format_duration_value(OutputIt out, Rep val, int precision) { auto specs = basic_format_specs<Char>(); specs.precision = precision; specs.type = precision >= 0 ? presentation_type::fixed_lower : presentation_type::general_lower; return write<Char>(out, val, specs); } template <typename Char, typename OutputIt> OutputIt copy_unit(string_view unit, OutputIt out, Char) { return std::copy(unit.begin(), unit.end(), out); } template <typename OutputIt> OutputIt copy_unit(string_view unit, OutputIt out, wchar_t) { // This works when wchar_t is UTF-32 because units only contain characters // that have the same representation in UTF-16 and UTF-32. utf8_to_utf16 u(unit); return std::copy(u.c_str(), u.c_str() + u.size(), out); } template <typename Char, typename Period, typename OutputIt> OutputIt format_duration_unit(OutputIt out) { if (const char* unit = get_units<Period>()) return copy_unit(string_view(unit), out, Char()); *out++ = '['; out = write<Char>(out, Period::num); if (const_check(Period::den != 1)) { *out++ = '/'; out = write<Char>(out, Period::den); } *out++ = ']'; *out++ = 's'; return out; } class get_locale { private: union { std::locale locale_; }; bool has_locale_ = false; public: get_locale(bool localized, locale_ref loc) : has_locale_(localized) { if (localized) ::new (&locale_) std::locale(loc.template get<std::locale>()); } ~get_locale() { if (has_locale_) locale_.~locale(); } operator const std::locale&() const { return has_locale_ ? locale_ : get_classic_locale(); } }; template <typename FormatContext, typename OutputIt, typename Rep, typename Period> struct chrono_formatter { FormatContext& context; OutputIt out; int precision; bool localized = false; // rep is unsigned to avoid overflow. using rep = conditional_t<std::is_integral<Rep>::value && sizeof(Rep) < sizeof(int), unsigned, typename make_unsigned_or_unchanged<Rep>::type>; rep val; using seconds = std::chrono::duration<rep>; seconds s; using milliseconds = std::chrono::duration<rep, std::milli>; bool negative; using char_type = typename FormatContext::char_type; using tm_writer_type = tm_writer<OutputIt, char_type>; chrono_formatter(FormatContext& ctx, OutputIt o, std::chrono::duration<Rep, Period> d) : context(ctx), out(o), val(static_cast<rep>(d.count())), negative(false) { if (d.count() < 0) { val = 0 - val; negative = true; } // this may overflow and/or the result may not fit in the // target type. #if FMT_SAFE_DURATION_CAST // might need checked conversion (rep!=Rep) auto tmpval = std::chrono::duration<rep, Period>(val); s = fmt_safe_duration_cast<seconds>(tmpval); #else s = std::chrono::duration_cast<seconds>( std::chrono::duration<rep, Period>(val)); #endif } // returns true if nan or inf, writes to out. bool handle_nan_inf() { if (isfinite(val)) { return false; } if (isnan(val)) { write_nan(); return true; } // must be +-inf if (val > 0) { write_pinf(); } else { write_ninf(); } return true; } Rep hour() const { return static_cast<Rep>(mod((s.count() / 3600), 24)); } Rep hour12() const { Rep hour = static_cast<Rep>(mod((s.count() / 3600), 12)); return hour <= 0 ? 12 : hour; } Rep minute() const { return static_cast<Rep>(mod((s.count() / 60), 60)); } Rep second() const { return static_cast<Rep>(mod(s.count(), 60)); } std::tm time() const { auto time = std::tm(); time.tm_hour = to_nonnegative_int(hour(), 24); time.tm_min = to_nonnegative_int(minute(), 60); time.tm_sec = to_nonnegative_int(second(), 60); return time; } void write_sign() { if (negative) { *out++ = '-'; negative = false; } } void write(Rep value, int width) { write_sign(); if (isnan(value)) return write_nan(); uint32_or_64_or_128_t<int> n = to_unsigned(to_nonnegative_int(value, max_value<int>())); int num_digits = detail::count_digits(n); if (width > num_digits) out = std::fill_n(out, width - num_digits, '0'); out = format_decimal<char_type>(out, n, num_digits).end; } template <typename Duration> void write_fractional_seconds(Duration d) { FMT_ASSERT(!std::is_floating_point<typename Duration::rep>::value, ""); constexpr auto num_fractional_digits = count_fractional_digits<Duration::period::num, Duration::period::den>::value; using subsecond_precision = std::chrono::duration< typename std::common_type<typename Duration::rep, std::chrono::seconds::rep>::type, std::ratio<1, detail::pow10(num_fractional_digits)>>; if (std::ratio_less<typename subsecond_precision::period, std::chrono::seconds::period>::value) { *out++ = '.'; auto fractional = detail::abs(d) - std::chrono::duration_cast<std::chrono::seconds>(d); auto subseconds = std::chrono::treat_as_floating_point< typename subsecond_precision::rep>::value ? fractional.count() : std::chrono::duration_cast<subsecond_precision>(fractional) .count(); uint32_or_64_or_128_t<long long> n = to_unsigned(to_nonnegative_int(subseconds, max_value<long long>())); int num_digits = detail::count_digits(n); if (num_fractional_digits > num_digits) out = std::fill_n(out, num_fractional_digits - num_digits, '0'); out = format_decimal<char_type>(out, n, num_digits).end; } } void write_nan() { std::copy_n("nan", 3, out); } void write_pinf() { std::copy_n("inf", 3, out); } void write_ninf() { std::copy_n("-inf", 4, out); } template <typename Callback, typename... Args> void format_tm(const tm& time, Callback cb, Args... args) { if (isnan(val)) return write_nan(); get_locale loc(localized, context.locale()); auto w = tm_writer_type(loc, out, time); (w.*cb)(args...); out = w.out(); } void on_text(const char_type* begin, const char_type* end) { std::copy(begin, end, out); } // These are not implemented because durations don't have date information. void on_abbr_weekday() {} void on_full_weekday() {} void on_dec0_weekday(numeric_system) {} void on_dec1_weekday(numeric_system) {} void on_abbr_month() {} void on_full_month() {} void on_datetime(numeric_system) {} void on_loc_date(numeric_system) {} void on_loc_time(numeric_system) {} void on_us_date() {} void on_iso_date() {} void on_utc_offset() {} void on_tz_name() {} void on_year(numeric_system) {} void on_short_year(numeric_system) {} void on_offset_year() {} void on_century(numeric_system) {} void on_iso_week_based_year() {} void on_iso_week_based_short_year() {} void on_dec_month(numeric_system) {} void on_dec0_week_of_year(numeric_system) {} void on_dec1_week_of_year(numeric_system) {} void on_iso_week_of_year(numeric_system) {} void on_day_of_year() {} void on_day_of_month(numeric_system) {} void on_day_of_month_space(numeric_system) {} void on_24_hour(numeric_system ns) { if (handle_nan_inf()) return; if (ns == numeric_system::standard) return write(hour(), 2); auto time = tm(); time.tm_hour = to_nonnegative_int(hour(), 24); format_tm(time, &tm_writer_type::on_24_hour, ns); } void on_12_hour(numeric_system ns) { if (handle_nan_inf()) return; if (ns == numeric_system::standard) return write(hour12(), 2); auto time = tm(); time.tm_hour = to_nonnegative_int(hour12(), 12); format_tm(time, &tm_writer_type::on_12_hour, ns); } void on_minute(numeric_system ns) { if (handle_nan_inf()) return; if (ns == numeric_system::standard) return write(minute(), 2); auto time = tm(); time.tm_min = to_nonnegative_int(minute(), 60); format_tm(time, &tm_writer_type::on_minute, ns); } void on_second(numeric_system ns) { if (handle_nan_inf()) return; if (ns == numeric_system::standard) { if (std::is_floating_point<rep>::value) { constexpr auto num_fractional_digits = count_fractional_digits<Period::num, Period::den>::value; auto buf = memory_buffer(); format_to(std::back_inserter(buf), runtime("{:.{}f}"), std::fmod(val * static_cast<rep>(Period::num) / static_cast<rep>(Period::den), static_cast<rep>(60)), num_fractional_digits); if (negative) *out++ = '-'; if (buf.size() < 2 || buf[1] == '.') *out++ = '0'; out = std::copy(buf.begin(), buf.end(), out); } else { write(second(), 2); write_fractional_seconds(std::chrono::duration<rep, Period>(val)); } return; } auto time = tm(); time.tm_sec = to_nonnegative_int(second(), 60); format_tm(time, &tm_writer_type::on_second, ns); } void on_12_hour_time() { if (handle_nan_inf()) return; format_tm(time(), &tm_writer_type::on_12_hour_time); } void on_24_hour_time() { if (handle_nan_inf()) { *out++ = ':'; handle_nan_inf(); return; } write(hour(), 2); *out++ = ':'; write(minute(), 2); } void on_iso_time() { on_24_hour_time(); *out++ = ':'; if (handle_nan_inf()) return; on_second(numeric_system::standard); } void on_am_pm() { if (handle_nan_inf()) return; format_tm(time(), &tm_writer_type::on_am_pm); } void on_duration_value() { if (handle_nan_inf()) return; write_sign(); out = format_duration_value<char_type>(out, val, precision); } void on_duration_unit() { out = format_duration_unit<char_type, Period>(out); } }; FMT_END_DETAIL_NAMESPACE #if defined(__cpp_lib_chrono) && __cpp_lib_chrono >= 201907 using weekday = std::chrono::weekday; #else // A fallback version of weekday. class weekday { private: unsigned char value; public: weekday() = default; explicit constexpr weekday(unsigned wd) noexcept : value(static_cast<unsigned char>(wd != 7 ? wd : 0)) {} constexpr unsigned c_encoding() const noexcept { return value; } }; class year_month_day {}; #endif // A rudimentary weekday formatter. template <typename Char> struct formatter<weekday, Char> { private: bool localized = false; public: FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx) -> decltype(ctx.begin()) { auto begin = ctx.begin(), end = ctx.end(); if (begin != end && *begin == 'L') { ++begin; localized = true; } return begin; } template <typename FormatContext> auto format(weekday wd, FormatContext& ctx) const -> decltype(ctx.out()) { auto time = std::tm(); time.tm_wday = static_cast<int>(wd.c_encoding()); detail::get_locale loc(localized, ctx.locale()); auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), time); w.on_abbr_weekday(); return w.out(); } }; template <typename Rep, typename Period, typename Char> struct formatter<std::chrono::duration<Rep, Period>, Char> { private: basic_format_specs<Char> specs; int precision = -1; using arg_ref_type = detail::arg_ref<Char>; arg_ref_type width_ref; arg_ref_type precision_ref; bool localized = false; basic_string_view<Char> format_str; using duration = std::chrono::duration<Rep, Period>; struct spec_handler { formatter& f; basic_format_parse_context<Char>& context; basic_string_view<Char> format_str; template <typename Id> FMT_CONSTEXPR arg_ref_type make_arg_ref(Id arg_id) { context.check_arg_id(arg_id); return arg_ref_type(arg_id); } FMT_CONSTEXPR arg_ref_type make_arg_ref(basic_string_view<Char> arg_id) { context.check_arg_id(arg_id); return arg_ref_type(arg_id); } FMT_CONSTEXPR arg_ref_type make_arg_ref(detail::auto_id) { return arg_ref_type(context.next_arg_id()); } void on_error(const char* msg) { FMT_THROW(format_error(msg)); } FMT_CONSTEXPR void on_fill(basic_string_view<Char> fill) { f.specs.fill = fill; } FMT_CONSTEXPR void on_align(align_t align) { f.specs.align = align; } FMT_CONSTEXPR void on_width(int width) { f.specs.width = width; } FMT_CONSTEXPR void on_precision(int _precision) { f.precision = _precision; } FMT_CONSTEXPR void end_precision() {} template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) { f.width_ref = make_arg_ref(arg_id); } template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) { f.precision_ref = make_arg_ref(arg_id); } }; using iterator = typename basic_format_parse_context<Char>::iterator; struct parse_range { iterator begin; iterator end; }; FMT_CONSTEXPR parse_range do_parse(basic_format_parse_context<Char>& ctx) { auto begin = ctx.begin(), end = ctx.end(); if (begin == end || *begin == '}') return {begin, begin}; spec_handler handler{*this, ctx, format_str}; begin = detail::parse_align(begin, end, handler); if (begin == end) return {begin, begin}; begin = detail::parse_width(begin, end, handler); if (begin == end) return {begin, begin}; if (*begin == '.') { if (std::is_floating_point<Rep>::value) begin = detail::parse_precision(begin, end, handler); else handler.on_error("precision not allowed for this argument type"); } if (begin != end && *begin == 'L') { ++begin; localized = true; } end = detail::parse_chrono_format(begin, end, detail::chrono_format_checker()); return {begin, end}; } public: FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx) -> decltype(ctx.begin()) { auto range = do_parse(ctx); format_str = basic_string_view<Char>( &*range.begin, detail::to_unsigned(range.end - range.begin)); return range.end; } template <typename FormatContext> auto format(const duration& d, FormatContext& ctx) const -> decltype(ctx.out()) { auto specs_copy = specs; auto precision_copy = precision; auto begin = format_str.begin(), end = format_str.end(); // As a possible future optimization, we could avoid extra copying if width // is not specified. basic_memory_buffer<Char> buf; auto out = std::back_inserter(buf); detail::handle_dynamic_spec<detail::width_checker>(specs_copy.width, width_ref, ctx); detail::handle_dynamic_spec<detail::precision_checker>(precision_copy, precision_ref, ctx); if (begin == end || *begin == '}') { out = detail::format_duration_value<Char>(out, d.count(), precision_copy); detail::format_duration_unit<Char, Period>(out); } else { detail::chrono_formatter<FormatContext, decltype(out), Rep, Period> f( ctx, out, d); f.precision = precision_copy; f.localized = localized; detail::parse_chrono_format(begin, end, f); } return detail::write( ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs_copy); } }; template <typename Char, typename Duration> struct formatter<std::chrono::time_point<std::chrono::system_clock, Duration>, Char> : formatter<std::tm, Char> { FMT_CONSTEXPR formatter() { basic_string_view<Char> default_specs = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{}; this->do_parse(default_specs.begin(), default_specs.end()); } template <typename FormatContext> auto format(std::chrono::time_point<std::chrono::system_clock> val, FormatContext& ctx) const -> decltype(ctx.out()) { return formatter<std::tm, Char>::format(localtime(val), ctx); } }; template <typename Char> struct formatter<std::tm, Char> { private: enum class spec { unknown, year_month_day, hh_mm_ss, }; spec spec_ = spec::unknown; basic_string_view<Char> specs; protected: template <typename It> FMT_CONSTEXPR auto do_parse(It begin, It end) -> It { if (begin != end && *begin == ':') ++begin; end = detail::parse_chrono_format(begin, end, detail::tm_format_checker()); // Replace default spec only if the new spec is not empty. if (end != begin) specs = {begin, detail::to_unsigned(end - begin)}; return end; } public: FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx) -> decltype(ctx.begin()) { auto end = this->do_parse(ctx.begin(), ctx.end()); // basic_string_view<>::compare isn't constexpr before C++17. if (specs.size() == 2 && specs[0] == Char('%')) { if (specs[1] == Char('F')) spec_ = spec::year_month_day; else if (specs[1] == Char('T')) spec_ = spec::hh_mm_ss; } return end; } template <typename FormatContext> auto format(const std::tm& tm, FormatContext& ctx) const -> decltype(ctx.out()) { const auto loc_ref = ctx.locale(); detail::get_locale loc(static_cast<bool>(loc_ref), loc_ref); auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), tm); if (spec_ == spec::year_month_day) w.on_iso_date(); else if (spec_ == spec::hh_mm_ss) w.on_iso_time(); else detail::parse_chrono_format(specs.begin(), specs.end(), w); return w.out(); } }; FMT_MODULE_EXPORT_END FMT_END_NAMESPACE #endif // FMT_CHRONO_H_