mirror of https://github.com/trapexit/mergerfs.git
Antonio SJ Musumeci
1 year ago
3 changed files with 3456 additions and 0 deletions
1657
src/tsl/ordered_hash.h
File diff suppressed because it is too large
View File
File diff suppressed because it is too large
View File
@ -0,0 +1,982 @@ |
|||
/** |
|||
* MIT License |
|||
* |
|||
* Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com> |
|||
* |
|||
* Permission is hereby granted, free of charge, to any person obtaining a copy |
|||
* of this software and associated documentation files (the "Software"), to deal |
|||
* in the Software without restriction, including without limitation the rights |
|||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|||
* copies of the Software, and to permit persons to whom the Software is |
|||
* furnished to do so, subject to the following conditions: |
|||
* |
|||
* The above copyright notice and this permission notice shall be included in |
|||
* all copies or substantial portions of the Software. |
|||
* |
|||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|||
* SOFTWARE. |
|||
*/ |
|||
#ifndef TSL_ORDERED_MAP_H |
|||
#define TSL_ORDERED_MAP_H |
|||
|
|||
#include <cstddef> |
|||
#include <cstdint> |
|||
#include <deque> |
|||
#include <functional> |
|||
#include <initializer_list> |
|||
#include <memory> |
|||
#include <type_traits> |
|||
#include <utility> |
|||
#include <vector> |
|||
|
|||
#include "ordered_hash.h" |
|||
|
|||
namespace tsl { |
|||
|
|||
/** |
|||
* Implementation of an hash map using open addressing with robin hood with |
|||
* backshift delete to resolve collisions. |
|||
* |
|||
* The particularity of this hash map is that it remembers the order in which |
|||
* the elements were added and provide a way to access the structure which |
|||
* stores these values through the 'values_container()' method. The used |
|||
* container is defined by ValueTypeContainer, by default a std::deque is used |
|||
* (grows faster) but a std::vector may be used. In this case the map provides a |
|||
* 'data()' method which give a direct access to the memory used to store the |
|||
* values (which can be useful to communicate with C API's). |
|||
* |
|||
* The Key and T must be copy constructible and/or move constructible. To use |
|||
* `unordered_erase` they both must be swappable. |
|||
* |
|||
* The behaviour of the hash map is undefined if the destructor of Key or T |
|||
* throws an exception. |
|||
* |
|||
* By default the maximum size of a map is limited to 2^32 - 1 values, if needed |
|||
* this can be changed through the IndexType template parameter. Using an |
|||
* `uint64_t` will raise this limit to 2^64 - 1 values but each bucket will use |
|||
* 16 bytes instead of 8 bytes in addition to the space needed to store the |
|||
* values. |
|||
* |
|||
* Iterators invalidation: |
|||
* - clear, operator=, reserve, rehash: always invalidate the iterators (also |
|||
* invalidate end()). |
|||
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as |
|||
* ValueTypeContainer and if size() < capacity(), only end(). Otherwise all the |
|||
* iterators are invalidated if an insert occurs. |
|||
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer |
|||
* invalidate the iterator of the erased element and all the ones after the |
|||
* erased element (including end()). Otherwise all the iterators are invalidated |
|||
* if an erase occurs. |
|||
*/ |
|||
template <class Key, class T, class Hash = std::hash<Key>, |
|||
class KeyEqual = std::equal_to<Key>, |
|||
class Allocator = std::allocator<std::pair<Key, T>>, |
|||
class ValueTypeContainer = std::deque<std::pair<Key, T>, Allocator>, |
|||
class IndexType = std::uint_least32_t> |
|||
class ordered_map { |
|||
private: |
|||
template <typename U> |
|||
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>; |
|||
|
|||
class KeySelect { |
|||
public: |
|||
using key_type = Key; |
|||
|
|||
const key_type& operator()( |
|||
const std::pair<Key, T>& key_value) const noexcept { |
|||
return key_value.first; |
|||
} |
|||
|
|||
key_type& operator()(std::pair<Key, T>& key_value) noexcept { |
|||
return key_value.first; |
|||
} |
|||
}; |
|||
|
|||
class ValueSelect { |
|||
public: |
|||
using value_type = T; |
|||
|
|||
const value_type& operator()( |
|||
const std::pair<Key, T>& key_value) const noexcept { |
|||
return key_value.second; |
|||
} |
|||
|
|||
value_type& operator()(std::pair<Key, T>& key_value) noexcept { |
|||
return key_value.second; |
|||
} |
|||
}; |
|||
|
|||
using ht = |
|||
detail_ordered_hash::ordered_hash<std::pair<Key, T>, KeySelect, |
|||
ValueSelect, Hash, KeyEqual, Allocator, |
|||
ValueTypeContainer, IndexType>; |
|||
|
|||
public: |
|||
using key_type = typename ht::key_type; |
|||
using mapped_type = T; |
|||
using value_type = typename ht::value_type; |
|||
using size_type = typename ht::size_type; |
|||
using difference_type = typename ht::difference_type; |
|||
using hasher = typename ht::hasher; |
|||
using key_equal = typename ht::key_equal; |
|||
using allocator_type = typename ht::allocator_type; |
|||
using reference = typename ht::reference; |
|||
using const_reference = typename ht::const_reference; |
|||
using pointer = typename ht::pointer; |
|||
using const_pointer = typename ht::const_pointer; |
|||
using iterator = typename ht::iterator; |
|||
using const_iterator = typename ht::const_iterator; |
|||
using reverse_iterator = typename ht::reverse_iterator; |
|||
using const_reverse_iterator = typename ht::const_reverse_iterator; |
|||
|
|||
using values_container_type = typename ht::values_container_type; |
|||
|
|||
/* |
|||
* Constructors |
|||
*/ |
|||
ordered_map() : ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {} |
|||
|
|||
explicit ordered_map(size_type bucket_count, const Hash& hash = Hash(), |
|||
const KeyEqual& equal = KeyEqual(), |
|||
const Allocator& alloc = Allocator()) |
|||
: m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) {} |
|||
|
|||
ordered_map(size_type bucket_count, const Allocator& alloc) |
|||
: ordered_map(bucket_count, Hash(), KeyEqual(), alloc) {} |
|||
|
|||
ordered_map(size_type bucket_count, const Hash& hash, const Allocator& alloc) |
|||
: ordered_map(bucket_count, hash, KeyEqual(), alloc) {} |
|||
|
|||
explicit ordered_map(const Allocator& alloc) |
|||
: ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {} |
|||
|
|||
template <class InputIt> |
|||
ordered_map(InputIt first, InputIt last, |
|||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, |
|||
const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), |
|||
const Allocator& alloc = Allocator()) |
|||
: ordered_map(bucket_count, hash, equal, alloc) { |
|||
insert(first, last); |
|||
} |
|||
|
|||
template <class InputIt> |
|||
ordered_map(InputIt first, InputIt last, size_type bucket_count, |
|||
const Allocator& alloc) |
|||
: ordered_map(first, last, bucket_count, Hash(), KeyEqual(), alloc) {} |
|||
|
|||
template <class InputIt> |
|||
ordered_map(InputIt first, InputIt last, size_type bucket_count, |
|||
const Hash& hash, const Allocator& alloc) |
|||
: ordered_map(first, last, bucket_count, hash, KeyEqual(), alloc) {} |
|||
|
|||
ordered_map(std::initializer_list<value_type> init, |
|||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, |
|||
const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), |
|||
const Allocator& alloc = Allocator()) |
|||
: ordered_map(init.begin(), init.end(), bucket_count, hash, equal, |
|||
alloc) {} |
|||
|
|||
ordered_map(std::initializer_list<value_type> init, size_type bucket_count, |
|||
const Allocator& alloc) |
|||
: ordered_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), |
|||
alloc) {} |
|||
|
|||
ordered_map(std::initializer_list<value_type> init, size_type bucket_count, |
|||
const Hash& hash, const Allocator& alloc) |
|||
: ordered_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), |
|||
alloc) {} |
|||
|
|||
ordered_map& operator=(std::initializer_list<value_type> ilist) { |
|||
m_ht.clear(); |
|||
|
|||
m_ht.reserve(ilist.size()); |
|||
m_ht.insert(ilist.begin(), ilist.end()); |
|||
|
|||
return *this; |
|||
} |
|||
|
|||
allocator_type get_allocator() const { return m_ht.get_allocator(); } |
|||
|
|||
/* |
|||
* Iterators |
|||
*/ |
|||
iterator begin() noexcept { return m_ht.begin(); } |
|||
const_iterator begin() const noexcept { return m_ht.begin(); } |
|||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); } |
|||
|
|||
iterator end() noexcept { return m_ht.end(); } |
|||
const_iterator end() const noexcept { return m_ht.end(); } |
|||
const_iterator cend() const noexcept { return m_ht.cend(); } |
|||
|
|||
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); } |
|||
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); } |
|||
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); } |
|||
|
|||
reverse_iterator rend() noexcept { return m_ht.rend(); } |
|||
const_reverse_iterator rend() const noexcept { return m_ht.rend(); } |
|||
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); } |
|||
|
|||
/* |
|||
* Capacity |
|||
*/ |
|||
bool empty() const noexcept { return m_ht.empty(); } |
|||
size_type size() const noexcept { return m_ht.size(); } |
|||
size_type max_size() const noexcept { return m_ht.max_size(); } |
|||
|
|||
/* |
|||
* Modifiers |
|||
*/ |
|||
void clear() noexcept { m_ht.clear(); } |
|||
|
|||
std::pair<iterator, bool> insert(const value_type& value) { |
|||
return m_ht.insert(value); |
|||
} |
|||
|
|||
template <class P, typename std::enable_if<std::is_constructible< |
|||
value_type, P&&>::value>::type* = nullptr> |
|||
std::pair<iterator, bool> insert(P&& value) { |
|||
return m_ht.emplace(std::forward<P>(value)); |
|||
} |
|||
|
|||
std::pair<iterator, bool> insert(value_type&& value) { |
|||
return m_ht.insert(std::move(value)); |
|||
} |
|||
|
|||
iterator insert(const_iterator hint, const value_type& value) { |
|||
return m_ht.insert_hint(hint, value); |
|||
} |
|||
|
|||
template <class P, typename std::enable_if<std::is_constructible< |
|||
value_type, P&&>::value>::type* = nullptr> |
|||
iterator insert(const_iterator hint, P&& value) { |
|||
return m_ht.emplace_hint(hint, std::forward<P>(value)); |
|||
} |
|||
|
|||
iterator insert(const_iterator hint, value_type&& value) { |
|||
return m_ht.insert_hint(hint, std::move(value)); |
|||
} |
|||
|
|||
template <class InputIt> |
|||
void insert(InputIt first, InputIt last) { |
|||
m_ht.insert(first, last); |
|||
} |
|||
void insert(std::initializer_list<value_type> ilist) { |
|||
m_ht.insert(ilist.begin(), ilist.end()); |
|||
} |
|||
|
|||
template <class M> |
|||
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) { |
|||
return m_ht.insert_or_assign(k, std::forward<M>(obj)); |
|||
} |
|||
|
|||
template <class M> |
|||
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) { |
|||
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj)); |
|||
} |
|||
|
|||
template <class M> |
|||
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) { |
|||
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj)); |
|||
} |
|||
|
|||
template <class M> |
|||
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) { |
|||
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj)); |
|||
} |
|||
|
|||
/** |
|||
* Due to the way elements are stored, emplace will need to move or copy the |
|||
* key-value once. The method is equivalent to |
|||
* insert(value_type(std::forward<Args>(args)...)); |
|||
* |
|||
* Mainly here for compatibility with the std::unordered_map interface. |
|||
*/ |
|||
template <class... Args> |
|||
std::pair<iterator, bool> emplace(Args&&... args) { |
|||
return m_ht.emplace(std::forward<Args>(args)...); |
|||
} |
|||
|
|||
/** |
|||
* Due to the way elements are stored, emplace_hint will need to move or copy |
|||
* the key-value once. The method is equivalent to insert(hint, |
|||
* value_type(std::forward<Args>(args)...)); |
|||
* |
|||
* Mainly here for compatibility with the std::unordered_map interface. |
|||
*/ |
|||
template <class... Args> |
|||
iterator emplace_hint(const_iterator hint, Args&&... args) { |
|||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...); |
|||
} |
|||
|
|||
template <class... Args> |
|||
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) { |
|||
return m_ht.try_emplace(k, std::forward<Args>(args)...); |
|||
} |
|||
|
|||
template <class... Args> |
|||
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) { |
|||
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...); |
|||
} |
|||
|
|||
template <class... Args> |
|||
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) { |
|||
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...); |
|||
} |
|||
|
|||
template <class... Args> |
|||
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) { |
|||
return m_ht.try_emplace_hint(hint, std::move(k), |
|||
std::forward<Args>(args)...); |
|||
} |
|||
|
|||
/** |
|||
* When erasing an element, the insert order will be preserved and no holes |
|||
* will be present in the container returned by 'values_container()'. |
|||
* |
|||
* The method is in O(bucket_count()), if the order is not important |
|||
* 'unordered_erase(...)' method is faster with an O(1) average complexity. |
|||
*/ |
|||
iterator erase(iterator pos) { return m_ht.erase(pos); } |
|||
|
|||
/** |
|||
* @copydoc erase(iterator pos) |
|||
*/ |
|||
iterator erase(const_iterator pos) { return m_ht.erase(pos); } |
|||
|
|||
/** |
|||
* @copydoc erase(iterator pos) |
|||
*/ |
|||
iterator erase(const_iterator first, const_iterator last) { |
|||
return m_ht.erase(first, last); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc erase(iterator pos) |
|||
*/ |
|||
size_type erase(const key_type& key) { return m_ht.erase(key); } |
|||
|
|||
/** |
|||
* @copydoc erase(iterator pos) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup to the value if you already have the hash. |
|||
*/ |
|||
size_type erase(const key_type& key, std::size_t precalculated_hash) { |
|||
return m_ht.erase(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc erase(iterator pos) |
|||
* |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
size_type erase(const K& key) { |
|||
return m_ht.erase(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc erase(const key_type& key, std::size_t precalculated_hash) |
|||
* |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
size_type erase(const K& key, std::size_t precalculated_hash) { |
|||
return m_ht.erase(key, precalculated_hash); |
|||
} |
|||
|
|||
void swap(ordered_map& other) { other.m_ht.swap(m_ht); } |
|||
|
|||
/* |
|||
* Lookup |
|||
*/ |
|||
T& at(const Key& key) { return m_ht.at(key); } |
|||
|
|||
/** |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
T& at(const Key& key, std::size_t precalculated_hash) { |
|||
return m_ht.at(key, precalculated_hash); |
|||
} |
|||
|
|||
const T& at(const Key& key) const { return m_ht.at(key); } |
|||
|
|||
/** |
|||
* @copydoc at(const Key& key, std::size_t precalculated_hash) |
|||
*/ |
|||
const T& at(const Key& key, std::size_t precalculated_hash) const { |
|||
return m_ht.at(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
T& at(const K& key) { |
|||
return m_ht.at(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc at(const K& key) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
T& at(const K& key, std::size_t precalculated_hash) { |
|||
return m_ht.at(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc at(const K& key) |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
const T& at(const K& key) const { |
|||
return m_ht.at(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc at(const K& key, std::size_t precalculated_hash) |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
const T& at(const K& key, std::size_t precalculated_hash) const { |
|||
return m_ht.at(key, precalculated_hash); |
|||
} |
|||
|
|||
T& operator[](const Key& key) { return m_ht[key]; } |
|||
T& operator[](Key&& key) { return m_ht[std::move(key)]; } |
|||
|
|||
size_type count(const Key& key) const { return m_ht.count(key); } |
|||
|
|||
/** |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
size_type count(const Key& key, std::size_t precalculated_hash) const { |
|||
return m_ht.count(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
size_type count(const K& key) const { |
|||
return m_ht.count(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc count(const K& key) const |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
size_type count(const K& key, std::size_t precalculated_hash) const { |
|||
return m_ht.count(key, precalculated_hash); |
|||
} |
|||
|
|||
iterator find(const Key& key) { return m_ht.find(key); } |
|||
|
|||
/** |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
iterator find(const Key& key, std::size_t precalculated_hash) { |
|||
return m_ht.find(key, precalculated_hash); |
|||
} |
|||
|
|||
const_iterator find(const Key& key) const { return m_ht.find(key); } |
|||
|
|||
/** |
|||
* @copydoc find(const Key& key, std::size_t precalculated_hash) |
|||
*/ |
|||
const_iterator find(const Key& key, std::size_t precalculated_hash) const { |
|||
return m_ht.find(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
iterator find(const K& key) { |
|||
return m_ht.find(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc find(const K& key) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
iterator find(const K& key, std::size_t precalculated_hash) { |
|||
return m_ht.find(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc find(const K& key) |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
const_iterator find(const K& key) const { |
|||
return m_ht.find(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc find(const K& key) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
const_iterator find(const K& key, std::size_t precalculated_hash) const { |
|||
return m_ht.find(key, precalculated_hash); |
|||
} |
|||
|
|||
bool contains(const Key& key) const { return m_ht.contains(key); } |
|||
|
|||
/** |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
bool contains(const Key& key, std::size_t precalculated_hash) const { |
|||
return m_ht.contains(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
bool contains(const K& key) const { |
|||
return m_ht.contains(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc contains(const K& key) const |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
bool contains(const K& key, std::size_t precalculated_hash) const { |
|||
return m_ht.contains(key, precalculated_hash); |
|||
} |
|||
|
|||
std::pair<iterator, iterator> equal_range(const Key& key) { |
|||
return m_ht.equal_range(key); |
|||
} |
|||
|
|||
/** |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
std::pair<iterator, iterator> equal_range(const Key& key, |
|||
std::size_t precalculated_hash) { |
|||
return m_ht.equal_range(key, precalculated_hash); |
|||
} |
|||
|
|||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { |
|||
return m_ht.equal_range(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash) |
|||
*/ |
|||
std::pair<const_iterator, const_iterator> equal_range( |
|||
const Key& key, std::size_t precalculated_hash) const { |
|||
return m_ht.equal_range(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
std::pair<iterator, iterator> equal_range(const K& key) { |
|||
return m_ht.equal_range(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc equal_range(const K& key) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
std::pair<iterator, iterator> equal_range(const K& key, |
|||
std::size_t precalculated_hash) { |
|||
return m_ht.equal_range(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc equal_range(const K& key) |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { |
|||
return m_ht.equal_range(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash) |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
std::pair<const_iterator, const_iterator> equal_range( |
|||
const K& key, std::size_t precalculated_hash) const { |
|||
return m_ht.equal_range(key, precalculated_hash); |
|||
} |
|||
|
|||
/* |
|||
* Bucket interface |
|||
*/ |
|||
size_type bucket_count() const { return m_ht.bucket_count(); } |
|||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); } |
|||
|
|||
/* |
|||
* Hash policy |
|||
*/ |
|||
float load_factor() const { return m_ht.load_factor(); } |
|||
float max_load_factor() const { return m_ht.max_load_factor(); } |
|||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); } |
|||
|
|||
void rehash(size_type count) { m_ht.rehash(count); } |
|||
void reserve(size_type count) { m_ht.reserve(count); } |
|||
|
|||
/* |
|||
* Observers |
|||
*/ |
|||
hasher hash_function() const { return m_ht.hash_function(); } |
|||
key_equal key_eq() const { return m_ht.key_eq(); } |
|||
|
|||
/* |
|||
* Other |
|||
*/ |
|||
|
|||
/** |
|||
* Convert a const_iterator to an iterator. |
|||
*/ |
|||
iterator mutable_iterator(const_iterator pos) { |
|||
return m_ht.mutable_iterator(pos); |
|||
} |
|||
|
|||
/** |
|||
* Requires index <= size(). |
|||
* |
|||
* Return an iterator to the element at index. Return end() if index == |
|||
* size(). |
|||
*/ |
|||
iterator nth(size_type index) { return m_ht.nth(index); } |
|||
|
|||
/** |
|||
* @copydoc nth(size_type index) |
|||
*/ |
|||
const_iterator nth(size_type index) const { return m_ht.nth(index); } |
|||
|
|||
/** |
|||
* Return const_reference to the first element. Requires the container to not |
|||
* be empty. |
|||
*/ |
|||
const_reference front() const { return m_ht.front(); } |
|||
|
|||
/** |
|||
* Return const_reference to the last element. Requires the container to not |
|||
* be empty. |
|||
*/ |
|||
const_reference back() const { return m_ht.back(); } |
|||
|
|||
/** |
|||
* Only available if ValueTypeContainer is a std::vector. Same as calling |
|||
* 'values_container().data()'. |
|||
*/ |
|||
template <class U = values_container_type, |
|||
typename std::enable_if< |
|||
tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr> |
|||
const typename values_container_type::value_type* data() const noexcept { |
|||
return m_ht.data(); |
|||
} |
|||
|
|||
/** |
|||
* Return the container in which the values are stored. The values are in the |
|||
* same order as the insertion order and are contiguous in the structure, no |
|||
* holes (size() == values_container().size()). |
|||
*/ |
|||
const values_container_type& values_container() const noexcept { |
|||
return m_ht.values_container(); |
|||
} |
|||
|
|||
/** |
|||
* Release the container in which the values are stored. |
|||
* |
|||
* The map is empty after this operation. |
|||
*/ |
|||
values_container_type release() { return m_ht.release(); } |
|||
|
|||
template <class U = values_container_type, |
|||
typename std::enable_if< |
|||
tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr> |
|||
size_type capacity() const noexcept { |
|||
return m_ht.capacity(); |
|||
} |
|||
|
|||
void shrink_to_fit() { m_ht.shrink_to_fit(); } |
|||
|
|||
/** |
|||
* Insert the value before pos shifting all the elements on the right of pos |
|||
* (including pos) one position to the right. |
|||
* |
|||
* O(bucket_count()) runtime complexity. |
|||
*/ |
|||
std::pair<iterator, bool> insert_at_position(const_iterator pos, |
|||
const value_type& value) { |
|||
return m_ht.insert_at_position(pos, value); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc insert_at_position(const_iterator pos, const value_type& value) |
|||
*/ |
|||
std::pair<iterator, bool> insert_at_position(const_iterator pos, |
|||
value_type&& value) { |
|||
return m_ht.insert_at_position(pos, std::move(value)); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc insert_at_position(const_iterator pos, const value_type& value) |
|||
* |
|||
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), |
|||
* mainly here for coherence. |
|||
*/ |
|||
template <class... Args> |
|||
std::pair<iterator, bool> emplace_at_position(const_iterator pos, |
|||
Args&&... args) { |
|||
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc insert_at_position(const_iterator pos, const value_type& value) |
|||
*/ |
|||
template <class... Args> |
|||
std::pair<iterator, bool> try_emplace_at_position(const_iterator pos, |
|||
const key_type& k, |
|||
Args&&... args) { |
|||
return m_ht.try_emplace_at_position(pos, k, std::forward<Args>(args)...); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc insert_at_position(const_iterator pos, const value_type& value) |
|||
*/ |
|||
template <class... Args> |
|||
std::pair<iterator, bool> try_emplace_at_position(const_iterator pos, |
|||
key_type&& k, |
|||
Args&&... args) { |
|||
return m_ht.try_emplace_at_position(pos, std::move(k), |
|||
std::forward<Args>(args)...); |
|||
} |
|||
|
|||
void pop_back() { m_ht.pop_back(); } |
|||
|
|||
/** |
|||
* Faster erase operation with an O(1) average complexity but it doesn't |
|||
* preserve the insertion order. |
|||
* |
|||
* If an erasure occurs, the last element of the map will take the place of |
|||
* the erased element. |
|||
*/ |
|||
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); } |
|||
|
|||
/** |
|||
* @copydoc unordered_erase(iterator pos) |
|||
*/ |
|||
iterator unordered_erase(const_iterator pos) { |
|||
return m_ht.unordered_erase(pos); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc unordered_erase(iterator pos) |
|||
*/ |
|||
size_type unordered_erase(const key_type& key) { |
|||
return m_ht.unordered_erase(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc unordered_erase(iterator pos) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
size_type unordered_erase(const key_type& key, |
|||
std::size_t precalculated_hash) { |
|||
return m_ht.unordered_erase(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc unordered_erase(iterator pos) |
|||
* |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
size_type unordered_erase(const K& key) { |
|||
return m_ht.unordered_erase(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc unordered_erase(const K& key) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
size_type unordered_erase(const K& key, std::size_t precalculated_hash) { |
|||
return m_ht.unordered_erase(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* Serialize the map through the `serializer` parameter. |
|||
* |
|||
* The `serializer` parameter must be a function object that supports the |
|||
* following call: |
|||
* - `template<typename U> void operator()(const U& value);` where the types |
|||
* `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U. |
|||
* |
|||
* The implementation leaves binary compatibility (endianness, IEEE 754 for |
|||
* floats, ...) of the types it serializes in the hands of the `Serializer` |
|||
* function object if compatibility is required. |
|||
*/ |
|||
template <class Serializer> |
|||
void serialize(Serializer& serializer) const { |
|||
m_ht.serialize(serializer); |
|||
} |
|||
|
|||
/** |
|||
* Deserialize a previously serialized map through the `deserializer` |
|||
* parameter. |
|||
* |
|||
* The `deserializer` parameter must be a function object that supports the |
|||
* following calls: |
|||
* - `template<typename U> U operator()();` where the types `std::uint64_t`, |
|||
* `float` and `std::pair<Key, T>` must be supported for U. |
|||
* |
|||
* If the deserialized hash map type is hash compatible with the serialized |
|||
* map, the deserialization process can be sped up by setting |
|||
* `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual |
|||
* must behave the same way than the ones used on the serialized map. The |
|||
* `std::size_t` must also be of the same size as the one on the platform used |
|||
* to serialize the map, the same apply for `IndexType`. If these criteria are |
|||
* not met, the behaviour is undefined with `hash_compatible` sets to true. |
|||
* |
|||
* The behaviour is undefined if the type `Key` and `T` of the `ordered_map` |
|||
* are not the same as the types used during serialization. |
|||
* |
|||
* The implementation leaves binary compatibility (endianness, IEEE 754 for |
|||
* floats, size of int, ...) of the types it deserializes in the hands of the |
|||
* `Deserializer` function object if compatibility is required. |
|||
*/ |
|||
template <class Deserializer> |
|||
static ordered_map deserialize(Deserializer& deserializer, |
|||
bool hash_compatible = false) { |
|||
ordered_map map(0); |
|||
map.m_ht.deserialize(deserializer, hash_compatible); |
|||
|
|||
return map; |
|||
} |
|||
|
|||
friend bool operator==(const ordered_map& lhs, const ordered_map& rhs) { |
|||
return lhs.m_ht == rhs.m_ht; |
|||
} |
|||
friend bool operator!=(const ordered_map& lhs, const ordered_map& rhs) { |
|||
return lhs.m_ht != rhs.m_ht; |
|||
} |
|||
friend bool operator<(const ordered_map& lhs, const ordered_map& rhs) { |
|||
return lhs.m_ht < rhs.m_ht; |
|||
} |
|||
friend bool operator<=(const ordered_map& lhs, const ordered_map& rhs) { |
|||
return lhs.m_ht <= rhs.m_ht; |
|||
} |
|||
friend bool operator>(const ordered_map& lhs, const ordered_map& rhs) { |
|||
return lhs.m_ht > rhs.m_ht; |
|||
} |
|||
friend bool operator>=(const ordered_map& lhs, const ordered_map& rhs) { |
|||
return lhs.m_ht >= rhs.m_ht; |
|||
} |
|||
|
|||
friend void swap(ordered_map& lhs, ordered_map& rhs) { lhs.swap(rhs); } |
|||
|
|||
private: |
|||
ht m_ht; |
|||
}; |
|||
|
|||
} // end namespace tsl |
|||
|
|||
#endif |
@ -0,0 +1,817 @@ |
|||
/** |
|||
* MIT License |
|||
* |
|||
* Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com> |
|||
* |
|||
* Permission is hereby granted, free of charge, to any person obtaining a copy |
|||
* of this software and associated documentation files (the "Software"), to deal |
|||
* in the Software without restriction, including without limitation the rights |
|||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|||
* copies of the Software, and to permit persons to whom the Software is |
|||
* furnished to do so, subject to the following conditions: |
|||
* |
|||
* The above copyright notice and this permission notice shall be included in |
|||
* all copies or substantial portions of the Software. |
|||
* |
|||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|||
* SOFTWARE. |
|||
*/ |
|||
#ifndef TSL_ORDERED_SET_H |
|||
#define TSL_ORDERED_SET_H |
|||
|
|||
#include <cstddef> |
|||
#include <cstdint> |
|||
#include <deque> |
|||
#include <functional> |
|||
#include <initializer_list> |
|||
#include <memory> |
|||
#include <type_traits> |
|||
#include <utility> |
|||
#include <vector> |
|||
|
|||
#include "ordered_hash.h" |
|||
|
|||
namespace tsl { |
|||
|
|||
/** |
|||
* Implementation of an hash set using open addressing with robin hood with |
|||
* backshift delete to resolve collisions. |
|||
* |
|||
* The particularity of this hash set is that it remembers the order in which |
|||
* the elements were added and provide a way to access the structure which |
|||
* stores these values through the 'values_container()' method. The used |
|||
* container is defined by ValueTypeContainer, by default a std::deque is used |
|||
* (grows faster) but a std::vector may be used. In this case the set provides a |
|||
* 'data()' method which give a direct access to the memory used to store the |
|||
* values (which can be useful to communicate with C API's). |
|||
* |
|||
* The Key must be copy constructible and/or move constructible. To use |
|||
* `unordered_erase` it also must be swappable. |
|||
* |
|||
* The behaviour of the hash set is undefined if the destructor of Key throws an |
|||
* exception. |
|||
* |
|||
* By default the maximum size of a set is limited to 2^32 - 1 values, if needed |
|||
* this can be changed through the IndexType template parameter. Using an |
|||
* `uint64_t` will raise this limit to 2^64 - 1 values but each bucket will use |
|||
* 16 bytes instead of 8 bytes in addition to the space needed to store the |
|||
* values. |
|||
* |
|||
* Iterators invalidation: |
|||
* - clear, operator=, reserve, rehash: always invalidate the iterators (also |
|||
* invalidate end()). |
|||
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as |
|||
* ValueTypeContainer and if size() < capacity(), only end(). Otherwise all the |
|||
* iterators are invalidated if an insert occurs. |
|||
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer |
|||
* invalidate the iterator of the erased element and all the ones after the |
|||
* erased element (including end()). Otherwise all the iterators are invalidated |
|||
* if an erase occurs. |
|||
*/ |
|||
template <class Key, class Hash = std::hash<Key>, |
|||
class KeyEqual = std::equal_to<Key>, |
|||
class Allocator = std::allocator<Key>, |
|||
class ValueTypeContainer = std::deque<Key, Allocator>, |
|||
class IndexType = std::uint_least32_t> |
|||
class ordered_set { |
|||
private: |
|||
template <typename U> |
|||
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>; |
|||
|
|||
class KeySelect { |
|||
public: |
|||
using key_type = Key; |
|||
|
|||
const key_type& operator()(const Key& key) const noexcept { return key; } |
|||
|
|||
key_type& operator()(Key& key) noexcept { return key; } |
|||
}; |
|||
|
|||
using ht = detail_ordered_hash::ordered_hash<Key, KeySelect, void, Hash, |
|||
KeyEqual, Allocator, |
|||
ValueTypeContainer, IndexType>; |
|||
|
|||
public: |
|||
using key_type = typename ht::key_type; |
|||
using value_type = typename ht::value_type; |
|||
using size_type = typename ht::size_type; |
|||
using difference_type = typename ht::difference_type; |
|||
using hasher = typename ht::hasher; |
|||
using key_equal = typename ht::key_equal; |
|||
using allocator_type = typename ht::allocator_type; |
|||
using reference = typename ht::reference; |
|||
using const_reference = typename ht::const_reference; |
|||
using pointer = typename ht::pointer; |
|||
using const_pointer = typename ht::const_pointer; |
|||
using iterator = typename ht::iterator; |
|||
using const_iterator = typename ht::const_iterator; |
|||
using reverse_iterator = typename ht::reverse_iterator; |
|||
using const_reverse_iterator = typename ht::const_reverse_iterator; |
|||
|
|||
using values_container_type = typename ht::values_container_type; |
|||
|
|||
/* |
|||
* Constructors |
|||
*/ |
|||
ordered_set() : ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {} |
|||
|
|||
explicit ordered_set(size_type bucket_count, const Hash& hash = Hash(), |
|||
const KeyEqual& equal = KeyEqual(), |
|||
const Allocator& alloc = Allocator()) |
|||
: m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) {} |
|||
|
|||
ordered_set(size_type bucket_count, const Allocator& alloc) |
|||
: ordered_set(bucket_count, Hash(), KeyEqual(), alloc) {} |
|||
|
|||
ordered_set(size_type bucket_count, const Hash& hash, const Allocator& alloc) |
|||
: ordered_set(bucket_count, hash, KeyEqual(), alloc) {} |
|||
|
|||
explicit ordered_set(const Allocator& alloc) |
|||
: ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {} |
|||
|
|||
template <class InputIt> |
|||
ordered_set(InputIt first, InputIt last, |
|||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, |
|||
const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), |
|||
const Allocator& alloc = Allocator()) |
|||
: ordered_set(bucket_count, hash, equal, alloc) { |
|||
insert(first, last); |
|||
} |
|||
|
|||
template <class InputIt> |
|||
ordered_set(InputIt first, InputIt last, size_type bucket_count, |
|||
const Allocator& alloc) |
|||
: ordered_set(first, last, bucket_count, Hash(), KeyEqual(), alloc) {} |
|||
|
|||
template <class InputIt> |
|||
ordered_set(InputIt first, InputIt last, size_type bucket_count, |
|||
const Hash& hash, const Allocator& alloc) |
|||
: ordered_set(first, last, bucket_count, hash, KeyEqual(), alloc) {} |
|||
|
|||
ordered_set(std::initializer_list<value_type> init, |
|||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, |
|||
const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), |
|||
const Allocator& alloc = Allocator()) |
|||
: ordered_set(init.begin(), init.end(), bucket_count, hash, equal, |
|||
alloc) {} |
|||
|
|||
ordered_set(std::initializer_list<value_type> init, size_type bucket_count, |
|||
const Allocator& alloc) |
|||
: ordered_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), |
|||
alloc) {} |
|||
|
|||
ordered_set(std::initializer_list<value_type> init, size_type bucket_count, |
|||
const Hash& hash, const Allocator& alloc) |
|||
: ordered_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), |
|||
alloc) {} |
|||
|
|||
ordered_set& operator=(std::initializer_list<value_type> ilist) { |
|||
m_ht.clear(); |
|||
|
|||
m_ht.reserve(ilist.size()); |
|||
m_ht.insert(ilist.begin(), ilist.end()); |
|||
|
|||
return *this; |
|||
} |
|||
|
|||
allocator_type get_allocator() const { return m_ht.get_allocator(); } |
|||
|
|||
/* |
|||
* Iterators |
|||
*/ |
|||
iterator begin() noexcept { return m_ht.begin(); } |
|||
const_iterator begin() const noexcept { return m_ht.begin(); } |
|||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); } |
|||
|
|||
iterator end() noexcept { return m_ht.end(); } |
|||
const_iterator end() const noexcept { return m_ht.end(); } |
|||
const_iterator cend() const noexcept { return m_ht.cend(); } |
|||
|
|||
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); } |
|||
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); } |
|||
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); } |
|||
|
|||
reverse_iterator rend() noexcept { return m_ht.rend(); } |
|||
const_reverse_iterator rend() const noexcept { return m_ht.rend(); } |
|||
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); } |
|||
|
|||
/* |
|||
* Capacity |
|||
*/ |
|||
bool empty() const noexcept { return m_ht.empty(); } |
|||
size_type size() const noexcept { return m_ht.size(); } |
|||
size_type max_size() const noexcept { return m_ht.max_size(); } |
|||
|
|||
/* |
|||
* Modifiers |
|||
*/ |
|||
void clear() noexcept { m_ht.clear(); } |
|||
|
|||
std::pair<iterator, bool> insert(const value_type& value) { |
|||
return m_ht.insert(value); |
|||
} |
|||
std::pair<iterator, bool> insert(value_type&& value) { |
|||
return m_ht.insert(std::move(value)); |
|||
} |
|||
|
|||
iterator insert(const_iterator hint, const value_type& value) { |
|||
return m_ht.insert_hint(hint, value); |
|||
} |
|||
|
|||
iterator insert(const_iterator hint, value_type&& value) { |
|||
return m_ht.insert_hint(hint, std::move(value)); |
|||
} |
|||
|
|||
template <class InputIt> |
|||
void insert(InputIt first, InputIt last) { |
|||
m_ht.insert(first, last); |
|||
} |
|||
void insert(std::initializer_list<value_type> ilist) { |
|||
m_ht.insert(ilist.begin(), ilist.end()); |
|||
} |
|||
|
|||
/** |
|||
* Due to the way elements are stored, emplace will need to move or copy the |
|||
* key-value once. The method is equivalent to |
|||
* insert(value_type(std::forward<Args>(args)...)); |
|||
* |
|||
* Mainly here for compatibility with the std::unordered_map interface. |
|||
*/ |
|||
template <class... Args> |
|||
std::pair<iterator, bool> emplace(Args&&... args) { |
|||
return m_ht.emplace(std::forward<Args>(args)...); |
|||
} |
|||
|
|||
/** |
|||
* Due to the way elements are stored, emplace_hint will need to move or copy |
|||
* the key-value once. The method is equivalent to insert(hint, |
|||
* value_type(std::forward<Args>(args)...)); |
|||
* |
|||
* Mainly here for compatibility with the std::unordered_map interface. |
|||
*/ |
|||
template <class... Args> |
|||
iterator emplace_hint(const_iterator hint, Args&&... args) { |
|||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...); |
|||
} |
|||
|
|||
/** |
|||
* When erasing an element, the insert order will be preserved and no holes |
|||
* will be present in the container returned by 'values_container()'. |
|||
* |
|||
* The method is in O(bucket_count()), if the order is not important |
|||
* 'unordered_erase(...)' method is faster with an O(1) average complexity. |
|||
*/ |
|||
iterator erase(iterator pos) { return m_ht.erase(pos); } |
|||
|
|||
/** |
|||
* @copydoc erase(iterator pos) |
|||
*/ |
|||
iterator erase(const_iterator pos) { return m_ht.erase(pos); } |
|||
|
|||
/** |
|||
* @copydoc erase(iterator pos) |
|||
*/ |
|||
iterator erase(const_iterator first, const_iterator last) { |
|||
return m_ht.erase(first, last); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc erase(iterator pos) |
|||
*/ |
|||
size_type erase(const key_type& key) { return m_ht.erase(key); } |
|||
|
|||
/** |
|||
* @copydoc erase(iterator pos) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup to the value if you already have the hash. |
|||
*/ |
|||
size_type erase(const key_type& key, std::size_t precalculated_hash) { |
|||
return m_ht.erase(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc erase(iterator pos) |
|||
* |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
size_type erase(const K& key) { |
|||
return m_ht.erase(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc erase(const key_type& key, std::size_t precalculated_hash) |
|||
* |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
size_type erase(const K& key, std::size_t precalculated_hash) { |
|||
return m_ht.erase(key, precalculated_hash); |
|||
} |
|||
|
|||
void swap(ordered_set& other) { other.m_ht.swap(m_ht); } |
|||
|
|||
/* |
|||
* Lookup |
|||
*/ |
|||
size_type count(const Key& key) const { return m_ht.count(key); } |
|||
|
|||
/** |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
size_type count(const Key& key, std::size_t precalculated_hash) const { |
|||
return m_ht.count(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
size_type count(const K& key) const { |
|||
return m_ht.count(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc count(const K& key) const |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
size_type count(const K& key, std::size_t precalculated_hash) const { |
|||
return m_ht.count(key, precalculated_hash); |
|||
} |
|||
|
|||
iterator find(const Key& key) { return m_ht.find(key); } |
|||
|
|||
/** |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
iterator find(const Key& key, std::size_t precalculated_hash) { |
|||
return m_ht.find(key, precalculated_hash); |
|||
} |
|||
|
|||
const_iterator find(const Key& key) const { return m_ht.find(key); } |
|||
|
|||
/** |
|||
* @copydoc find(const Key& key, std::size_t precalculated_hash) |
|||
*/ |
|||
const_iterator find(const Key& key, std::size_t precalculated_hash) const { |
|||
return m_ht.find(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
iterator find(const K& key) { |
|||
return m_ht.find(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc find(const K& key) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
iterator find(const K& key, std::size_t precalculated_hash) { |
|||
return m_ht.find(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc find(const K& key) |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
const_iterator find(const K& key) const { |
|||
return m_ht.find(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc find(const K& key) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
const_iterator find(const K& key, std::size_t precalculated_hash) const { |
|||
return m_ht.find(key, precalculated_hash); |
|||
} |
|||
|
|||
bool contains(const Key& key) const { return m_ht.contains(key); } |
|||
|
|||
/** |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
bool contains(const Key& key, std::size_t precalculated_hash) const { |
|||
return m_ht.contains(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
bool contains(const K& key) const { |
|||
return m_ht.contains(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc contains(const K& key) const |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
bool contains(const K& key, std::size_t precalculated_hash) const { |
|||
return m_ht.contains(key, precalculated_hash); |
|||
} |
|||
|
|||
std::pair<iterator, iterator> equal_range(const Key& key) { |
|||
return m_ht.equal_range(key); |
|||
} |
|||
|
|||
/** |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
std::pair<iterator, iterator> equal_range(const Key& key, |
|||
std::size_t precalculated_hash) { |
|||
return m_ht.equal_range(key, precalculated_hash); |
|||
} |
|||
|
|||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { |
|||
return m_ht.equal_range(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash) |
|||
*/ |
|||
std::pair<const_iterator, const_iterator> equal_range( |
|||
const Key& key, std::size_t precalculated_hash) const { |
|||
return m_ht.equal_range(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
std::pair<iterator, iterator> equal_range(const K& key) { |
|||
return m_ht.equal_range(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc equal_range(const K& key) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
std::pair<iterator, iterator> equal_range(const K& key, |
|||
std::size_t precalculated_hash) { |
|||
return m_ht.equal_range(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc equal_range(const K& key) |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { |
|||
return m_ht.equal_range(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash) |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
std::pair<const_iterator, const_iterator> equal_range( |
|||
const K& key, std::size_t precalculated_hash) const { |
|||
return m_ht.equal_range(key, precalculated_hash); |
|||
} |
|||
|
|||
/* |
|||
* Bucket interface |
|||
*/ |
|||
size_type bucket_count() const { return m_ht.bucket_count(); } |
|||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); } |
|||
|
|||
/* |
|||
* Hash policy |
|||
*/ |
|||
float load_factor() const { return m_ht.load_factor(); } |
|||
float max_load_factor() const { return m_ht.max_load_factor(); } |
|||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); } |
|||
|
|||
void rehash(size_type count) { m_ht.rehash(count); } |
|||
void reserve(size_type count) { m_ht.reserve(count); } |
|||
|
|||
/* |
|||
* Observers |
|||
*/ |
|||
hasher hash_function() const { return m_ht.hash_function(); } |
|||
key_equal key_eq() const { return m_ht.key_eq(); } |
|||
|
|||
/* |
|||
* Other |
|||
*/ |
|||
|
|||
/** |
|||
* Convert a const_iterator to an iterator. |
|||
*/ |
|||
iterator mutable_iterator(const_iterator pos) { |
|||
return m_ht.mutable_iterator(pos); |
|||
} |
|||
|
|||
/** |
|||
* Requires index <= size(). |
|||
* |
|||
* Return an iterator to the element at index. Return end() if index == |
|||
* size(). |
|||
*/ |
|||
iterator nth(size_type index) { return m_ht.nth(index); } |
|||
|
|||
/** |
|||
* @copydoc nth(size_type index) |
|||
*/ |
|||
const_iterator nth(size_type index) const { return m_ht.nth(index); } |
|||
|
|||
/** |
|||
* Return const_reference to the first element. Requires the container to not |
|||
* be empty. |
|||
*/ |
|||
const_reference front() const { return m_ht.front(); } |
|||
|
|||
/** |
|||
* Return const_reference to the last element. Requires the container to not |
|||
* be empty. |
|||
*/ |
|||
const_reference back() const { return m_ht.back(); } |
|||
|
|||
/** |
|||
* Only available if ValueTypeContainer is a std::vector. Same as calling |
|||
* 'values_container().data()'. |
|||
*/ |
|||
template <class U = values_container_type, |
|||
typename std::enable_if< |
|||
tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr> |
|||
const typename values_container_type::value_type* data() const noexcept { |
|||
return m_ht.data(); |
|||
} |
|||
|
|||
/** |
|||
* Return the container in which the values are stored. The values are in the |
|||
* same order as the insertion order and are contiguous in the structure, no |
|||
* holes (size() == values_container().size()). |
|||
*/ |
|||
const values_container_type& values_container() const noexcept { |
|||
return m_ht.values_container(); |
|||
} |
|||
|
|||
/** |
|||
* Release the container in which the values are stored. |
|||
* |
|||
* The set is empty after this operation. |
|||
*/ |
|||
values_container_type release() { return m_ht.release(); } |
|||
|
|||
template <class U = values_container_type, |
|||
typename std::enable_if< |
|||
tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr> |
|||
size_type capacity() const noexcept { |
|||
return m_ht.capacity(); |
|||
} |
|||
|
|||
void shrink_to_fit() { m_ht.shrink_to_fit(); } |
|||
|
|||
/** |
|||
* Insert the value before pos shifting all the elements on the right of pos |
|||
* (including pos) one position to the right. |
|||
* |
|||
* O(bucket_count()) runtime complexity. |
|||
*/ |
|||
std::pair<iterator, bool> insert_at_position(const_iterator pos, |
|||
const value_type& value) { |
|||
return m_ht.insert_at_position(pos, value); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc insert_at_position(const_iterator pos, const value_type& value) |
|||
*/ |
|||
std::pair<iterator, bool> insert_at_position(const_iterator pos, |
|||
value_type&& value) { |
|||
return m_ht.insert_at_position(pos, std::move(value)); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc insert_at_position(const_iterator pos, const value_type& value) |
|||
* |
|||
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), |
|||
* mainly here for coherence. |
|||
*/ |
|||
template <class... Args> |
|||
std::pair<iterator, bool> emplace_at_position(const_iterator pos, |
|||
Args&&... args) { |
|||
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...); |
|||
} |
|||
|
|||
void pop_back() { m_ht.pop_back(); } |
|||
|
|||
/** |
|||
* Faster erase operation with an O(1) average complexity but it doesn't |
|||
* preserve the insertion order. |
|||
* |
|||
* If an erasure occurs, the last element of the map will take the place of |
|||
* the erased element. |
|||
*/ |
|||
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); } |
|||
|
|||
/** |
|||
* @copydoc unordered_erase(iterator pos) |
|||
*/ |
|||
iterator unordered_erase(const_iterator pos) { |
|||
return m_ht.unordered_erase(pos); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc unordered_erase(iterator pos) |
|||
*/ |
|||
size_type unordered_erase(const key_type& key) { |
|||
return m_ht.unordered_erase(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc unordered_erase(iterator pos) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
size_type unordered_erase(const key_type& key, |
|||
std::size_t precalculated_hash) { |
|||
return m_ht.unordered_erase(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc unordered_erase(iterator pos) |
|||
* |
|||
* This overload only participates in the overload resolution if the typedef |
|||
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable |
|||
* to Key. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
size_type unordered_erase(const K& key) { |
|||
return m_ht.unordered_erase(key); |
|||
} |
|||
|
|||
/** |
|||
* @copydoc unordered_erase(const K& key) |
|||
* |
|||
* Use the hash value 'precalculated_hash' instead of hashing the key. The |
|||
* hash value should be the same as hash_function()(key). Useful to speed-up |
|||
* the lookup if you already have the hash. |
|||
*/ |
|||
template < |
|||
class K, class KE = KeyEqual, |
|||
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> |
|||
size_type unordered_erase(const K& key, std::size_t precalculated_hash) { |
|||
return m_ht.unordered_erase(key, precalculated_hash); |
|||
} |
|||
|
|||
/** |
|||
* Serialize the set through the `serializer` parameter. |
|||
* |
|||
* The `serializer` parameter must be a function object that supports the |
|||
* following call: |
|||
* - `void operator()(const U& value);` where the types `std::uint64_t`, |
|||
* `float` and `Key` must be supported for U. |
|||
* |
|||
* The implementation leaves binary compatibility (endianness, IEEE 754 for |
|||
* floats, ...) of the types it serializes in the hands of the `Serializer` |
|||
* function object if compatibility is required. |
|||
*/ |
|||
template <class Serializer> |
|||
void serialize(Serializer& serializer) const { |
|||
m_ht.serialize(serializer); |
|||
} |
|||
|
|||
/** |
|||
* Deserialize a previously serialized set through the `deserializer` |
|||
* parameter. |
|||
* |
|||
* The `deserializer` parameter must be a function object that supports the |
|||
* following calls: |
|||
* - `template<typename U> U operator()();` where the types `std::uint64_t`, |
|||
* `float` and `Key` must be supported for U. |
|||
* |
|||
* If the deserialized hash set type is hash compatible with the serialized |
|||
* set, the deserialization process can be sped up by setting |
|||
* `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual |
|||
* must behave the same way than the ones used on the serialized map. The |
|||
* `std::size_t` must also be of the same size as the one on the platform used |
|||
* to serialize the map, the same apply for `IndexType`. If these criteria are |
|||
* not met, the behaviour is undefined with `hash_compatible` sets to true. |
|||
* |
|||
* The behaviour is undefined if the type `Key` of the `ordered_set` is not |
|||
* the same as the type used during serialization. |
|||
* |
|||
* The implementation leaves binary compatibility (endianness, IEEE 754 for |
|||
* floats, size of int, ...) of the types it deserializes in the hands of the |
|||
* `Deserializer` function object if compatibility is required. |
|||
*/ |
|||
template <class Deserializer> |
|||
static ordered_set deserialize(Deserializer& deserializer, |
|||
bool hash_compatible = false) { |
|||
ordered_set set(0); |
|||
set.m_ht.deserialize(deserializer, hash_compatible); |
|||
|
|||
return set; |
|||
} |
|||
|
|||
friend bool operator==(const ordered_set& lhs, const ordered_set& rhs) { |
|||
return lhs.m_ht == rhs.m_ht; |
|||
} |
|||
friend bool operator!=(const ordered_set& lhs, const ordered_set& rhs) { |
|||
return lhs.m_ht != rhs.m_ht; |
|||
} |
|||
friend bool operator<(const ordered_set& lhs, const ordered_set& rhs) { |
|||
return lhs.m_ht < rhs.m_ht; |
|||
} |
|||
friend bool operator<=(const ordered_set& lhs, const ordered_set& rhs) { |
|||
return lhs.m_ht <= rhs.m_ht; |
|||
} |
|||
friend bool operator>(const ordered_set& lhs, const ordered_set& rhs) { |
|||
return lhs.m_ht > rhs.m_ht; |
|||
} |
|||
friend bool operator>=(const ordered_set& lhs, const ordered_set& rhs) { |
|||
return lhs.m_ht >= rhs.m_ht; |
|||
} |
|||
|
|||
friend void swap(ordered_set& lhs, ordered_set& rhs) { lhs.swap(rhs); } |
|||
|
|||
private: |
|||
ht m_ht; |
|||
}; |
|||
|
|||
} // end namespace tsl |
|||
|
|||
#endif |
Write
Preview
Loading…
Cancel
Save
Reference in new issue