Browse Source

checkpoint

toml4
Antonio SJ Musumeci 1 year ago
parent
commit
120ac8b5da
  1. 1657
      src/tsl/ordered_hash.h
  2. 982
      src/tsl/ordered_map.h
  3. 817
      src/tsl/ordered_set.h

1657
src/tsl/ordered_hash.h
File diff suppressed because it is too large
View File

982
src/tsl/ordered_map.h

@ -0,0 +1,982 @@
/**
* MIT License
*
* Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ORDERED_MAP_H
#define TSL_ORDERED_MAP_H
#include <cstddef>
#include <cstdint>
#include <deque>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "ordered_hash.h"
namespace tsl {
/**
* Implementation of an hash map using open addressing with robin hood with
* backshift delete to resolve collisions.
*
* The particularity of this hash map is that it remembers the order in which
* the elements were added and provide a way to access the structure which
* stores these values through the 'values_container()' method. The used
* container is defined by ValueTypeContainer, by default a std::deque is used
* (grows faster) but a std::vector may be used. In this case the map provides a
* 'data()' method which give a direct access to the memory used to store the
* values (which can be useful to communicate with C API's).
*
* The Key and T must be copy constructible and/or move constructible. To use
* `unordered_erase` they both must be swappable.
*
* The behaviour of the hash map is undefined if the destructor of Key or T
* throws an exception.
*
* By default the maximum size of a map is limited to 2^32 - 1 values, if needed
* this can be changed through the IndexType template parameter. Using an
* `uint64_t` will raise this limit to 2^64 - 1 values but each bucket will use
* 16 bytes instead of 8 bytes in addition to the space needed to store the
* values.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators (also
* invalidate end()).
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as
* ValueTypeContainer and if size() < capacity(), only end(). Otherwise all the
* iterators are invalidated if an insert occurs.
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer
* invalidate the iterator of the erased element and all the ones after the
* erased element (including end()). Otherwise all the iterators are invalidated
* if an erase occurs.
*/
template <class Key, class T, class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
class ValueTypeContainer = std::deque<std::pair<Key, T>, Allocator>,
class IndexType = std::uint_least32_t>
class ordered_map {
private:
template <typename U>
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(
const std::pair<Key, T>& key_value) const noexcept {
return key_value.first;
}
key_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.first;
}
};
class ValueSelect {
public:
using value_type = T;
const value_type& operator()(
const std::pair<Key, T>& key_value) const noexcept {
return key_value.second;
}
value_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.second;
}
};
using ht =
detail_ordered_hash::ordered_hash<std::pair<Key, T>, KeySelect,
ValueSelect, Hash, KeyEqual, Allocator,
ValueTypeContainer, IndexType>;
public:
using key_type = typename ht::key_type;
using mapped_type = T;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
using reverse_iterator = typename ht::reverse_iterator;
using const_reverse_iterator = typename ht::const_reverse_iterator;
using values_container_type = typename ht::values_container_type;
/*
* Constructors
*/
ordered_map() : ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {}
explicit ordered_map(size_type bucket_count, const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator())
: m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) {}
ordered_map(size_type bucket_count, const Allocator& alloc)
: ordered_map(bucket_count, Hash(), KeyEqual(), alloc) {}
ordered_map(size_type bucket_count, const Hash& hash, const Allocator& alloc)
: ordered_map(bucket_count, hash, KeyEqual(), alloc) {}
explicit ordered_map(const Allocator& alloc)
: ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {}
template <class InputIt>
ordered_map(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator())
: ordered_map(bucket_count, hash, equal, alloc) {
insert(first, last);
}
template <class InputIt>
ordered_map(InputIt first, InputIt last, size_type bucket_count,
const Allocator& alloc)
: ordered_map(first, last, bucket_count, Hash(), KeyEqual(), alloc) {}
template <class InputIt>
ordered_map(InputIt first, InputIt last, size_type bucket_count,
const Hash& hash, const Allocator& alloc)
: ordered_map(first, last, bucket_count, hash, KeyEqual(), alloc) {}
ordered_map(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator())
: ordered_map(init.begin(), init.end(), bucket_count, hash, equal,
alloc) {}
ordered_map(std::initializer_list<value_type> init, size_type bucket_count,
const Allocator& alloc)
: ordered_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(),
alloc) {}
ordered_map(std::initializer_list<value_type> init, size_type bucket_count,
const Hash& hash, const Allocator& alloc)
: ordered_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(),
alloc) {}
ordered_map& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
reverse_iterator rend() noexcept { return m_ht.rend(); }
const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) {
return m_ht.insert(value);
}
template <class P, typename std::enable_if<std::is_constructible<
value_type, P&&>::value>::type* = nullptr>
std::pair<iterator, bool> insert(P&& value) {
return m_ht.emplace(std::forward<P>(value));
}
std::pair<iterator, bool> insert(value_type&& value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert_hint(hint, value);
}
template <class P, typename std::enable_if<std::is_constructible<
value_type, P&&>::value>::type* = nullptr>
iterator insert(const_iterator hint, P&& value) {
return m_ht.emplace_hint(hint, std::forward<P>(value));
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert_hint(hint, std::move(value));
}
template <class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
template <class M>
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
return m_ht.insert_or_assign(k, std::forward<M>(obj));
}
template <class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
}
template <class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
}
template <class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
}
/**
* Due to the way elements are stored, emplace will need to move or copy the
* key-value once. The method is equivalent to
* insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template <class... Args>
std::pair<iterator, bool> emplace(Args&&... args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy
* the key-value once. The method is equivalent to insert(hint,
* value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
template <class... Args>
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
return m_ht.try_emplace(k, std::forward<Args>(args)...);
}
template <class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
}
template <class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
}
template <class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
return m_ht.try_emplace_hint(hint, std::move(k),
std::forward<Args>(args)...);
}
/**
* When erasing an element, the insert order will be preserved and no holes
* will be present in the container returned by 'values_container()'.
*
* The method is in O(bucket_count()), if the order is not important
* 'unordered_erase(...)' method is faster with an O(1) average complexity.
*/
iterator erase(iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator first, const_iterator last) {
return m_ht.erase(first, last);
}
/**
* @copydoc erase(iterator pos)
*/
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* @copydoc erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* @copydoc erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) {
return m_ht.erase(key);
}
/**
* @copydoc erase(const key_type& key, std::size_t precalculated_hash)
*
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(ordered_map& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
T& at(const Key& key) { return m_ht.at(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
T& at(const Key& key, std::size_t precalculated_hash) {
return m_ht.at(key, precalculated_hash);
}
const T& at(const Key& key) const { return m_ht.at(key); }
/**
* @copydoc at(const Key& key, std::size_t precalculated_hash)
*/
const T& at(const Key& key, std::size_t precalculated_hash) const {
return m_ht.at(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key) {
return m_ht.at(key);
}
/**
* @copydoc at(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key, std::size_t precalculated_hash) {
return m_ht.at(key, precalculated_hash);
}
/**
* @copydoc at(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key) const {
return m_ht.at(key);
}
/**
* @copydoc at(const K& key, std::size_t precalculated_hash)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key, std::size_t precalculated_hash) const {
return m_ht.at(key, precalculated_hash);
}
T& operator[](const Key& key) { return m_ht[key]; }
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const {
return m_ht.count(key);
}
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) {
return m_ht.find(key, precalculated_hash);
}
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) {
return m_ht.find(key);
}
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) {
return m_ht.find(key, precalculated_hash);
}
/**
* @copydoc find(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const {
return m_ht.find(key);
}
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const {
return m_ht.contains(key);
}
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) {
return m_ht.equal_range(key);
}
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key,
std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(
const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key,
std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(
const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Requires index <= size().
*
* Return an iterator to the element at index. Return end() if index ==
* size().
*/
iterator nth(size_type index) { return m_ht.nth(index); }
/**
* @copydoc nth(size_type index)
*/
const_iterator nth(size_type index) const { return m_ht.nth(index); }
/**
* Return const_reference to the first element. Requires the container to not
* be empty.
*/
const_reference front() const { return m_ht.front(); }
/**
* Return const_reference to the last element. Requires the container to not
* be empty.
*/
const_reference back() const { return m_ht.back(); }
/**
* Only available if ValueTypeContainer is a std::vector. Same as calling
* 'values_container().data()'.
*/
template <class U = values_container_type,
typename std::enable_if<
tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
const typename values_container_type::value_type* data() const noexcept {
return m_ht.data();
}
/**
* Return the container in which the values are stored. The values are in the
* same order as the insertion order and are contiguous in the structure, no
* holes (size() == values_container().size()).
*/
const values_container_type& values_container() const noexcept {
return m_ht.values_container();
}
/**
* Release the container in which the values are stored.
*
* The map is empty after this operation.
*/
values_container_type release() { return m_ht.release(); }
template <class U = values_container_type,
typename std::enable_if<
tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
size_type capacity() const noexcept {
return m_ht.capacity();
}
void shrink_to_fit() { m_ht.shrink_to_fit(); }
/**
* Insert the value before pos shifting all the elements on the right of pos
* (including pos) one position to the right.
*
* O(bucket_count()) runtime complexity.
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos,
const value_type& value) {
return m_ht.insert_at_position(pos, value);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos,
value_type&& value) {
return m_ht.insert_at_position(pos, std::move(value));
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...),
* mainly here for coherence.
*/
template <class... Args>
std::pair<iterator, bool> emplace_at_position(const_iterator pos,
Args&&... args) {
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
template <class... Args>
std::pair<iterator, bool> try_emplace_at_position(const_iterator pos,
const key_type& k,
Args&&... args) {
return m_ht.try_emplace_at_position(pos, k, std::forward<Args>(args)...);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
template <class... Args>
std::pair<iterator, bool> try_emplace_at_position(const_iterator pos,
key_type&& k,
Args&&... args) {
return m_ht.try_emplace_at_position(pos, std::move(k),
std::forward<Args>(args)...);
}
void pop_back() { m_ht.pop_back(); }
/**
* Faster erase operation with an O(1) average complexity but it doesn't
* preserve the insertion order.
*
* If an erasure occurs, the last element of the map will take the place of
* the erased element.
*/
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
iterator unordered_erase(const_iterator pos) {
return m_ht.unordered_erase(pos);
}
/**
* @copydoc unordered_erase(iterator pos)
*/
size_type unordered_erase(const key_type& key) {
return m_ht.unordered_erase(key);
}
/**
* @copydoc unordered_erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
size_type unordered_erase(const key_type& key,
std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* @copydoc unordered_erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key) {
return m_ht.unordered_erase(key);
}
/**
* @copydoc unordered_erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* Serialize the map through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the
* following call:
* - `template<typename U> void operator()(const U& value);` where the types
* `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for
* floats, ...) of the types it serializes in the hands of the `Serializer`
* function object if compatibility is required.
*/
template <class Serializer>
void serialize(Serializer& serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previously serialized map through the `deserializer`
* parameter.
*
* The `deserializer` parameter must be a function object that supports the
* following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`,
* `float` and `std::pair<Key, T>` must be supported for U.
*
* If the deserialized hash map type is hash compatible with the serialized
* map, the deserialization process can be sped up by setting
* `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual
* must behave the same way than the ones used on the serialized map. The
* `std::size_t` must also be of the same size as the one on the platform used
* to serialize the map, the same apply for `IndexType`. If these criteria are
* not met, the behaviour is undefined with `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` and `T` of the `ordered_map`
* are not the same as the types used during serialization.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for
* floats, size of int, ...) of the types it deserializes in the hands of the
* `Deserializer` function object if compatibility is required.
*/
template <class Deserializer>
static ordered_map deserialize(Deserializer& deserializer,
bool hash_compatible = false) {
ordered_map map(0);
map.m_ht.deserialize(deserializer, hash_compatible);
return map;
}
friend bool operator==(const ordered_map& lhs, const ordered_map& rhs) {
return lhs.m_ht == rhs.m_ht;
}
friend bool operator!=(const ordered_map& lhs, const ordered_map& rhs) {
return lhs.m_ht != rhs.m_ht;
}
friend bool operator<(const ordered_map& lhs, const ordered_map& rhs) {
return lhs.m_ht < rhs.m_ht;
}
friend bool operator<=(const ordered_map& lhs, const ordered_map& rhs) {
return lhs.m_ht <= rhs.m_ht;
}
friend bool operator>(const ordered_map& lhs, const ordered_map& rhs) {
return lhs.m_ht > rhs.m_ht;
}
friend bool operator>=(const ordered_map& lhs, const ordered_map& rhs) {
return lhs.m_ht >= rhs.m_ht;
}
friend void swap(ordered_map& lhs, ordered_map& rhs) { lhs.swap(rhs); }
private:
ht m_ht;
};
} // end namespace tsl
#endif

817
src/tsl/ordered_set.h

@ -0,0 +1,817 @@
/**
* MIT License
*
* Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ORDERED_SET_H
#define TSL_ORDERED_SET_H
#include <cstddef>
#include <cstdint>
#include <deque>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "ordered_hash.h"
namespace tsl {
/**
* Implementation of an hash set using open addressing with robin hood with
* backshift delete to resolve collisions.
*
* The particularity of this hash set is that it remembers the order in which
* the elements were added and provide a way to access the structure which
* stores these values through the 'values_container()' method. The used
* container is defined by ValueTypeContainer, by default a std::deque is used
* (grows faster) but a std::vector may be used. In this case the set provides a
* 'data()' method which give a direct access to the memory used to store the
* values (which can be useful to communicate with C API's).
*
* The Key must be copy constructible and/or move constructible. To use
* `unordered_erase` it also must be swappable.
*
* The behaviour of the hash set is undefined if the destructor of Key throws an
* exception.
*
* By default the maximum size of a set is limited to 2^32 - 1 values, if needed
* this can be changed through the IndexType template parameter. Using an
* `uint64_t` will raise this limit to 2^64 - 1 values but each bucket will use
* 16 bytes instead of 8 bytes in addition to the space needed to store the
* values.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators (also
* invalidate end()).
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as
* ValueTypeContainer and if size() < capacity(), only end(). Otherwise all the
* iterators are invalidated if an insert occurs.
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer
* invalidate the iterator of the erased element and all the ones after the
* erased element (including end()). Otherwise all the iterators are invalidated
* if an erase occurs.
*/
template <class Key, class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
class ValueTypeContainer = std::deque<Key, Allocator>,
class IndexType = std::uint_least32_t>
class ordered_set {
private:
template <typename U>
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const Key& key) const noexcept { return key; }
key_type& operator()(Key& key) noexcept { return key; }
};
using ht = detail_ordered_hash::ordered_hash<Key, KeySelect, void, Hash,
KeyEqual, Allocator,
ValueTypeContainer, IndexType>;
public:
using key_type = typename ht::key_type;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
using reverse_iterator = typename ht::reverse_iterator;
using const_reverse_iterator = typename ht::const_reverse_iterator;
using values_container_type = typename ht::values_container_type;
/*
* Constructors
*/
ordered_set() : ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {}
explicit ordered_set(size_type bucket_count, const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator())
: m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) {}
ordered_set(size_type bucket_count, const Allocator& alloc)
: ordered_set(bucket_count, Hash(), KeyEqual(), alloc) {}
ordered_set(size_type bucket_count, const Hash& hash, const Allocator& alloc)
: ordered_set(bucket_count, hash, KeyEqual(), alloc) {}
explicit ordered_set(const Allocator& alloc)
: ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {}
template <class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator())
: ordered_set(bucket_count, hash, equal, alloc) {
insert(first, last);
}
template <class InputIt>
ordered_set(InputIt first, InputIt last, size_type bucket_count,
const Allocator& alloc)
: ordered_set(first, last, bucket_count, Hash(), KeyEqual(), alloc) {}
template <class InputIt>
ordered_set(InputIt first, InputIt last, size_type bucket_count,
const Hash& hash, const Allocator& alloc)
: ordered_set(first, last, bucket_count, hash, KeyEqual(), alloc) {}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator())
: ordered_set(init.begin(), init.end(), bucket_count, hash, equal,
alloc) {}
ordered_set(std::initializer_list<value_type> init, size_type bucket_count,
const Allocator& alloc)
: ordered_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(),
alloc) {}
ordered_set(std::initializer_list<value_type> init, size_type bucket_count,
const Hash& hash, const Allocator& alloc)
: ordered_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(),
alloc) {}
ordered_set& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
reverse_iterator rend() noexcept { return m_ht.rend(); }
const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) {
return m_ht.insert(value);
}
std::pair<iterator, bool> insert(value_type&& value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert_hint(hint, value);
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert_hint(hint, std::move(value));
}
template <class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
/**
* Due to the way elements are stored, emplace will need to move or copy the
* key-value once. The method is equivalent to
* insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template <class... Args>
std::pair<iterator, bool> emplace(Args&&... args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy
* the key-value once. The method is equivalent to insert(hint,
* value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
/**
* When erasing an element, the insert order will be preserved and no holes
* will be present in the container returned by 'values_container()'.
*
* The method is in O(bucket_count()), if the order is not important
* 'unordered_erase(...)' method is faster with an O(1) average complexity.
*/
iterator erase(iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator first, const_iterator last) {
return m_ht.erase(first, last);
}
/**
* @copydoc erase(iterator pos)
*/
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* @copydoc erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* @copydoc erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) {
return m_ht.erase(key);
}
/**
* @copydoc erase(const key_type& key, std::size_t precalculated_hash)
*
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(ordered_set& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const {
return m_ht.count(key);
}
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) {
return m_ht.find(key, precalculated_hash);
}
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) {
return m_ht.find(key);
}
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) {
return m_ht.find(key, precalculated_hash);
}
/**
* @copydoc find(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const {
return m_ht.find(key);
}
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const {
return m_ht.contains(key);
}
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) {
return m_ht.equal_range(key);
}
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key,
std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(
const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key,
std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(
const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Requires index <= size().
*
* Return an iterator to the element at index. Return end() if index ==
* size().
*/
iterator nth(size_type index) { return m_ht.nth(index); }
/**
* @copydoc nth(size_type index)
*/
const_iterator nth(size_type index) const { return m_ht.nth(index); }
/**
* Return const_reference to the first element. Requires the container to not
* be empty.
*/
const_reference front() const { return m_ht.front(); }
/**
* Return const_reference to the last element. Requires the container to not
* be empty.
*/
const_reference back() const { return m_ht.back(); }
/**
* Only available if ValueTypeContainer is a std::vector. Same as calling
* 'values_container().data()'.
*/
template <class U = values_container_type,
typename std::enable_if<
tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
const typename values_container_type::value_type* data() const noexcept {
return m_ht.data();
}
/**
* Return the container in which the values are stored. The values are in the
* same order as the insertion order and are contiguous in the structure, no
* holes (size() == values_container().size()).
*/
const values_container_type& values_container() const noexcept {
return m_ht.values_container();
}
/**
* Release the container in which the values are stored.
*
* The set is empty after this operation.
*/
values_container_type release() { return m_ht.release(); }
template <class U = values_container_type,
typename std::enable_if<
tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
size_type capacity() const noexcept {
return m_ht.capacity();
}
void shrink_to_fit() { m_ht.shrink_to_fit(); }
/**
* Insert the value before pos shifting all the elements on the right of pos
* (including pos) one position to the right.
*
* O(bucket_count()) runtime complexity.
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos,
const value_type& value) {
return m_ht.insert_at_position(pos, value);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos,
value_type&& value) {
return m_ht.insert_at_position(pos, std::move(value));
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...),
* mainly here for coherence.
*/
template <class... Args>
std::pair<iterator, bool> emplace_at_position(const_iterator pos,
Args&&... args) {
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...);
}
void pop_back() { m_ht.pop_back(); }
/**
* Faster erase operation with an O(1) average complexity but it doesn't
* preserve the insertion order.
*
* If an erasure occurs, the last element of the map will take the place of
* the erased element.
*/
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
iterator unordered_erase(const_iterator pos) {
return m_ht.unordered_erase(pos);
}
/**
* @copydoc unordered_erase(iterator pos)
*/
size_type unordered_erase(const key_type& key) {
return m_ht.unordered_erase(key);
}
/**
* @copydoc unordered_erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
size_type unordered_erase(const key_type& key,
std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* @copydoc unordered_erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key) {
return m_ht.unordered_erase(key);
}
/**
* @copydoc unordered_erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* Serialize the set through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the
* following call:
* - `void operator()(const U& value);` where the types `std::uint64_t`,
* `float` and `Key` must be supported for U.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for
* floats, ...) of the types it serializes in the hands of the `Serializer`
* function object if compatibility is required.
*/
template <class Serializer>
void serialize(Serializer& serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previously serialized set through the `deserializer`
* parameter.
*
* The `deserializer` parameter must be a function object that supports the
* following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`,
* `float` and `Key` must be supported for U.
*
* If the deserialized hash set type is hash compatible with the serialized
* set, the deserialization process can be sped up by setting
* `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual
* must behave the same way than the ones used on the serialized map. The
* `std::size_t` must also be of the same size as the one on the platform used
* to serialize the map, the same apply for `IndexType`. If these criteria are
* not met, the behaviour is undefined with `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` of the `ordered_set` is not
* the same as the type used during serialization.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for
* floats, size of int, ...) of the types it deserializes in the hands of the
* `Deserializer` function object if compatibility is required.
*/
template <class Deserializer>
static ordered_set deserialize(Deserializer& deserializer,
bool hash_compatible = false) {
ordered_set set(0);
set.m_ht.deserialize(deserializer, hash_compatible);
return set;
}
friend bool operator==(const ordered_set& lhs, const ordered_set& rhs) {
return lhs.m_ht == rhs.m_ht;
}
friend bool operator!=(const ordered_set& lhs, const ordered_set& rhs) {
return lhs.m_ht != rhs.m_ht;
}
friend bool operator<(const ordered_set& lhs, const ordered_set& rhs) {
return lhs.m_ht < rhs.m_ht;
}
friend bool operator<=(const ordered_set& lhs, const ordered_set& rhs) {
return lhs.m_ht <= rhs.m_ht;
}
friend bool operator>(const ordered_set& lhs, const ordered_set& rhs) {
return lhs.m_ht > rhs.m_ht;
}
friend bool operator>=(const ordered_set& lhs, const ordered_set& rhs) {
return lhs.m_ht >= rhs.m_ht;
}
friend void swap(ordered_set& lhs, ordered_set& rhs) { lhs.swap(rhs); }
private:
ht m_ht;
};
} // end namespace tsl
#endif
Loading…
Cancel
Save