|
|
// Formatting library for C++ - implementation
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_FORMAT_INL_H_
#define FMT_FORMAT_INL_H_
#include <algorithm>
#include <cctype>
#include <cerrno> // errno
#include <climits>
#include <cmath>
#include <cstdarg>
#include <cstring> // std::memmove
#include <cwchar>
#include <exception>
#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
# include <locale>
#endif
#ifdef _WIN32
# include <io.h> // _isatty
#endif
#include "format.h"
FMT_BEGIN_NAMESPACE namespace detail {
FMT_FUNC void assert_fail(const char* file, int line, const char* message) { // Use unchecked std::fprintf to avoid triggering another assertion when
// writing to stderr fails
std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message); // Chosen instead of std::abort to satisfy Clang in CUDA mode during device
// code pass.
std::terminate(); }
FMT_FUNC void throw_format_error(const char* message) { FMT_THROW(format_error(message)); }
FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code, string_view message) noexcept { // Report error code making sure that the output fits into
// inline_buffer_size to avoid dynamic memory allocation and potential
// bad_alloc.
out.try_resize(0); static const char SEP[] = ": "; static const char ERROR_STR[] = "error "; // Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2; auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code); if (detail::is_negative(error_code)) { abs_value = 0 - abs_value; ++error_code_size; } error_code_size += detail::to_unsigned(detail::count_digits(abs_value)); auto it = buffer_appender<char>(out); if (message.size() <= inline_buffer_size - error_code_size) format_to(it, FMT_STRING("{}{}"), message, SEP); format_to(it, FMT_STRING("{}{}"), ERROR_STR, error_code); FMT_ASSERT(out.size() <= inline_buffer_size, ""); }
FMT_FUNC void report_error(format_func func, int error_code, const char* message) noexcept { memory_buffer full_message; func(full_message, error_code, message); // Don't use fwrite_fully because the latter may throw.
if (std::fwrite(full_message.data(), full_message.size(), 1, stderr) > 0) std::fputc('\n', stderr); }
// A wrapper around fwrite that throws on error.
inline void fwrite_fully(const void* ptr, size_t size, size_t count, FILE* stream) { size_t written = std::fwrite(ptr, size, count, stream); if (written < count) FMT_THROW(system_error(errno, FMT_STRING("cannot write to file"))); }
#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
template <typename Locale> locale_ref::locale_ref(const Locale& loc) : locale_(&loc) { static_assert(std::is_same<Locale, std::locale>::value, ""); }
template <typename Locale> Locale locale_ref::get() const { static_assert(std::is_same<Locale, std::locale>::value, ""); return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale(); }
template <typename Char> FMT_FUNC auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char> { auto& facet = std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()); auto grouping = facet.grouping(); auto thousands_sep = grouping.empty() ? Char() : facet.thousands_sep(); return {std::move(grouping), thousands_sep}; } template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) { return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()) .decimal_point(); } #else
template <typename Char> FMT_FUNC auto thousands_sep_impl(locale_ref) -> thousands_sep_result<Char> { return {"\03", FMT_STATIC_THOUSANDS_SEPARATOR}; } template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref) { return '.'; } #endif
} // namespace detail
#if !FMT_MSC_VERSION
FMT_API FMT_FUNC format_error::~format_error() noexcept = default; #endif
FMT_FUNC std::system_error vsystem_error(int error_code, string_view format_str, format_args args) { auto ec = std::error_code(error_code, std::generic_category()); return std::system_error(ec, vformat(format_str, args)); }
namespace detail {
template <typename F> inline bool operator==(basic_fp<F> x, basic_fp<F> y) { return x.f == y.f && x.e == y.e; }
// Compilers should be able to optimize this into the ror instruction.
FMT_CONSTEXPR inline uint32_t rotr(uint32_t n, uint32_t r) noexcept { r &= 31; return (n >> r) | (n << (32 - r)); } FMT_CONSTEXPR inline uint64_t rotr(uint64_t n, uint32_t r) noexcept { r &= 63; return (n >> r) | (n << (64 - r)); }
// Computes 128-bit result of multiplication of two 64-bit unsigned integers.
inline uint128_fallback umul128(uint64_t x, uint64_t y) noexcept { #if FMT_USE_INT128
auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y); return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)}; #elif defined(_MSC_VER) && defined(_M_X64)
auto result = uint128_fallback(); result.lo_ = _umul128(x, y, &result.hi_); return result; #else
const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>());
uint64_t a = x >> 32; uint64_t b = x & mask; uint64_t c = y >> 32; uint64_t d = y & mask;
uint64_t ac = a * c; uint64_t bc = b * c; uint64_t ad = a * d; uint64_t bd = b * d;
uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);
return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32), (intermediate << 32) + (bd & mask)}; #endif
}
// Implementation of Dragonbox algorithm: https://github.com/jk-jeon/dragonbox.
namespace dragonbox { // Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
inline uint64_t umul128_upper64(uint64_t x, uint64_t y) noexcept { #if FMT_USE_INT128
auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y); return static_cast<uint64_t>(p >> 64); #elif defined(_MSC_VER) && defined(_M_X64)
return __umulh(x, y); #else
return umul128(x, y).high(); #endif
}
// Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a
// 128-bit unsigned integer.
inline uint128_fallback umul192_upper128(uint64_t x, uint128_fallback y) noexcept { uint128_fallback r = umul128(x, y.high()); r += umul128_upper64(x, y.low()); return r; }
// Computes upper 64 bits of multiplication of a 32-bit unsigned integer and a
// 64-bit unsigned integer.
inline uint64_t umul96_upper64(uint32_t x, uint64_t y) noexcept { return umul128_upper64(static_cast<uint64_t>(x) << 32, y); }
// Computes lower 128 bits of multiplication of a 64-bit unsigned integer and a
// 128-bit unsigned integer.
inline uint128_fallback umul192_lower128(uint64_t x, uint128_fallback y) noexcept { uint64_t high = x * y.high(); uint128_fallback high_low = umul128(x, y.low()); return {high + high_low.high(), high_low.low()}; }
// Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a
// 64-bit unsigned integer.
inline uint64_t umul96_lower64(uint32_t x, uint64_t y) noexcept { return x * y; }
// Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from
// https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1.
inline int floor_log10_pow2(int e) noexcept { FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent"); static_assert((-1 >> 1) == -1, "right shift is not arithmetic"); return (e * 315653) >> 20; }
// Various fast log computations.
inline int floor_log2_pow10(int e) noexcept { FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent"); return (e * 1741647) >> 19; } inline int floor_log10_pow2_minus_log10_4_over_3(int e) noexcept { FMT_ASSERT(e <= 2936 && e >= -2985, "too large exponent"); return (e * 631305 - 261663) >> 21; }
static constexpr struct { uint32_t divisor; int shift_amount; } div_small_pow10_infos[] = {{10, 16}, {100, 16}};
// Replaces n by floor(n / pow(10, N)) returning true if and only if n is
// divisible by pow(10, N).
// Precondition: n <= pow(10, N + 1).
template <int N> bool check_divisibility_and_divide_by_pow10(uint32_t& n) noexcept { // The numbers below are chosen such that:
// 1. floor(n/d) = floor(nm / 2^k) where d=10 or d=100,
// 2. nm mod 2^k < m if and only if n is divisible by d,
// where m is magic_number, k is shift_amount
// and d is divisor.
//
// Item 1 is a common technique of replacing division by a constant with
// multiplication, see e.g. "Division by Invariant Integers Using
// Multiplication" by Granlund and Montgomery (1994). magic_number (m) is set
// to ceil(2^k/d) for large enough k.
// The idea for item 2 originates from Schubfach.
constexpr auto info = div_small_pow10_infos[N - 1]; FMT_ASSERT(n <= info.divisor * 10, "n is too large"); constexpr uint32_t magic_number = (1u << info.shift_amount) / info.divisor + 1; n *= magic_number; const uint32_t comparison_mask = (1u << info.shift_amount) - 1; bool result = (n & comparison_mask) < magic_number; n >>= info.shift_amount; return result; }
// Computes floor(n / pow(10, N)) for small n and N.
// Precondition: n <= pow(10, N + 1).
template <int N> uint32_t small_division_by_pow10(uint32_t n) noexcept { constexpr auto info = div_small_pow10_infos[N - 1]; FMT_ASSERT(n <= info.divisor * 10, "n is too large"); constexpr uint32_t magic_number = (1u << info.shift_amount) / info.divisor + 1; return (n * magic_number) >> info.shift_amount; }
// Computes floor(n / 10^(kappa + 1)) (float)
inline uint32_t divide_by_10_to_kappa_plus_1(uint32_t n) noexcept { // 1374389535 = ceil(2^37/100)
return static_cast<uint32_t>((static_cast<uint64_t>(n) * 1374389535) >> 37); } // Computes floor(n / 10^(kappa + 1)) (double)
inline uint64_t divide_by_10_to_kappa_plus_1(uint64_t n) noexcept { // 2361183241434822607 = ceil(2^(64+7)/1000)
return umul128_upper64(n, 2361183241434822607ull) >> 7; }
// Various subroutines using pow10 cache
template <class T> struct cache_accessor;
template <> struct cache_accessor<float> { using carrier_uint = float_info<float>::carrier_uint; using cache_entry_type = uint64_t;
static uint64_t get_cached_power(int k) noexcept { FMT_ASSERT(k >= float_info<float>::min_k && k <= float_info<float>::max_k, "k is out of range"); static constexpr const uint64_t pow10_significands[] = { 0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f, 0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb, 0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28, 0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb, 0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a, 0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810, 0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff, 0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd, 0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424, 0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b, 0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000, 0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000, 0xc350000000000000, 0xf424000000000000, 0x9896800000000000, 0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000, 0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000, 0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000, 0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000, 0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000, 0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0, 0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940985, 0xa18f07d736b90be6, 0xc9f2c9cd04674edf, 0xfc6f7c4045812297, 0x9dc5ada82b70b59e, 0xc5371912364ce306, 0xf684df56c3e01bc7, 0x9a130b963a6c115d, 0xc097ce7bc90715b4, 0xf0bdc21abb48db21, 0x96769950b50d88f5, 0xbc143fa4e250eb32, 0xeb194f8e1ae525fe, 0x92efd1b8d0cf37bf, 0xb7abc627050305ae, 0xe596b7b0c643c71a, 0x8f7e32ce7bea5c70, 0xb35dbf821ae4f38c, 0xe0352f62a19e306f}; return pow10_significands[k - float_info<float>::min_k]; }
struct compute_mul_result { carrier_uint result; bool is_integer; }; struct compute_mul_parity_result { bool parity; bool is_integer; };
static compute_mul_result compute_mul( carrier_uint u, const cache_entry_type& cache) noexcept { auto r = umul96_upper64(u, cache); return {static_cast<carrier_uint>(r >> 32), static_cast<carrier_uint>(r) == 0}; }
static uint32_t compute_delta(const cache_entry_type& cache, int beta) noexcept { return static_cast<uint32_t>(cache >> (64 - 1 - beta)); }
static compute_mul_parity_result compute_mul_parity( carrier_uint two_f, const cache_entry_type& cache, int beta) noexcept { FMT_ASSERT(beta >= 1, ""); FMT_ASSERT(beta < 64, "");
auto r = umul96_lower64(two_f, cache); return {((r >> (64 - beta)) & 1) != 0, static_cast<uint32_t>(r >> (32 - beta)) == 0}; }
static carrier_uint compute_left_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta) noexcept { return static_cast<carrier_uint>( (cache - (cache >> (num_significand_bits<float>() + 2))) >> (64 - num_significand_bits<float>() - 1 - beta)); }
static carrier_uint compute_right_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta) noexcept { return static_cast<carrier_uint>( (cache + (cache >> (num_significand_bits<float>() + 1))) >> (64 - num_significand_bits<float>() - 1 - beta)); }
static carrier_uint compute_round_up_for_shorter_interval_case( const cache_entry_type& cache, int beta) noexcept { return (static_cast<carrier_uint>( cache >> (64 - num_significand_bits<float>() - 2 - beta)) + 1) / 2; } };
template <> struct cache_accessor<double> { using carrier_uint = float_info<double>::carrier_uint; using cache_entry_type = uint128_fallback;
static uint128_fallback get_cached_power(int k) noexcept { FMT_ASSERT(k >= float_info<double>::min_k && k <= float_info<double>::max_k, "k is out of range");
static constexpr const uint128_fallback pow10_significands[] = { #if FMT_USE_FULL_CACHE_DRAGONBOX
{0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b}, {0x9faacf3df73609b1, 0x77b191618c54e9ad}, {0xc795830d75038c1d, 0xd59df5b9ef6a2418}, {0xf97ae3d0d2446f25, 0x4b0573286b44ad1e}, {0x9becce62836ac577, 0x4ee367f9430aec33}, {0xc2e801fb244576d5, 0x229c41f793cda740}, {0xf3a20279ed56d48a, 0x6b43527578c11110}, {0x9845418c345644d6, 0x830a13896b78aaaa}, {0xbe5691ef416bd60c, 0x23cc986bc656d554}, {0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9}, {0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa}, {0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54}, {0xe858ad248f5c22c9, 0xd1b3400f8f9cff69}, {0x91376c36d99995be, 0x23100809b9c21fa2}, {0xb58547448ffffb2d, 0xabd40a0c2832a78b}, {0xe2e69915b3fff9f9, 0x16c90c8f323f516d}, {0x8dd01fad907ffc3b, 0xae3da7d97f6792e4}, {0xb1442798f49ffb4a, 0x99cd11cfdf41779d}, {0xdd95317f31c7fa1d, 0x40405643d711d584}, {0x8a7d3eef7f1cfc52, 0x482835ea666b2573}, {0xad1c8eab5ee43b66, 0xda3243650005eed0}, {0xd863b256369d4a40, 0x90bed43e40076a83}, {0x873e4f75e2224e68, 0x5a7744a6e804a292}, {0xa90de3535aaae202, 0x711515d0a205cb37}, {0xd3515c2831559a83, 0x0d5a5b44ca873e04}, {0x8412d9991ed58091, 0xe858790afe9486c3}, {0xa5178fff668ae0b6, 0x626e974dbe39a873}, {0xce5d73ff402d98e3, 0xfb0a3d212dc81290}, {0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a}, {0xa139029f6a239f72, 0x1c1fffc1ebc44e81}, {0xc987434744ac874e, 0xa327ffb266b56221}, {0xfbe9141915d7a922, 0x4bf1ff9f0062baa9}, {0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa}, {0xc4ce17b399107c22, 0xcb550fb4384d21d4}, {0xf6019da07f549b2b, 0x7e2a53a146606a49}, {0x99c102844f94e0fb, 0x2eda7444cbfc426e}, {0xc0314325637a1939, 0xfa911155fefb5309}, {0xf03d93eebc589f88, 0x793555ab7eba27cb}, {0x96267c7535b763b5, 0x4bc1558b2f3458df}, {0xbbb01b9283253ca2, 0x9eb1aaedfb016f17}, {0xea9c227723ee8bcb, 0x465e15a979c1cadd}, {0x92a1958a7675175f, 0x0bfacd89ec191eca}, {0xb749faed14125d36, 0xcef980ec671f667c}, {0xe51c79a85916f484, 0x82b7e12780e7401b}, {0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811}, {0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16}, {0xdfbdcece67006ac9, 0x67a791e093e1d49b}, {0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1}, {0xaecc49914078536d, 0x58fae9f773886e19}, {0xda7f5bf590966848, 0xaf39a475506a899f}, {0x888f99797a5e012d, 0x6d8406c952429604}, {0xaab37fd7d8f58178, 0xc8e5087ba6d33b84}, {0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65}, {0x855c3be0a17fcd26, 0x5cf2eea09a550680}, {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f}, {0xd0601d8efc57b08b, 0xf13b94daf124da27}, {0x823c12795db6ce57, 0x76c53d08d6b70859}, {0xa2cb1717b52481ed, 0x54768c4b0c64ca6f}, {0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a}, {0xfe5d54150b090b02, 0xd3f93b35435d7c4d}, {0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0}, {0xc6b8e9b0709f109a, 0x359ab6419ca1091c}, {0xf867241c8cc6d4c0, 0xc30163d203c94b63}, {0x9b407691d7fc44f8, 0x79e0de63425dcf1e}, {0xc21094364dfb5636, 0x985915fc12f542e5}, {0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e}, {0x979cf3ca6cec5b5a, 0xa705992ceecf9c43}, {0xbd8430bd08277231, 0x50c6ff782a838354}, {0xece53cec4a314ebd, 0xa4f8bf5635246429}, {0x940f4613ae5ed136, 0x871b7795e136be9a}, {0xb913179899f68584, 0x28e2557b59846e40}, {0xe757dd7ec07426e5, 0x331aeada2fe589d0}, {0x9096ea6f3848984f, 0x3ff0d2c85def7622}, {0xb4bca50b065abe63, 0x0fed077a756b53aa}, {0xe1ebce4dc7f16dfb, 0xd3e8495912c62895}, {0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d}, {0xb080392cc4349dec, 0xbd8d794d96aacfb4}, {0xdca04777f541c567, 0xecf0d7a0fc5583a1}, {0x89e42caaf9491b60, 0xf41686c49db57245}, {0xac5d37d5b79b6239, 0x311c2875c522ced6}, {0xd77485cb25823ac7, 0x7d633293366b828c}, {0x86a8d39ef77164bc, 0xae5dff9c02033198}, {0xa8530886b54dbdeb, 0xd9f57f830283fdfd}, {0xd267caa862a12d66, 0xd072df63c324fd7c}, {0x8380dea93da4bc60, 0x4247cb9e59f71e6e}, {0xa46116538d0deb78, 0x52d9be85f074e609}, {0xcd795be870516656, 0x67902e276c921f8c}, {0x806bd9714632dff6, 0x00ba1cd8a3db53b7}, {0xa086cfcd97bf97f3, 0x80e8a40eccd228a5}, {0xc8a883c0fdaf7df0, 0x6122cd128006b2ce}, {0xfad2a4b13d1b5d6c, 0x796b805720085f82}, {0x9cc3a6eec6311a63, 0xcbe3303674053bb1}, {0xc3f490aa77bd60fc, 0xbedbfc4411068a9d}, {0xf4f1b4d515acb93b, 0xee92fb5515482d45}, {0x991711052d8bf3c5, 0x751bdd152d4d1c4b}, {0xbf5cd54678eef0b6, 0xd262d45a78a0635e}, {0xef340a98172aace4, 0x86fb897116c87c35}, {0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1}, {0xbae0a846d2195712, 0x8974836059cca10a}, {0xe998d258869facd7, 0x2bd1a438703fc94c}, {0x91ff83775423cc06, 0x7b6306a34627ddd0}, {0xb67f6455292cbf08, 0x1a3bc84c17b1d543}, {0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94}, {0x8e938662882af53e, 0x547eb47b7282ee9d}, {0xb23867fb2a35b28d, 0xe99e619a4f23aa44}, {0xdec681f9f4c31f31, 0x6405fa00e2ec94d5}, {0x8b3c113c38f9f37e, 0xde83bc408dd3dd05}, {0xae0b158b4738705e, 0x9624ab50b148d446}, {0xd98ddaee19068c76, 0x3badd624dd9b0958}, {0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7}, {0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d}, {0xd47487cc8470652b, 0x7647c32000696720}, {0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074}, {0xa5fb0a17c777cf09, 0xf468107100525891}, {0xcf79cc9db955c2cc, 0x7182148d4066eeb5}, {0x81ac1fe293d599bf, 0xc6f14cd848405531}, {0xa21727db38cb002f, 0xb8ada00e5a506a7d}, {0xca9cf1d206fdc03b, 0xa6d90811f0e4851d}, {0xfd442e4688bd304a, 0x908f4a166d1da664}, {0x9e4a9cec15763e2e, 0x9a598e4e043287ff}, {0xc5dd44271ad3cdba, 0x40eff1e1853f29fe}, {0xf7549530e188c128, 0xd12bee59e68ef47d}, {0x9a94dd3e8cf578b9, 0x82bb74f8301958cf}, {0xc13a148e3032d6e7, 0xe36a52363c1faf02}, {0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2}, {0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba}, {0xbcb2b812db11a5de, 0x7415d448f6b6f0e8}, {0xebdf661791d60f56, 0x111b495b3464ad22}, {0x936b9fcebb25c995, 0xcab10dd900beec35}, {0xb84687c269ef3bfb, 0x3d5d514f40eea743}, {0xe65829b3046b0afa, 0x0cb4a5a3112a5113}, {0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac}, {0xb3f4e093db73a093, 0x59ed216765690f57}, {0xe0f218b8d25088b8, 0x306869c13ec3532d}, {0x8c974f7383725573, 0x1e414218c73a13fc}, {0xafbd2350644eeacf, 0xe5d1929ef90898fb}, {0xdbac6c247d62a583, 0xdf45f746b74abf3a}, {0x894bc396ce5da772, 0x6b8bba8c328eb784}, {0xab9eb47c81f5114f, 0x066ea92f3f326565}, {0xd686619ba27255a2, 0xc80a537b0efefebe}, {0x8613fd0145877585, 0xbd06742ce95f5f37}, {0xa798fc4196e952e7, 0x2c48113823b73705}, {0xd17f3b51fca3a7a0, 0xf75a15862ca504c6}, {0x82ef85133de648c4, 0x9a984d73dbe722fc}, {0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb}, {0xcc963fee10b7d1b3, 0x318df905079926a9}, {0xffbbcfe994e5c61f, 0xfdf17746497f7053}, {0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634}, {0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1}, {0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1}, {0x9c1661a651213e2d, 0x06bea10ca65c084f}, {0xc31bfa0fe5698db8, 0x486e494fcff30a63}, {0xf3e2f893dec3f126, 0x5a89dba3c3efccfb}, {0x986ddb5c6b3a76b7, 0xf89629465a75e01d}, {0xbe89523386091465, 0xf6bbb397f1135824}, {0xee2ba6c0678b597f, 0x746aa07ded582e2d}, {0x94db483840b717ef, 0xa8c2a44eb4571cdd}, {0xba121a4650e4ddeb, 0x92f34d62616ce414}, {0xe896a0d7e51e1566, 0x77b020baf9c81d18}, {0x915e2486ef32cd60, 0x0ace1474dc1d122f}, {0xb5b5ada8aaff80b8, 0x0d819992132456bb}, {0xe3231912d5bf60e6, 0x10e1fff697ed6c6a}, {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2}, {0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3}, {0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf}, {0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c}, {0xad4ab7112eb3929d, 0x86c16c98d2c953c7}, {0xd89d64d57a607744, 0xe871c7bf077ba8b8}, {0x87625f056c7c4a8b, 0x11471cd764ad4973}, {0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0}, {0xd389b47879823479, 0x4aff1d108d4ec2c4}, {0x843610cb4bf160cb, 0xcedf722a585139bb}, {0xa54394fe1eedb8fe, 0xc2974eb4ee658829}, {0xce947a3da6a9273e, 0x733d226229feea33}, {0x811ccc668829b887, 0x0806357d5a3f5260}, {0xa163ff802a3426a8, 0xca07c2dcb0cf26f8}, {0xc9bcff6034c13052, 0xfc89b393dd02f0b6}, {0xfc2c3f3841f17c67, 0xbbac2078d443ace3}, {0x9d9ba7832936edc0, 0xd54b944b84aa4c0e}, {0xc5029163f384a931, 0x0a9e795e65d4df12}, {0xf64335bcf065d37d, 0x4d4617b5ff4a16d6}, {0x99ea0196163fa42e, 0x504bced1bf8e4e46}, {0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7}, {0xf07da27a82c37088, 0x5d767327bb4e5a4d}, {0x964e858c91ba2655, 0x3a6a07f8d510f870}, {0xbbe226efb628afea, 0x890489f70a55368c}, {0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f}, {0x92c8ae6b464fc96f, 0x3b0b8bc90012929e}, {0xb77ada0617e3bbcb, 0x09ce6ebb40173745}, {0xe55990879ddcaabd, 0xcc420a6a101d0516}, {0x8f57fa54c2a9eab6, 0x9fa946824a12232e}, {0xb32df8e9f3546564, 0x47939822dc96abfa}, {0xdff9772470297ebd, 0x59787e2b93bc56f8}, {0x8bfbea76c619ef36, 0x57eb4edb3c55b65b}, {0xaefae51477a06b03, 0xede622920b6b23f2}, {0xdab99e59958885c4, 0xe95fab368e45ecee}, {0x88b402f7fd75539b, 0x11dbcb0218ebb415}, {0xaae103b5fcd2a881, 0xd652bdc29f26a11a}, {0xd59944a37c0752a2, 0x4be76d3346f04960}, {0x857fcae62d8493a5, 0x6f70a4400c562ddc}, {0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953}, {0xd097ad07a71f26b2, 0x7e2000a41346a7a8}, {0x825ecc24c873782f, 0x8ed400668c0c28c9}, {0xa2f67f2dfa90563b, 0x728900802f0f32fb}, {0xcbb41ef979346bca, 0x4f2b40a03ad2ffba}, {0xfea126b7d78186bc, 0xe2f610c84987bfa9}, {0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca}, {0xc6ede63fa05d3143, 0x91503d1c79720dbc}, {0xf8a95fcf88747d94, 0x75a44c6397ce912b}, {0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb}, {0xc24452da229b021b, 0xfbe85badce996169}, {0xf2d56790ab41c2a2, 0xfae27299423fb9c4}, {0x97c560ba6b0919a5, 0xdccd879fc967d41b}, {0xbdb6b8e905cb600f, 0x5400e987bbc1c921}, {0xed246723473e3813, 0x290123e9aab23b69}, {0x9436c0760c86e30b, 0xf9a0b6720aaf6522}, {0xb94470938fa89bce, 0xf808e40e8d5b3e6a}, {0xe7958cb87392c2c2, 0xb60b1d1230b20e05}, {0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3}, {0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4}, {0xe2280b6c20dd5232, 0x25c6da63c38de1b1}, {0x8d590723948a535f, 0x579c487e5a38ad0f}, {0xb0af48ec79ace837, 0x2d835a9df0c6d852}, {0xdcdb1b2798182244, 0xf8e431456cf88e66}, {0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900}, {0xac8b2d36eed2dac5, 0xe272467e3d222f40}, {0xd7adf884aa879177, 0x5b0ed81dcc6abb10}, {0x86ccbb52ea94baea, 0x98e947129fc2b4ea}, {0xa87fea27a539e9a5, 0x3f2398d747b36225}, {0xd29fe4b18e88640e, 0x8eec7f0d19a03aae}, {0x83a3eeeef9153e89, 0x1953cf68300424ad}, {0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8}, {0xcdb02555653131b6, 0x3792f412cb06794e}, {0x808e17555f3ebf11, 0xe2bbd88bbee40bd1}, {0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5}, {0xc8de047564d20a8b, 0xf245825a5a445276}, {0xfb158592be068d2e, 0xeed6e2f0f0d56713}, {0x9ced737bb6c4183d, 0x55464dd69685606c}, {0xc428d05aa4751e4c, 0xaa97e14c3c26b887}, {0xf53304714d9265df, 0xd53dd99f4b3066a9}, {0x993fe2c6d07b7fab, 0xe546a8038efe402a}, {0xbf8fdb78849a5f96, 0xde98520472bdd034}, {0xef73d256a5c0f77c, 0x963e66858f6d4441}, {0x95a8637627989aad, 0xdde7001379a44aa9}, {0xbb127c53b17ec159, 0x5560c018580d5d53}, {0xe9d71b689dde71af, 0xaab8f01e6e10b4a7}, {0x9226712162ab070d, 0xcab3961304ca70e9}, {0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23}, {0xe45c10c42a2b3b05, 0x8cb89a7db77c506b}, {0x8eb98a7a9a5b04e3, 0x77f3608e92adb243}, {0xb267ed1940f1c61c, 0x55f038b237591ed4}, {0xdf01e85f912e37a3, 0x6b6c46dec52f6689}, {0x8b61313bbabce2c6, 0x2323ac4b3b3da016}, {0xae397d8aa96c1b77, 0xabec975e0a0d081b}, {0xd9c7dced53c72255, 0x96e7bd358c904a22}, {0x881cea14545c7575, 0x7e50d64177da2e55}, {0xaa242499697392d2, 0xdde50bd1d5d0b9ea}, {0xd4ad2dbfc3d07787, 0x955e4ec64b44e865}, {0x84ec3c97da624ab4, 0xbd5af13bef0b113f}, {0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f}, {0xcfb11ead453994ba, 0x67de18eda5814af3}, {0x81ceb32c4b43fcf4, 0x80eacf948770ced8}, {0xa2425ff75e14fc31, 0xa1258379a94d028e}, {0xcad2f7f5359a3b3e, 0x096ee45813a04331}, {0xfd87b5f28300ca0d, 0x8bca9d6e188853fd}, {0x9e74d1b791e07e48, 0x775ea264cf55347e}, {0xc612062576589dda, 0x95364afe032a819e}, {0xf79687aed3eec551, 0x3a83ddbd83f52205}, {0x9abe14cd44753b52, 0xc4926a9672793543}, {0xc16d9a0095928a27, 0x75b7053c0f178294}, {0xf1c90080baf72cb1, 0x5324c68b12dd6339}, {0x971da05074da7bee, 0xd3f6fc16ebca5e04}, {0xbce5086492111aea, 0x88f4bb1ca6bcf585}, {0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6}, {0x9392ee8e921d5d07, 0x3aff322e62439fd0}, {0xb877aa3236a4b449, 0x09befeb9fad487c3}, {0xe69594bec44de15b, 0x4c2ebe687989a9b4}, {0x901d7cf73ab0acd9, 0x0f9d37014bf60a11}, {0xb424dc35095cd80f, 0x538484c19ef38c95}, {0xe12e13424bb40e13, 0x2865a5f206b06fba}, {0x8cbccc096f5088cb, 0xf93f87b7442e45d4}, {0xafebff0bcb24aafe, 0xf78f69a51539d749}, {0xdbe6fecebdedd5be, 0xb573440e5a884d1c}, {0x89705f4136b4a597, 0x31680a88f8953031}, {0xabcc77118461cefc, 0xfdc20d2b36ba7c3e}, {0xd6bf94d5e57a42bc, 0x3d32907604691b4d}, {0x8637bd05af6c69b5, 0xa63f9a49c2c1b110}, {0xa7c5ac471b478423, 0x0fcf80dc33721d54}, {0xd1b71758e219652b, 0xd3c36113404ea4a9}, {0x83126e978d4fdf3b, 0x645a1cac083126ea}, {0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4}, {0xcccccccccccccccc, 0xcccccccccccccccd}, {0x8000000000000000, 0x0000000000000000}, {0xa000000000000000, 0x0000000000000000}, {0xc800000000000000, 0x0000000000000000}, {0xfa00000000000000, 0x0000000000000000}, {0x9c40000000000000, 0x0000000000000000}, {0xc350000000000000, 0x0000000000000000}, {0xf424000000000000, 0x0000000000000000}, {0x9896800000000000, 0x0000000000000000}, {0xbebc200000000000, 0x0000000000000000}, {0xee6b280000000000, 0x0000000000000000}, {0x9502f90000000000, 0x0000000000000000}, {0xba43b74000000000, 0x0000000000000000}, {0xe8d4a51000000000, 0x0000000000000000}, {0x9184e72a00000000, 0x0000000000000000}, {0xb5e620f480000000, 0x0000000000000000}, {0xe35fa931a0000000, 0x0000000000000000}, {0x8e1bc9bf04000000, 0x0000000000000000}, {0xb1a2bc2ec5000000, 0x0000000000000000}, {0xde0b6b3a76400000, 0x0000000000000000}, {0x8ac7230489e80000, 0x0000000000000000}, {0xad78ebc5ac620000, 0x0000000000000000}, {0xd8d726b7177a8000, 0x0000000000000000}, {0x878678326eac9000, 0x0000000000000000}, {0xa968163f0a57b400, 0x0000000000000000}, {0xd3c21bcecceda100, 0x0000000000000000}, {0x84595161401484a0, 0x0000000000000000}, {0xa56fa5b99019a5c8, 0x0000000000000000}, {0xcecb8f27f4200f3a, 0x0000000000000000}, {0x813f3978f8940984, 0x4000000000000000}, {0xa18f07d736b90be5, 0x5000000000000000}, {0xc9f2c9cd04674ede, 0xa400000000000000}, {0xfc6f7c4045812296, 0x4d00000000000000}, {0x9dc5ada82b70b59d, 0xf020000000000000}, {0xc5371912364ce305, 0x6c28000000000000}, {0xf684df56c3e01bc6, 0xc732000000000000}, {0x9a130b963a6c115c, 0x3c7f400000000000}, {0xc097ce7bc90715b3, 0x4b9f100000000000}, {0xf0bdc21abb48db20, 0x1e86d40000000000}, {0x96769950b50d88f4, 0x1314448000000000}, {0xbc143fa4e250eb31, 0x17d955a000000000}, {0xeb194f8e1ae525fd, 0x5dcfab0800000000}, {0x92efd1b8d0cf37be, 0x5aa1cae500000000}, {0xb7abc627050305ad, 0xf14a3d9e40000000}, {0xe596b7b0c643c719, 0x6d9ccd05d0000000}, {0x8f7e32ce7bea5c6f, 0xe4820023a2000000}, {0xb35dbf821ae4f38b, 0xdda2802c8a800000}, {0xe0352f62a19e306e, 0xd50b2037ad200000}, {0x8c213d9da502de45, 0x4526f422cc340000}, {0xaf298d050e4395d6, 0x9670b12b7f410000}, {0xdaf3f04651d47b4c, 0x3c0cdd765f114000}, {0x88d8762bf324cd0f, 0xa5880a69fb6ac800}, {0xab0e93b6efee0053, 0x8eea0d047a457a00}, {0xd5d238a4abe98068, 0x72a4904598d6d880}, {0x85a36366eb71f041, 0x47a6da2b7f864750}, {0xa70c3c40a64e6c51, 0x999090b65f67d924}, {0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d}, {0x82818f1281ed449f, 0xbff8f10e7a8921a5}, {0xa321f2d7226895c7, 0xaff72d52192b6a0e}, {0xcbea6f8ceb02bb39, 0x9bf4f8a69f764491}, {0xfee50b7025c36a08, 0x02f236d04753d5b5}, {0x9f4f2726179a2245, 0x01d762422c946591}, {0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef6}, {0xf8ebad2b84e0d58b, 0xd2e0898765a7deb3}, {0x9b934c3b330c8577, 0x63cc55f49f88eb30}, {0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fc}, {0xf316271c7fc3908a, 0x8bef464e3945ef7b}, {0x97edd871cfda3a56, 0x97758bf0e3cbb5ad}, {0xbde94e8e43d0c8ec, 0x3d52eeed1cbea318}, {0xed63a231d4c4fb27, 0x4ca7aaa863ee4bde}, {0x945e455f24fb1cf8, 0x8fe8caa93e74ef6b}, {0xb975d6b6ee39e436, 0xb3e2fd538e122b45}, {0xe7d34c64a9c85d44, 0x60dbbca87196b617}, {0x90e40fbeea1d3a4a, 0xbc8955e946fe31ce}, {0xb51d13aea4a488dd, 0x6babab6398bdbe42}, {0xe264589a4dcdab14, 0xc696963c7eed2dd2}, {0x8d7eb76070a08aec, 0xfc1e1de5cf543ca3}, {0xb0de65388cc8ada8, 0x3b25a55f43294bcc}, {0xdd15fe86affad912, 0x49ef0eb713f39ebf}, {0x8a2dbf142dfcc7ab, 0x6e3569326c784338}, {0xacb92ed9397bf996, 0x49c2c37f07965405}, {0xd7e77a8f87daf7fb, 0xdc33745ec97be907}, {0x86f0ac99b4e8dafd, 0x69a028bb3ded71a4}, {0xa8acd7c0222311bc, 0xc40832ea0d68ce0d}, {0xd2d80db02aabd62b, 0xf50a3fa490c30191}, {0x83c7088e1aab65db, 0x792667c6da79e0fb}, {0xa4b8cab1a1563f52, 0x577001b891185939}, {0xcde6fd5e09abcf26, 0xed4c0226b55e6f87}, {0x80b05e5ac60b6178, 0x544f8158315b05b5}, {0xa0dc75f1778e39d6, 0x696361ae3db1c722}, {0xc913936dd571c84c, 0x03bc3a19cd1e38ea}, {0xfb5878494ace3a5f, 0x04ab48a04065c724}, {0x9d174b2dcec0e47b, 0x62eb0d64283f9c77}, {0xc45d1df942711d9a, 0x3ba5d0bd324f8395}, {0xf5746577930d6500, 0xca8f44ec7ee3647a}, {0x9968bf6abbe85f20, 0x7e998b13cf4e1ecc}, {0xbfc2ef456ae276e8, 0x9e3fedd8c321a67f}, {0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101f}, {0x95d04aee3b80ece5, 0xbba1f1d158724a13}, {0xbb445da9ca61281f, 0x2a8a6e45ae8edc98}, {0xea1575143cf97226, 0xf52d09d71a3293be}, {0x924d692ca61be758, 0x593c2626705f9c57}, {0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836d}, {0xe498f455c38b997a, 0x0b6dfb9c0f956448}, {0x8edf98b59a373fec, 0x4724bd4189bd5ead}, {0xb2977ee300c50fe7, 0x58edec91ec2cb658}, {0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ee}, {0x8b865b215899f46c, 0xbd79e0d20082ee75}, {0xae67f1e9aec07187, 0xecd8590680a3aa12}, {0xda01ee641a708de9, 0xe80e6f4820cc9496}, {0x884134fe908658b2, 0x3109058d147fdcde}, {0xaa51823e34a7eede, 0xbd4b46f0599fd416}, {0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91b}, {0x850fadc09923329e, 0x03e2cf6bc604ddb1}, {0xa6539930bf6bff45, 0x84db8346b786151d}, {0xcfe87f7cef46ff16, 0xe612641865679a64}, {0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07f}, {0xa26da3999aef7749, 0xe3be5e330f38f09e}, {0xcb090c8001ab551c, 0x5cadf5bfd3072cc6}, {0xfdcb4fa002162a63, 0x73d9732fc7c8f7f7}, {0x9e9f11c4014dda7e, 0x2867e7fddcdd9afb}, {0xc646d63501a1511d, 0xb281e1fd541501b9}, {0xf7d88bc24209a565, 0x1f225a7ca91a4227}, {0x9ae757596946075f, 0x3375788de9b06959}, {0xc1a12d2fc3978937, 0x0052d6b1641c83af}, {0xf209787bb47d6b84, 0xc0678c5dbd23a49b}, {0x9745eb4d50ce6332, 0xf840b7ba963646e1}, {0xbd176620a501fbff, 0xb650e5a93bc3d899}, {0xec5d3fa8ce427aff, 0xa3e51f138ab4cebf}, {0x93ba47c980e98cdf, 0xc66f336c36b10138}, {0xb8a8d9bbe123f017, 0xb80b0047445d4185}, {0xe6d3102ad96cec1d, 0xa60dc059157491e6}, {0x9043ea1ac7e41392, 0x87c89837ad68db30}, {0xb454e4a179dd1877, 0x29babe4598c311fc}, {0xe16a1dc9d8545e94, 0xf4296dd6fef3d67b}, {0x8ce2529e2734bb1d, 0x1899e4a65f58660d}, {0xb01ae745b101e9e4, 0x5ec05dcff72e7f90}, {0xdc21a1171d42645d, 0x76707543f4fa1f74}, {0x899504ae72497eba, 0x6a06494a791c53a9}, {0xabfa45da0edbde69, 0x0487db9d17636893}, {0xd6f8d7509292d603, 0x45a9d2845d3c42b7}, {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b3}, {0xa7f26836f282b732, 0x8e6cac7768d7141f}, {0xd1ef0244af2364ff, 0x3207d795430cd927}, {0x8335616aed761f1f, 0x7f44e6bd49e807b9}, {0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a7}, {0xcd036837130890a1, 0x36dba887c37a8c10}, {0x802221226be55a64, 0xc2494954da2c978a}, {0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6d}, {0xc83553c5c8965d3d, 0x6f92829494e5acc8}, {0xfa42a8b73abbf48c, 0xcb772339ba1f17fa}, {0x9c69a97284b578d7, 0xff2a760414536efc}, {0xc38413cf25e2d70d, 0xfef5138519684abb}, {0xf46518c2ef5b8cd1, 0x7eb258665fc25d6a}, {0x98bf2f79d5993802, 0xef2f773ffbd97a62}, {0xbeeefb584aff8603, 0xaafb550ffacfd8fb}, {0xeeaaba2e5dbf6784, 0x95ba2a53f983cf39}, {0x952ab45cfa97a0b2, 0xdd945a747bf26184}, {0xba756174393d88df, 0x94f971119aeef9e5}, {0xe912b9d1478ceb17, 0x7a37cd5601aab85e}, {0x91abb422ccb812ee, 0xac62e055c10ab33b}, {0xb616a12b7fe617aa, 0x577b986b314d600a}, {0xe39c49765fdf9d94, 0xed5a7e85fda0b80c}, {0x8e41ade9fbebc27d, 0x14588f13be847308}, {0xb1d219647ae6b31c, 0x596eb2d8ae258fc9}, {0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bc}, {0x8aec23d680043bee, 0x25de7bb9480d5855}, {0xada72ccc20054ae9, 0xaf561aa79a10ae6b}, {0xd910f7ff28069da4, 0x1b2ba1518094da05}, {0x87aa9aff79042286, 0x90fb44d2f05d0843}, {0xa99541bf57452b28, 0x353a1607ac744a54}, {0xd3fa922f2d1675f2, 0x42889b8997915ce9}, {0x847c9b5d7c2e09b7, 0x69956135febada12}, {0xa59bc234db398c25, 0x43fab9837e699096}, {0xcf02b2c21207ef2e, 0x94f967e45e03f4bc}, {0x8161afb94b44f57d, 0x1d1be0eebac278f6}, {0xa1ba1ba79e1632dc, 0x6462d92a69731733}, {0xca28a291859bbf93, 0x7d7b8f7503cfdcff}, {0xfcb2cb35e702af78, 0x5cda735244c3d43f}, {0x9defbf01b061adab, 0x3a0888136afa64a8}, {0xc56baec21c7a1916, 0x088aaa1845b8fdd1}, {0xf6c69a72a3989f5b, 0x8aad549e57273d46}, {0x9a3c2087a63f6399, 0x36ac54e2f678864c}, {0xc0cb28a98fcf3c7f, 0x84576a1bb416a7de}, {0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d6}, {0x969eb7c47859e743, 0x9f644ae5a4b1b326}, {0xbc4665b596706114, 0x873d5d9f0dde1fef}, {0xeb57ff22fc0c7959, 0xa90cb506d155a7eb}, {0x9316ff75dd87cbd8, 0x09a7f12442d588f3}, {0xb7dcbf5354e9bece, 0x0c11ed6d538aeb30}, {0xe5d3ef282a242e81, 0x8f1668c8a86da5fb}, {0x8fa475791a569d10, 0xf96e017d694487bd}, {0xb38d92d760ec4455, 0x37c981dcc395a9ad}, {0xe070f78d3927556a, 0x85bbe253f47b1418}, {0x8c469ab843b89562, 0x93956d7478ccec8f}, {0xaf58416654a6babb, 0x387ac8d1970027b3}, {0xdb2e51bfe9d0696a, 0x06997b05fcc0319f}, {0x88fcf317f22241e2, 0x441fece3bdf81f04}, {0xab3c2fddeeaad25a, 0xd527e81cad7626c4}, {0xd60b3bd56a5586f1, 0x8a71e223d8d3b075}, {0x85c7056562757456, 0xf6872d5667844e4a}, {0xa738c6bebb12d16c, 0xb428f8ac016561dc}, {0xd106f86e69d785c7, 0xe13336d701beba53}, {0x82a45b450226b39c, 0xecc0024661173474}, {0xa34d721642b06084, 0x27f002d7f95d0191}, {0xcc20ce9bd35c78a5, 0x31ec038df7b441f5}, {0xff290242c83396ce, 0x7e67047175a15272}, {0x9f79a169bd203e41, 0x0f0062c6e984d387}, {0xc75809c42c684dd1, 0x52c07b78a3e60869}, {0xf92e0c3537826145, 0xa7709a56ccdf8a83}, {0x9bbcc7a142b17ccb, 0x88a66076400bb692}, {0xc2abf989935ddbfe, 0x6acff893d00ea436}, {0xf356f7ebf83552fe, 0x0583f6b8c4124d44}, {0x98165af37b2153de, 0xc3727a337a8b704b}, {0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5d}, {0xeda2ee1c7064130c, 0x1162def06f79df74}, {0x9485d4d1c63e8be7, 0x8addcb5645ac2ba9}, {0xb9a74a0637ce2ee1, 0x6d953e2bd7173693}, {0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0438}, {0x910ab1d4db9914a0, 0x1d9c9892400a22a3}, {0xb54d5e4a127f59c8, 0x2503beb6d00cab4c}, {0xe2a0b5dc971f303a, 0x2e44ae64840fd61e}, {0x8da471a9de737e24, 0x5ceaecfed289e5d3}, {0xb10d8e1456105dad, 0x7425a83e872c5f48}, {0xdd50f1996b947518, 0xd12f124e28f7771a}, {0x8a5296ffe33cc92f, 0x82bd6b70d99aaa70}, {0xace73cbfdc0bfb7b, 0x636cc64d1001550c}, {0xd8210befd30efa5a, 0x3c47f7e05401aa4f}, {0x8714a775e3e95c78, 0x65acfaec34810a72}, {0xa8d9d1535ce3b396, 0x7f1839a741a14d0e}, {0xd31045a8341ca07c, 0x1ede48111209a051}, {0x83ea2b892091e44d, 0x934aed0aab460433}, {0xa4e4b66b68b65d60, 0xf81da84d56178540}, {0xce1de40642e3f4b9, 0x36251260ab9d668f}, {0x80d2ae83e9ce78f3, 0xc1d72b7c6b42601a}, {0xa1075a24e4421730, 0xb24cf65b8612f820}, {0xc94930ae1d529cfc, 0xdee033f26797b628}, {0xfb9b7cd9a4a7443c, 0x169840ef017da3b2}, {0x9d412e0806e88aa5, 0x8e1f289560ee864f}, {0xc491798a08a2ad4e, 0xf1a6f2bab92a27e3}, {0xf5b5d7ec8acb58a2, 0xae10af696774b1dc}, {0x9991a6f3d6bf1765, 0xacca6da1e0a8ef2a}, {0xbff610b0cc6edd3f, 0x17fd090a58d32af4}, {0xeff394dcff8a948e, 0xddfc4b4cef07f5b1}, {0x95f83d0a1fb69cd9, 0x4abdaf101564f98f}, {0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f2}, {0xea53df5fd18d5513, 0x84c86189216dc5ee}, {0x92746b9be2f8552c, 0x32fd3cf5b4e49bb5}, {0xb7118682dbb66a77, 0x3fbc8c33221dc2a2}, {0xe4d5e82392a40515, 0x0fabaf3feaa5334b}, {0x8f05b1163ba6832d, 0x29cb4d87f2a7400f}, {0xb2c71d5bca9023f8, 0x743e20e9ef511013}, {0xdf78e4b2bd342cf6, 0x914da9246b255417}, {0x8bab8eefb6409c1a, 0x1ad089b6c2f7548f}, {0xae9672aba3d0c320, 0xa184ac2473b529b2}, {0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741f}, {0x8865899617fb1871, 0x7e2fa67c7a658893}, {0xaa7eebfb9df9de8d, 0xddbb901b98feeab8}, {0xd51ea6fa85785631, 0x552a74227f3ea566}, {0x8533285c936b35de, 0xd53a88958f872760}, {0xa67ff273b8460356, 0x8a892abaf368f138}, {0xd01fef10a657842c, 0x2d2b7569b0432d86}, {0x8213f56a67f6b29b, 0x9c3b29620e29fc74}, {0xa298f2c501f45f42, 0x8349f3ba91b47b90}, {0xcb3f2f7642717713, 0x241c70a936219a74}, {0xfe0efb53d30dd4d7, 0xed238cd383aa0111}, {0x9ec95d1463e8a506, 0xf4363804324a40ab}, {0xc67bb4597ce2ce48, 0xb143c6053edcd0d6}, {0xf81aa16fdc1b81da, 0xdd94b7868e94050b}, {0x9b10a4e5e9913128, 0xca7cf2b4191c8327}, {0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f1}, {0xf24a01a73cf2dccf, 0xbc633b39673c8ced}, {0x976e41088617ca01, 0xd5be0503e085d814}, {0xbd49d14aa79dbc82, 0x4b2d8644d8a74e19}, {0xec9c459d51852ba2, 0xddf8e7d60ed1219f}, {0x93e1ab8252f33b45, 0xcabb90e5c942b504}, {0xb8da1662e7b00a17, 0x3d6a751f3b936244}, {0xe7109bfba19c0c9d, 0x0cc512670a783ad5}, {0x906a617d450187e2, 0x27fb2b80668b24c6}, {0xb484f9dc9641e9da, 0xb1f9f660802dedf7}, {0xe1a63853bbd26451, 0x5e7873f8a0396974}, {0x8d07e33455637eb2, 0xdb0b487b6423e1e9}, {0xb049dc016abc5e5f, 0x91ce1a9a3d2cda63}, {0xdc5c5301c56b75f7, 0x7641a140cc7810fc}, {0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9e}, {0xac2820d9623bf429, 0x546345fa9fbdcd45}, {0xd732290fbacaf133, 0xa97c177947ad4096}, {0x867f59a9d4bed6c0, 0x49ed8eabcccc485e}, {0xa81f301449ee8c70, 0x5c68f256bfff5a75}, {0xd226fc195c6a2f8c, 0x73832eec6fff3112}, {0x83585d8fd9c25db7, 0xc831fd53c5ff7eac}, {0xa42e74f3d032f525, 0xba3e7ca8b77f5e56}, {0xcd3a1230c43fb26f, 0x28ce1bd2e55f35ec}, {0x80444b5e7aa7cf85, 0x7980d163cf5b81b4}, {0xa0555e361951c366, 0xd7e105bcc3326220}, {0xc86ab5c39fa63440, 0x8dd9472bf3fefaa8}, {0xfa856334878fc150, 0xb14f98f6f0feb952}, {0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d4}, {0xc3b8358109e84f07, 0x0a862f80ec4700c9}, {0xf4a642e14c6262c8, 0xcd27bb612758c0fb}, {0x98e7e9cccfbd7dbd, 0x8038d51cb897789d}, {0xbf21e44003acdd2c, 0xe0470a63e6bd56c4}, {0xeeea5d5004981478, 0x1858ccfce06cac75}, {0x95527a5202df0ccb, 0x0f37801e0c43ebc9}, {0xbaa718e68396cffd, 0xd30560258f54e6bb}, {0xe950df20247c83fd, 0x47c6b82ef32a206a}, {0x91d28b7416cdd27e, 0x4cdc331d57fa5442}, {0xb6472e511c81471d, 0xe0133fe4adf8e953}, {0xe3d8f9e563a198e5, 0x58180fddd97723a7}, {0x8e679c2f5e44ff8f, 0x570f09eaa7ea7649}, {0xb201833b35d63f73, 0x2cd2cc6551e513db}, {0xde81e40a034bcf4f, 0xf8077f7ea65e58d2}, {0x8b112e86420f6191, 0xfb04afaf27faf783}, {0xadd57a27d29339f6, 0x79c5db9af1f9b564}, {0xd94ad8b1c7380874, 0x18375281ae7822bd}, {0x87cec76f1c830548, 0x8f2293910d0b15b6}, {0xa9c2794ae3a3c69a, 0xb2eb3875504ddb23}, {0xd433179d9c8cb841, 0x5fa60692a46151ec}, {0x849feec281d7f328, 0xdbc7c41ba6bcd334}, {0xa5c7ea73224deff3, 0x12b9b522906c0801}, {0xcf39e50feae16bef, 0xd768226b34870a01}, {0x81842f29f2cce375, 0xe6a1158300d46641}, {0xa1e53af46f801c53, 0x60495ae3c1097fd1}, {0xca5e89b18b602368, 0x385bb19cb14bdfc5}, {0xfcf62c1dee382c42, 0x46729e03dd9ed7b6}, {0x9e19db92b4e31ba9, 0x6c07a2c26a8346d2}, {0xc5a05277621be293, 0xc7098b7305241886}, { 0xf70867153aa2db38, 0xb8cbee4fc66d1ea8 } #else
{0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b}, {0xce5d73ff402d98e3, 0xfb0a3d212dc81290}, {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f}, {0x86a8d39ef77164bc, 0xae5dff9c02033198}, {0xd98ddaee19068c76, 0x3badd624dd9b0958}, {0xafbd2350644eeacf, 0xe5d1929ef90898fb}, {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2}, {0xe55990879ddcaabd, 0xcc420a6a101d0516}, {0xb94470938fa89bce, 0xf808e40e8d5b3e6a}, {0x95a8637627989aad, 0xdde7001379a44aa9}, {0xf1c90080baf72cb1, 0x5324c68b12dd6339}, {0xc350000000000000, 0x0000000000000000}, {0x9dc5ada82b70b59d, 0xf020000000000000}, {0xfee50b7025c36a08, 0x02f236d04753d5b5}, {0xcde6fd5e09abcf26, 0xed4c0226b55e6f87}, {0xa6539930bf6bff45, 0x84db8346b786151d}, {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b3}, {0xd910f7ff28069da4, 0x1b2ba1518094da05}, {0xaf58416654a6babb, 0x387ac8d1970027b3}, {0x8da471a9de737e24, 0x5ceaecfed289e5d3}, {0xe4d5e82392a40515, 0x0fabaf3feaa5334b}, {0xb8da1662e7b00a17, 0x3d6a751f3b936244}, { 0x95527a5202df0ccb, 0x0f37801e0c43ebc9 } #endif
};
#if FMT_USE_FULL_CACHE_DRAGONBOX
return pow10_significands[k - float_info<double>::min_k]; #else
static constexpr const uint64_t powers_of_5_64[] = { 0x0000000000000001, 0x0000000000000005, 0x0000000000000019, 0x000000000000007d, 0x0000000000000271, 0x0000000000000c35, 0x0000000000003d09, 0x000000000001312d, 0x000000000005f5e1, 0x00000000001dcd65, 0x00000000009502f9, 0x0000000002e90edd, 0x000000000e8d4a51, 0x0000000048c27395, 0x000000016bcc41e9, 0x000000071afd498d, 0x0000002386f26fc1, 0x000000b1a2bc2ec5, 0x000003782dace9d9, 0x00001158e460913d, 0x000056bc75e2d631, 0x0001b1ae4d6e2ef5, 0x000878678326eac9, 0x002a5a058fc295ed, 0x00d3c21bcecceda1, 0x0422ca8b0a00a425, 0x14adf4b7320334b9};
static const int compression_ratio = 27;
// Compute base index.
int cache_index = (k - float_info<double>::min_k) / compression_ratio; int kb = cache_index * compression_ratio + float_info<double>::min_k; int offset = k - kb;
// Get base cache.
uint128_fallback base_cache = pow10_significands[cache_index]; if (offset == 0) return base_cache;
// Compute the required amount of bit-shift.
int alpha = floor_log2_pow10(kb + offset) - floor_log2_pow10(kb) - offset; FMT_ASSERT(alpha > 0 && alpha < 64, "shifting error detected");
// Try to recover the real cache.
uint64_t pow5 = powers_of_5_64[offset]; uint128_fallback recovered_cache = umul128(base_cache.high(), pow5); uint128_fallback middle_low = umul128(base_cache.low(), pow5);
recovered_cache += middle_low.high();
uint64_t high_to_middle = recovered_cache.high() << (64 - alpha); uint64_t middle_to_low = recovered_cache.low() << (64 - alpha);
recovered_cache = uint128_fallback{(recovered_cache.low() >> alpha) | high_to_middle, ((middle_low.low() >> alpha) | middle_to_low)}; FMT_ASSERT(recovered_cache.low() + 1 != 0, ""); return {recovered_cache.high(), recovered_cache.low() + 1}; #endif
}
struct compute_mul_result { carrier_uint result; bool is_integer; }; struct compute_mul_parity_result { bool parity; bool is_integer; };
static compute_mul_result compute_mul( carrier_uint u, const cache_entry_type& cache) noexcept { auto r = umul192_upper128(u, cache); return {r.high(), r.low() == 0}; }
static uint32_t compute_delta(cache_entry_type const& cache, int beta) noexcept { return static_cast<uint32_t>(cache.high() >> (64 - 1 - beta)); }
static compute_mul_parity_result compute_mul_parity( carrier_uint two_f, const cache_entry_type& cache, int beta) noexcept { FMT_ASSERT(beta >= 1, ""); FMT_ASSERT(beta < 64, "");
auto r = umul192_lower128(two_f, cache); return {((r.high() >> (64 - beta)) & 1) != 0, ((r.high() << beta) | (r.low() >> (64 - beta))) == 0}; }
static carrier_uint compute_left_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta) noexcept { return (cache.high() - (cache.high() >> (num_significand_bits<double>() + 2))) >> (64 - num_significand_bits<double>() - 1 - beta); }
static carrier_uint compute_right_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta) noexcept { return (cache.high() + (cache.high() >> (num_significand_bits<double>() + 1))) >> (64 - num_significand_bits<double>() - 1 - beta); }
static carrier_uint compute_round_up_for_shorter_interval_case( const cache_entry_type& cache, int beta) noexcept { return ((cache.high() >> (64 - num_significand_bits<double>() - 2 - beta)) + 1) / 2; } };
// Various integer checks
template <class T> bool is_left_endpoint_integer_shorter_interval(int exponent) noexcept { const int case_shorter_interval_left_endpoint_lower_threshold = 2; const int case_shorter_interval_left_endpoint_upper_threshold = 3; return exponent >= case_shorter_interval_left_endpoint_lower_threshold && exponent <= case_shorter_interval_left_endpoint_upper_threshold; }
// Remove trailing zeros from n and return the number of zeros removed (float)
FMT_INLINE int remove_trailing_zeros(uint32_t& n) noexcept { FMT_ASSERT(n != 0, ""); const uint32_t mod_inv_5 = 0xcccccccd; const uint32_t mod_inv_25 = mod_inv_5 * mod_inv_5;
int s = 0; while (true) { auto q = rotr(n * mod_inv_25, 2); if (q > max_value<uint32_t>() / 100) break; n = q; s += 2; } auto q = rotr(n * mod_inv_5, 1); if (q <= max_value<uint32_t>() / 10) { n = q; s |= 1; }
return s; }
// Removes trailing zeros and returns the number of zeros removed (double)
FMT_INLINE int remove_trailing_zeros(uint64_t& n) noexcept { FMT_ASSERT(n != 0, "");
// This magic number is ceil(2^90 / 10^8).
constexpr uint64_t magic_number = 12379400392853802749ull; auto nm = umul128(n, magic_number);
// Is n is divisible by 10^8?
if ((nm.high() & ((1ull << (90 - 64)) - 1)) == 0 && nm.low() < magic_number) { // If yes, work with the quotient.
auto n32 = static_cast<uint32_t>(nm.high() >> (90 - 64));
const uint32_t mod_inv_5 = 0xcccccccd; const uint32_t mod_inv_25 = mod_inv_5 * mod_inv_5;
int s = 8; while (true) { auto q = rotr(n32 * mod_inv_25, 2); if (q > max_value<uint32_t>() / 100) break; n32 = q; s += 2; } auto q = rotr(n32 * mod_inv_5, 1); if (q <= max_value<uint32_t>() / 10) { n32 = q; s |= 1; }
n = n32; return s; }
// If n is not divisible by 10^8, work with n itself.
const uint64_t mod_inv_5 = 0xcccccccccccccccd; const uint64_t mod_inv_25 = mod_inv_5 * mod_inv_5;
int s = 0; while (true) { auto q = rotr(n * mod_inv_25, 2); if (q > max_value<uint64_t>() / 100) break; n = q; s += 2; } auto q = rotr(n * mod_inv_5, 1); if (q <= max_value<uint64_t>() / 10) { n = q; s |= 1; }
return s; }
// The main algorithm for shorter interval case
template <class T> FMT_INLINE decimal_fp<T> shorter_interval_case(int exponent) noexcept { decimal_fp<T> ret_value; // Compute k and beta
const int minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent); const int beta = exponent + floor_log2_pow10(-minus_k);
// Compute xi and zi
using cache_entry_type = typename cache_accessor<T>::cache_entry_type; const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
auto xi = cache_accessor<T>::compute_left_endpoint_for_shorter_interval_case( cache, beta); auto zi = cache_accessor<T>::compute_right_endpoint_for_shorter_interval_case( cache, beta);
// If the left endpoint is not an integer, increase it
if (!is_left_endpoint_integer_shorter_interval<T>(exponent)) ++xi;
// Try bigger divisor
ret_value.significand = zi / 10;
// If succeed, remove trailing zeros if necessary and return
if (ret_value.significand * 10 >= xi) { ret_value.exponent = minus_k + 1; ret_value.exponent += remove_trailing_zeros(ret_value.significand); return ret_value; }
// Otherwise, compute the round-up of y
ret_value.significand = cache_accessor<T>::compute_round_up_for_shorter_interval_case(cache, beta); ret_value.exponent = minus_k;
// When tie occurs, choose one of them according to the rule
if (exponent >= float_info<T>::shorter_interval_tie_lower_threshold && exponent <= float_info<T>::shorter_interval_tie_upper_threshold) { ret_value.significand = ret_value.significand % 2 == 0 ? ret_value.significand : ret_value.significand - 1; } else if (ret_value.significand < xi) { ++ret_value.significand; } return ret_value; }
template <typename T> decimal_fp<T> to_decimal(T x) noexcept { // Step 1: integer promotion & Schubfach multiplier calculation.
using carrier_uint = typename float_info<T>::carrier_uint; using cache_entry_type = typename cache_accessor<T>::cache_entry_type; auto br = bit_cast<carrier_uint>(x);
// Extract significand bits and exponent bits.
const carrier_uint significand_mask = (static_cast<carrier_uint>(1) << num_significand_bits<T>()) - 1; carrier_uint significand = (br & significand_mask); int exponent = static_cast<int>((br & exponent_mask<T>()) >> num_significand_bits<T>());
if (exponent != 0) { // Check if normal.
exponent -= exponent_bias<T>() + num_significand_bits<T>();
// Shorter interval case; proceed like Schubfach.
// In fact, when exponent == 1 and significand == 0, the interval is
// regular. However, it can be shown that the end-results are anyway same.
if (significand == 0) return shorter_interval_case<T>(exponent);
significand |= (static_cast<carrier_uint>(1) << num_significand_bits<T>()); } else { // Subnormal case; the interval is always regular.
if (significand == 0) return {0, 0}; exponent = std::numeric_limits<T>::min_exponent - num_significand_bits<T>() - 1; }
const bool include_left_endpoint = (significand % 2 == 0); const bool include_right_endpoint = include_left_endpoint;
// Compute k and beta.
const int minus_k = floor_log10_pow2(exponent) - float_info<T>::kappa; const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k); const int beta = exponent + floor_log2_pow10(-minus_k);
// Compute zi and deltai.
// 10^kappa <= deltai < 10^(kappa + 1)
const uint32_t deltai = cache_accessor<T>::compute_delta(cache, beta); const carrier_uint two_fc = significand << 1;
// For the case of binary32, the result of integer check is not correct for
// 29711844 * 2^-82
// = 6.1442653300000000008655037797566933477355632930994033813476... * 10^-18
// and 29711844 * 2^-81
// = 1.2288530660000000001731007559513386695471126586198806762695... * 10^-17,
// and they are the unique counterexamples. However, since 29711844 is even,
// this does not cause any problem for the endpoints calculations; it can only
// cause a problem when we need to perform integer check for the center.
// Fortunately, with these inputs, that branch is never executed, so we are
// fine.
const typename cache_accessor<T>::compute_mul_result z_mul = cache_accessor<T>::compute_mul((two_fc | 1) << beta, cache);
// Step 2: Try larger divisor; remove trailing zeros if necessary.
// Using an upper bound on zi, we might be able to optimize the division
// better than the compiler; we are computing zi / big_divisor here.
decimal_fp<T> ret_value; ret_value.significand = divide_by_10_to_kappa_plus_1(z_mul.result); uint32_t r = static_cast<uint32_t>(z_mul.result - float_info<T>::big_divisor * ret_value.significand);
if (r < deltai) { // Exclude the right endpoint if necessary.
if (r == 0 && (z_mul.is_integer & !include_right_endpoint)) { --ret_value.significand; r = float_info<T>::big_divisor; goto small_divisor_case_label; } } else if (r > deltai) { goto small_divisor_case_label; } else { // r == deltai; compare fractional parts.
const typename cache_accessor<T>::compute_mul_parity_result x_mul = cache_accessor<T>::compute_mul_parity(two_fc - 1, cache, beta);
if (!(x_mul.parity | (x_mul.is_integer & include_left_endpoint))) goto small_divisor_case_label; } ret_value.exponent = minus_k + float_info<T>::kappa + 1;
// We may need to remove trailing zeros.
ret_value.exponent += remove_trailing_zeros(ret_value.significand); return ret_value;
// Step 3: Find the significand with the smaller divisor.
small_divisor_case_label: ret_value.significand *= 10; ret_value.exponent = minus_k + float_info<T>::kappa;
uint32_t dist = r - (deltai / 2) + (float_info<T>::small_divisor / 2); const bool approx_y_parity = ((dist ^ (float_info<T>::small_divisor / 2)) & 1) != 0;
// Is dist divisible by 10^kappa?
const bool divisible_by_small_divisor = check_divisibility_and_divide_by_pow10<float_info<T>::kappa>(dist);
// Add dist / 10^kappa to the significand.
ret_value.significand += dist;
if (!divisible_by_small_divisor) return ret_value;
// Check z^(f) >= epsilon^(f).
// We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
// where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f).
// Since there are only 2 possibilities, we only need to care about the
// parity. Also, zi and r should have the same parity since the divisor
// is an even number.
const auto y_mul = cache_accessor<T>::compute_mul_parity(two_fc, cache, beta);
// If z^(f) >= epsilon^(f), we might have a tie when z^(f) == epsilon^(f),
// or equivalently, when y is an integer.
if (y_mul.parity != approx_y_parity) --ret_value.significand; else if (y_mul.is_integer & (ret_value.significand % 2 != 0)) --ret_value.significand; return ret_value; } } // namespace dragonbox
#ifdef _MSC_VER
FMT_FUNC auto fmt_snprintf(char* buf, size_t size, const char* fmt, ...) -> int { auto args = va_list(); va_start(args, fmt); int result = vsnprintf_s(buf, size, _TRUNCATE, fmt, args); va_end(args); return result; } #endif
} // namespace detail
template <> struct formatter<detail::bigint> { FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> format_parse_context::iterator { return ctx.begin(); }
template <typename FormatContext> auto format(const detail::bigint& n, FormatContext& ctx) const -> typename FormatContext::iterator { auto out = ctx.out(); bool first = true; for (auto i = n.bigits_.size(); i > 0; --i) { auto value = n.bigits_[i - 1u]; if (first) { out = format_to(out, FMT_STRING("{:x}"), value); first = false; continue; } out = format_to(out, FMT_STRING("{:08x}"), value); } if (n.exp_ > 0) out = format_to(out, FMT_STRING("p{}"), n.exp_ * detail::bigint::bigit_bits); return out; } };
FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) { for_each_codepoint(s, [this](uint32_t cp, string_view) { if (cp == invalid_code_point) FMT_THROW(std::runtime_error("invalid utf8")); if (cp <= 0xFFFF) { buffer_.push_back(static_cast<wchar_t>(cp)); } else { cp -= 0x10000; buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10))); buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF))); } return true; }); buffer_.push_back(0); }
FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code, const char* message) noexcept { FMT_TRY { auto ec = std::error_code(error_code, std::generic_category()); write(std::back_inserter(out), std::system_error(ec, message).what()); return; } FMT_CATCH(...) {} format_error_code(out, error_code, message); }
FMT_FUNC void report_system_error(int error_code, const char* message) noexcept { report_error(format_system_error, error_code, message); }
FMT_FUNC std::string vformat(string_view fmt, format_args args) { // Don't optimize the "{}" case to keep the binary size small and because it
// can be better optimized in fmt::format anyway.
auto buffer = memory_buffer(); detail::vformat_to(buffer, fmt, args); return to_string(buffer); }
namespace detail { #ifdef _WIN32
using dword = conditional_t<sizeof(long) == 4, unsigned long, unsigned>; extern "C" __declspec(dllimport) int __stdcall WriteConsoleW( //
void*, const void*, dword, dword*, void*);
FMT_FUNC bool write_console(std::FILE* f, string_view text) { auto fd = _fileno(f); if (_isatty(fd)) { detail::utf8_to_utf16 u16(string_view(text.data(), text.size())); auto written = detail::dword(); if (detail::WriteConsoleW(reinterpret_cast<void*>(_get_osfhandle(fd)), u16.c_str(), static_cast<uint32_t>(u16.size()), &written, nullptr)) { return true; } } // We return false if the file descriptor was not TTY, or it was but
// SetConsoleW failed which can happen if the output has been redirected to
// NUL. In both cases when we return false, we should attempt to do regular
// write via fwrite or std::ostream::write.
return false; } #endif
FMT_FUNC void print(std::FILE* f, string_view text) { #ifdef _WIN32
if (write_console(f, text)) return; #endif
detail::fwrite_fully(text.data(), 1, text.size(), f); } } // namespace detail
FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) { memory_buffer buffer; detail::vformat_to(buffer, format_str, args); detail::print(f, {buffer.data(), buffer.size()}); }
#ifdef _WIN32
// Print assuming legacy (non-Unicode) encoding.
FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str, format_args args) { memory_buffer buffer; detail::vformat_to(buffer, format_str, basic_format_args<buffer_context<char>>(args)); fwrite_fully(buffer.data(), 1, buffer.size(), f); } #endif
FMT_FUNC void vprint(string_view format_str, format_args args) { vprint(stdout, format_str, args); }
namespace detail {
struct singleton { unsigned char upper; unsigned char lower_count; };
inline auto is_printable(uint16_t x, const singleton* singletons, size_t singletons_size, const unsigned char* singleton_lowers, const unsigned char* normal, size_t normal_size) -> bool { auto upper = x >> 8; auto lower_start = 0; for (size_t i = 0; i < singletons_size; ++i) { auto s = singletons[i]; auto lower_end = lower_start + s.lower_count; if (upper < s.upper) break; if (upper == s.upper) { for (auto j = lower_start; j < lower_end; ++j) { if (singleton_lowers[j] == (x & 0xff)) return false; } } lower_start = lower_end; }
auto xsigned = static_cast<int>(x); auto current = true; for (size_t i = 0; i < normal_size; ++i) { auto v = static_cast<int>(normal[i]); auto len = (v & 0x80) != 0 ? (v & 0x7f) << 8 | normal[++i] : v; xsigned -= len; if (xsigned < 0) break; current = !current; } return current; }
// This code is generated by support/printable.py.
FMT_FUNC auto is_printable(uint32_t cp) -> bool { static constexpr singleton singletons0[] = { {0x00, 1}, {0x03, 5}, {0x05, 6}, {0x06, 3}, {0x07, 6}, {0x08, 8}, {0x09, 17}, {0x0a, 28}, {0x0b, 25}, {0x0c, 20}, {0x0d, 16}, {0x0e, 13}, {0x0f, 4}, {0x10, 3}, {0x12, 18}, {0x13, 9}, {0x16, 1}, {0x17, 5}, {0x18, 2}, {0x19, 3}, {0x1a, 7}, {0x1c, 2}, {0x1d, 1}, {0x1f, 22}, {0x20, 3}, {0x2b, 3}, {0x2c, 2}, {0x2d, 11}, {0x2e, 1}, {0x30, 3}, {0x31, 2}, {0x32, 1}, {0xa7, 2}, {0xa9, 2}, {0xaa, 4}, {0xab, 8}, {0xfa, 2}, {0xfb, 5}, {0xfd, 4}, {0xfe, 3}, {0xff, 9}, }; static constexpr unsigned char singletons0_lower[] = { 0xad, 0x78, 0x79, 0x8b, 0x8d, 0xa2, 0x30, 0x57, 0x58, 0x8b, 0x8c, 0x90, 0x1c, 0x1d, 0xdd, 0x0e, 0x0f, 0x4b, 0x4c, 0xfb, 0xfc, 0x2e, 0x2f, 0x3f, 0x5c, 0x5d, 0x5f, 0xb5, 0xe2, 0x84, 0x8d, 0x8e, 0x91, 0x92, 0xa9, 0xb1, 0xba, 0xbb, 0xc5, 0xc6, 0xc9, 0xca, 0xde, 0xe4, 0xe5, 0xff, 0x00, 0x04, 0x11, 0x12, 0x29, 0x31, 0x34, 0x37, 0x3a, 0x3b, 0x3d, 0x49, 0x4a, 0x5d, 0x84, 0x8e, 0x92, 0xa9, 0xb1, 0xb4, 0xba, 0xbb, 0xc6, 0xca, 0xce, 0xcf, 0xe4, 0xe5, 0x00, 0x04, 0x0d, 0x0e, 0x11, 0x12, 0x29, 0x31, 0x34, 0x3a, 0x3b, 0x45, 0x46, 0x49, 0x4a, 0x5e, 0x64, 0x65, 0x84, 0x91, 0x9b, 0x9d, 0xc9, 0xce, 0xcf, 0x0d, 0x11, 0x29, 0x45, 0x49, 0x57, 0x64, 0x65, 0x8d, 0x91, 0xa9, 0xb4, 0xba, 0xbb, 0xc5, 0xc9, 0xdf, 0xe4, 0xe5, 0xf0, 0x0d, 0x11, 0x45, 0x49, 0x64, 0x65, 0x80, 0x84, 0xb2, 0xbc, 0xbe, 0xbf, 0xd5, 0xd7, 0xf0, 0xf1, 0x83, 0x85, 0x8b, 0xa4, 0xa6, 0xbe, 0xbf, 0xc5, 0xc7, 0xce, 0xcf, 0xda, 0xdb, 0x48, 0x98, 0xbd, 0xcd, 0xc6, 0xce, 0xcf, 0x49, 0x4e, 0x4f, 0x57, 0x59, 0x5e, 0x5f, 0x89, 0x8e, 0x8f, 0xb1, 0xb6, 0xb7, 0xbf, 0xc1, 0xc6, 0xc7, 0xd7, 0x11, 0x16, 0x17, 0x5b, 0x5c, 0xf6, 0xf7, 0xfe, 0xff, 0x80, 0x0d, 0x6d, 0x71, 0xde, 0xdf, 0x0e, 0x0f, 0x1f, 0x6e, 0x6f, 0x1c, 0x1d, 0x5f, 0x7d, 0x7e, 0xae, 0xaf, 0xbb, 0xbc, 0xfa, 0x16, 0x17, 0x1e, 0x1f, 0x46, 0x47, 0x4e, 0x4f, 0x58, 0x5a, 0x5c, 0x5e, 0x7e, 0x7f, 0xb5, 0xc5, 0xd4, 0xd5, 0xdc, 0xf0, 0xf1, 0xf5, 0x72, 0x73, 0x8f, 0x74, 0x75, 0x96, 0x2f, 0x5f, 0x26, 0x2e, 0x2f, 0xa7, 0xaf, 0xb7, 0xbf, 0xc7, 0xcf, 0xd7, 0xdf, 0x9a, 0x40, 0x97, 0x98, 0x30, 0x8f, 0x1f, 0xc0, 0xc1, 0xce, 0xff, 0x4e, 0x4f, 0x5a, 0x5b, 0x07, 0x08, 0x0f, 0x10, 0x27, 0x2f, 0xee, 0xef, 0x6e, 0x6f, 0x37, 0x3d, 0x3f, 0x42, 0x45, 0x90, 0x91, 0xfe, 0xff, 0x53, 0x67, 0x75, 0xc8, 0xc9, 0xd0, 0xd1, 0xd8, 0xd9, 0xe7, 0xfe, 0xff, }; static constexpr singleton singletons1[] = { {0x00, 6}, {0x01, 1}, {0x03, 1}, {0x04, 2}, {0x08, 8}, {0x09, 2}, {0x0a, 5}, {0x0b, 2}, {0x0e, 4}, {0x10, 1}, {0x11, 2}, {0x12, 5}, {0x13, 17}, {0x14, 1}, {0x15, 2}, {0x17, 2}, {0x19, 13}, {0x1c, 5}, {0x1d, 8}, {0x24, 1}, {0x6a, 3}, {0x6b, 2}, {0xbc, 2}, {0xd1, 2}, {0xd4, 12}, {0xd5, 9}, {0xd6, 2}, {0xd7, 2}, {0xda, 1}, {0xe0, 5}, {0xe1, 2}, {0xe8, 2}, {0xee, 32}, {0xf0, 4}, {0xf8, 2}, {0xf9, 2}, {0xfa, 2}, {0xfb, 1}, }; static constexpr unsigned char singletons1_lower[] = { 0x0c, 0x27, 0x3b, 0x3e, 0x4e, 0x4f, 0x8f, 0x9e, 0x9e, 0x9f, 0x06, 0x07, 0x09, 0x36, 0x3d, 0x3e, 0x56, 0xf3, 0xd0, 0xd1, 0x04, 0x14, 0x18, 0x36, 0x37, 0x56, 0x57, 0x7f, 0xaa, 0xae, 0xaf, 0xbd, 0x35, 0xe0, 0x12, 0x87, 0x89, 0x8e, 0x9e, 0x04, 0x0d, 0x0e, 0x11, 0x12, 0x29, 0x31, 0x34, 0x3a, 0x45, 0x46, 0x49, 0x4a, 0x4e, 0x4f, 0x64, 0x65, 0x5c, 0xb6, 0xb7, 0x1b, 0x1c, 0x07, 0x08, 0x0a, 0x0b, 0x14, 0x17, 0x36, 0x39, 0x3a, 0xa8, 0xa9, 0xd8, 0xd9, 0x09, 0x37, 0x90, 0x91, 0xa8, 0x07, 0x0a, 0x3b, 0x3e, 0x66, 0x69, 0x8f, 0x92, 0x6f, 0x5f, 0xee, 0xef, 0x5a, 0x62, 0x9a, 0x9b, 0x27, 0x28, 0x55, 0x9d, 0xa0, 0xa1, 0xa3, 0xa4, 0xa7, 0xa8, 0xad, 0xba, 0xbc, 0xc4, 0x06, 0x0b, 0x0c, 0x15, 0x1d, 0x3a, 0x3f, 0x45, 0x51, 0xa6, 0xa7, 0xcc, 0xcd, 0xa0, 0x07, 0x19, 0x1a, 0x22, 0x25, 0x3e, 0x3f, 0xc5, 0xc6, 0x04, 0x20, 0x23, 0x25, 0x26, 0x28, 0x33, 0x38, 0x3a, 0x48, 0x4a, 0x4c, 0x50, 0x53, 0x55, 0x56, 0x58, 0x5a, 0x5c, 0x5e, 0x60, 0x63, 0x65, 0x66, 0x6b, 0x73, 0x78, 0x7d, 0x7f, 0x8a, 0xa4, 0xaa, 0xaf, 0xb0, 0xc0, 0xd0, 0xae, 0xaf, 0x79, 0xcc, 0x6e, 0x6f, 0x93, }; static constexpr unsigned char normal0[] = { 0x00, 0x20, 0x5f, 0x22, 0x82, 0xdf, 0x04, 0x82, 0x44, 0x08, 0x1b, 0x04, 0x06, 0x11, 0x81, 0xac, 0x0e, 0x80, 0xab, 0x35, 0x28, 0x0b, 0x80, 0xe0, 0x03, 0x19, 0x08, 0x01, 0x04, 0x2f, 0x04, 0x34, 0x04, 0x07, 0x03, 0x01, 0x07, 0x06, 0x07, 0x11, 0x0a, 0x50, 0x0f, 0x12, 0x07, 0x55, 0x07, 0x03, 0x04, 0x1c, 0x0a, 0x09, 0x03, 0x08, 0x03, 0x07, 0x03, 0x02, 0x03, 0x03, 0x03, 0x0c, 0x04, 0x05, 0x03, 0x0b, 0x06, 0x01, 0x0e, 0x15, 0x05, 0x3a, 0x03, 0x11, 0x07, 0x06, 0x05, 0x10, 0x07, 0x57, 0x07, 0x02, 0x07, 0x15, 0x0d, 0x50, 0x04, 0x43, 0x03, 0x2d, 0x03, 0x01, 0x04, 0x11, 0x06, 0x0f, 0x0c, 0x3a, 0x04, 0x1d, 0x25, 0x5f, 0x20, 0x6d, 0x04, 0x6a, 0x25, 0x80, 0xc8, 0x05, 0x82, 0xb0, 0x03, 0x1a, 0x06, 0x82, 0xfd, 0x03, 0x59, 0x07, 0x15, 0x0b, 0x17, 0x09, 0x14, 0x0c, 0x14, 0x0c, 0x6a, 0x06, 0x0a, 0x06, 0x1a, 0x06, 0x59, 0x07, 0x2b, 0x05, 0x46, 0x0a, 0x2c, 0x04, 0x0c, 0x04, 0x01, 0x03, 0x31, 0x0b, 0x2c, 0x04, 0x1a, 0x06, 0x0b, 0x03, 0x80, 0xac, 0x06, 0x0a, 0x06, 0x21, 0x3f, 0x4c, 0x04, 0x2d, 0x03, 0x74, 0x08, 0x3c, 0x03, 0x0f, 0x03, 0x3c, 0x07, 0x38, 0x08, 0x2b, 0x05, 0x82, 0xff, 0x11, 0x18, 0x08, 0x2f, 0x11, 0x2d, 0x03, 0x20, 0x10, 0x21, 0x0f, 0x80, 0x8c, 0x04, 0x82, 0x97, 0x19, 0x0b, 0x15, 0x88, 0x94, 0x05, 0x2f, 0x05, 0x3b, 0x07, 0x02, 0x0e, 0x18, 0x09, 0x80, 0xb3, 0x2d, 0x74, 0x0c, 0x80, 0xd6, 0x1a, 0x0c, 0x05, 0x80, 0xff, 0x05, 0x80, 0xdf, 0x0c, 0xee, 0x0d, 0x03, 0x84, 0x8d, 0x03, 0x37, 0x09, 0x81, 0x5c, 0x14, 0x80, 0xb8, 0x08, 0x80, 0xcb, 0x2a, 0x38, 0x03, 0x0a, 0x06, 0x38, 0x08, 0x46, 0x08, 0x0c, 0x06, 0x74, 0x0b, 0x1e, 0x03, 0x5a, 0x04, 0x59, 0x09, 0x80, 0x83, 0x18, 0x1c, 0x0a, 0x16, 0x09, 0x4c, 0x04, 0x80, 0x8a, 0x06, 0xab, 0xa4, 0x0c, 0x17, 0x04, 0x31, 0xa1, 0x04, 0x81, 0xda, 0x26, 0x07, 0x0c, 0x05, 0x05, 0x80, 0xa5, 0x11, 0x81, 0x6d, 0x10, 0x78, 0x28, 0x2a, 0x06, 0x4c, 0x04, 0x80, 0x8d, 0x04, 0x80, 0xbe, 0x03, 0x1b, 0x03, 0x0f, 0x0d, }; static constexpr unsigned char normal1[] = { 0x5e, 0x22, 0x7b, 0x05, 0x03, 0x04, 0x2d, 0x03, 0x66, 0x03, 0x01, 0x2f, 0x2e, 0x80, 0x82, 0x1d, 0x03, 0x31, 0x0f, 0x1c, 0x04, 0x24, 0x09, 0x1e, 0x05, 0x2b, 0x05, 0x44, 0x04, 0x0e, 0x2a, 0x80, 0xaa, 0x06, 0x24, 0x04, 0x24, 0x04, 0x28, 0x08, 0x34, 0x0b, 0x01, 0x80, 0x90, 0x81, 0x37, 0x09, 0x16, 0x0a, 0x08, 0x80, 0x98, 0x39, 0x03, 0x63, 0x08, 0x09, 0x30, 0x16, 0x05, 0x21, 0x03, 0x1b, 0x05, 0x01, 0x40, 0x38, 0x04, 0x4b, 0x05, 0x2f, 0x04, 0x0a, 0x07, 0x09, 0x07, 0x40, 0x20, 0x27, 0x04, 0x0c, 0x09, 0x36, 0x03, 0x3a, 0x05, 0x1a, 0x07, 0x04, 0x0c, 0x07, 0x50, 0x49, 0x37, 0x33, 0x0d, 0x33, 0x07, 0x2e, 0x08, 0x0a, 0x81, 0x26, 0x52, 0x4e, 0x28, 0x08, 0x2a, 0x56, 0x1c, 0x14, 0x17, 0x09, 0x4e, 0x04, 0x1e, 0x0f, 0x43, 0x0e, 0x19, 0x07, 0x0a, 0x06, 0x48, 0x08, 0x27, 0x09, 0x75, 0x0b, 0x3f, 0x41, 0x2a, 0x06, 0x3b, 0x05, 0x0a, 0x06, 0x51, 0x06, 0x01, 0x05, 0x10, 0x03, 0x05, 0x80, 0x8b, 0x62, 0x1e, 0x48, 0x08, 0x0a, 0x80, 0xa6, 0x5e, 0x22, 0x45, 0x0b, 0x0a, 0x06, 0x0d, 0x13, 0x39, 0x07, 0x0a, 0x36, 0x2c, 0x04, 0x10, 0x80, 0xc0, 0x3c, 0x64, 0x53, 0x0c, 0x48, 0x09, 0x0a, 0x46, 0x45, 0x1b, 0x48, 0x08, 0x53, 0x1d, 0x39, 0x81, 0x07, 0x46, 0x0a, 0x1d, 0x03, 0x47, 0x49, 0x37, 0x03, 0x0e, 0x08, 0x0a, 0x06, 0x39, 0x07, 0x0a, 0x81, 0x36, 0x19, 0x80, 0xb7, 0x01, 0x0f, 0x32, 0x0d, 0x83, 0x9b, 0x66, 0x75, 0x0b, 0x80, 0xc4, 0x8a, 0xbc, 0x84, 0x2f, 0x8f, 0xd1, 0x82, 0x47, 0xa1, 0xb9, 0x82, 0x39, 0x07, 0x2a, 0x04, 0x02, 0x60, 0x26, 0x0a, 0x46, 0x0a, 0x28, 0x05, 0x13, 0x82, 0xb0, 0x5b, 0x65, 0x4b, 0x04, 0x39, 0x07, 0x11, 0x40, 0x05, 0x0b, 0x02, 0x0e, 0x97, 0xf8, 0x08, 0x84, 0xd6, 0x2a, 0x09, 0xa2, 0xf7, 0x81, 0x1f, 0x31, 0x03, 0x11, 0x04, 0x08, 0x81, 0x8c, 0x89, 0x04, 0x6b, 0x05, 0x0d, 0x03, 0x09, 0x07, 0x10, 0x93, 0x60, 0x80, 0xf6, 0x0a, 0x73, 0x08, 0x6e, 0x17, 0x46, 0x80, 0x9a, 0x14, 0x0c, 0x57, 0x09, 0x19, 0x80, 0x87, 0x81, 0x47, 0x03, 0x85, 0x42, 0x0f, 0x15, 0x85, 0x50, 0x2b, 0x80, 0xd5, 0x2d, 0x03, 0x1a, 0x04, 0x02, 0x81, 0x70, 0x3a, 0x05, 0x01, 0x85, 0x00, 0x80, 0xd7, 0x29, 0x4c, 0x04, 0x0a, 0x04, 0x02, 0x83, 0x11, 0x44, 0x4c, 0x3d, 0x80, 0xc2, 0x3c, 0x06, 0x01, 0x04, 0x55, 0x05, 0x1b, 0x34, 0x02, 0x81, 0x0e, 0x2c, 0x04, 0x64, 0x0c, 0x56, 0x0a, 0x80, 0xae, 0x38, 0x1d, 0x0d, 0x2c, 0x04, 0x09, 0x07, 0x02, 0x0e, 0x06, 0x80, 0x9a, 0x83, 0xd8, 0x08, 0x0d, 0x03, 0x0d, 0x03, 0x74, 0x0c, 0x59, 0x07, 0x0c, 0x14, 0x0c, 0x04, 0x38, 0x08, 0x0a, 0x06, 0x28, 0x08, 0x22, 0x4e, 0x81, 0x54, 0x0c, 0x15, 0x03, 0x03, 0x05, 0x07, 0x09, 0x19, 0x07, 0x07, 0x09, 0x03, 0x0d, 0x07, 0x29, 0x80, 0xcb, 0x25, 0x0a, 0x84, 0x06, }; auto lower = static_cast<uint16_t>(cp); if (cp < 0x10000) { return is_printable(lower, singletons0, sizeof(singletons0) / sizeof(*singletons0), singletons0_lower, normal0, sizeof(normal0)); } if (cp < 0x20000) { return is_printable(lower, singletons1, sizeof(singletons1) / sizeof(*singletons1), singletons1_lower, normal1, sizeof(normal1)); } if (0x2a6de <= cp && cp < 0x2a700) return false; if (0x2b735 <= cp && cp < 0x2b740) return false; if (0x2b81e <= cp && cp < 0x2b820) return false; if (0x2cea2 <= cp && cp < 0x2ceb0) return false; if (0x2ebe1 <= cp && cp < 0x2f800) return false; if (0x2fa1e <= cp && cp < 0x30000) return false; if (0x3134b <= cp && cp < 0xe0100) return false; if (0xe01f0 <= cp && cp < 0x110000) return false; return cp < 0x110000; }
} // namespace detail
FMT_END_NAMESPACE
#endif // FMT_FORMAT_INL_H_
|