|
|
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_GET_HPP
#define TOML11_GET_HPP
#include <algorithm>
#include "from.hpp"
#include "result.hpp"
#include "value.hpp"
namespace toml {
// ============================================================================
// exact toml::* type
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::is_exact_toml_type<T, basic_value<C, M, V>>::value, T> & get(basic_value<C, M, V>& v) { return v.template cast<detail::type_to_enum<T, basic_value<C, M, V>>::value>(); }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::is_exact_toml_type<T, basic_value<C, M, V>>::value, T> const& get(const basic_value<C, M, V>& v) { return v.template cast<detail::type_to_enum<T, basic_value<C, M, V>>::value>(); }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::is_exact_toml_type<T, basic_value<C, M, V>>::value, T> get(basic_value<C, M, V>&& v) { return T(std::move(v).template cast<detail::type_to_enum<T, basic_value<C, M, V>>::value>()); }
// ============================================================================
// T == toml::value; identity transformation.
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> inline detail::enable_if_t<std::is_same<T, basic_value<C, M, V>>::value, T>& get(basic_value<C, M, V>& v) { return v; }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> inline detail::enable_if_t<std::is_same<T, basic_value<C, M, V>>::value, T> const& get(const basic_value<C, M, V>& v) { return v; }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> inline detail::enable_if_t<std::is_same<T, basic_value<C, M, V>>::value, T> get(basic_value<C, M, V>&& v) { return basic_value<C, M, V>(std::move(v)); }
// ============================================================================
// T == toml::basic_value<C2, M2, V2>; basic_value -> basic_value
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> inline detail::enable_if_t<detail::conjunction<detail::is_basic_value<T>, detail::negation<std::is_same<T, basic_value<C, M, V>>> >::value, T> get(const basic_value<C, M, V>& v) { return T(v); }
// ============================================================================
// integer convertible from toml::Integer
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> inline detail::enable_if_t<detail::conjunction< std::is_integral<T>, // T is integral
detail::negation<std::is_same<T, bool>>, // but not bool
detail::negation< // but not toml::integer
detail::is_exact_toml_type<T, basic_value<C, M, V>>> >::value, T> get(const basic_value<C, M, V>& v) { return static_cast<T>(v.as_integer()); }
// ============================================================================
// floating point convertible from toml::Float
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> inline detail::enable_if_t<detail::conjunction< std::is_floating_point<T>, // T is floating_point
detail::negation< // but not toml::floating
detail::is_exact_toml_type<T, basic_value<C, M, V>>> >::value, T> get(const basic_value<C, M, V>& v) { return static_cast<T>(v.as_floating()); }
// ============================================================================
// std::string; toml uses its own toml::string, but it should be convertible to
// std::string seamlessly
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> inline detail::enable_if_t<std::is_same<T, std::string>::value, std::string>& get(basic_value<C, M, V>& v) { return v.as_string().str; }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> inline detail::enable_if_t<std::is_same<T, std::string>::value, std::string> const& get(const basic_value<C, M, V>& v) { return v.as_string().str; }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> inline detail::enable_if_t<std::is_same<T, std::string>::value, std::string> get(basic_value<C, M, V>&& v) { return std::string(std::move(v.as_string().str)); }
// ============================================================================
// std::string_view
#if defined(TOML11_USING_STRING_VIEW) && TOML11_USING_STRING_VIEW>0
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> inline detail::enable_if_t<std::is_same<T, std::string_view>::value, std::string_view> get(const basic_value<C, M, V>& v) { return std::string_view(v.as_string().str); } #endif
// ============================================================================
// std::chrono::duration from toml::local_time.
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> inline detail::enable_if_t<detail::is_chrono_duration<T>::value, T> get(const basic_value<C, M, V>& v) { return std::chrono::duration_cast<T>( std::chrono::nanoseconds(v.as_local_time())); }
// ============================================================================
// std::chrono::system_clock::time_point from toml::datetime variants
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> inline detail::enable_if_t< std::is_same<std::chrono::system_clock::time_point, T>::value, T> get(const basic_value<C, M, V>& v) { switch(v.type()) { case value_t::local_date: { return std::chrono::system_clock::time_point(v.as_local_date()); } case value_t::local_datetime: { return std::chrono::system_clock::time_point(v.as_local_datetime()); } case value_t::offset_datetime: { return std::chrono::system_clock::time_point(v.as_offset_datetime()); } default: { throw type_error(detail::format_underline("toml::value: " "bad_cast to std::chrono::system_clock::time_point", { {v.location(), concat_to_string("the actual type is ", v.type())} }), v.location()); } } }
// ============================================================================
// forward declaration to use this recursively. ignore this and go ahead.
// array-like type with push_back(value) method
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::is_container<T>, // T is a container
detail::has_push_back_method<T>, // T::push_back(value) works
detail::negation< // but not toml::array
detail::is_exact_toml_type<T, basic_value<C, M, V>>> >::value, T> get(const basic_value<C, M, V>&);
// array-like type without push_back(value) method
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::is_container<T>, // T is a container
detail::negation<detail::has_push_back_method<T>>, // w/o push_back(...)
detail::negation<detail::has_specialized_from<T>>, // T does not have special conversion
detail::negation< // not toml::array
detail::is_exact_toml_type<T, basic_value<C, M, V>>> >::value, T> get(const basic_value<C, M, V>&);
// std::pair<T1, T2>
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::is_std_pair<T>::value, T> get(const basic_value<C, M, V>&);
// std::tuple<T1, T2, ...>
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::is_std_tuple<T>::value, T> get(const basic_value<C, M, V>&);
// map-like classes
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::is_map<T>, // T is map
detail::negation< // but not toml::table
detail::is_exact_toml_type<T, basic_value<C, M, V>>> >::value, T> get(const basic_value<C, M, V>&);
// T.from_toml(v)
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::negation< // not a toml::* type
detail::is_exact_toml_type<T, basic_value<C, M, V>>>, detail::has_from_toml_method<T, C, M, V>, // but has from_toml(toml::value)
std::is_default_constructible<T> // and default constructible
>::value, T> get(const basic_value<C, M, V>&);
// toml::from<T>::from_toml(v)
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::has_specialized_from<T>::value, T> get(const basic_value<C, M, V>&);
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::has_specialized_from<T>::value, T> get(basic_value<C, M, V>&);
// T(const toml::value&) and T is not toml::basic_value,
// and it does not have `from<T>` nor `from_toml`.
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::negation<detail::is_basic_value<T>>, std::is_constructible<T, const basic_value<C, M, V>&>, detail::negation<detail::has_from_toml_method<T, C, M, V>>, detail::negation<detail::has_specialized_from<T>> >::value, T> get(const basic_value<C, M, V>&);
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::negation<detail::is_basic_value<T>>, std::is_constructible<T, basic_value<C, M, V>&>, detail::negation<detail::has_from_toml_method<T, C, M, V>>, detail::negation<detail::has_specialized_from<T>> >::value, T> get(basic_value<C, M, V>&);
// ============================================================================
// array-like types; most likely STL container, like std::vector, etc.
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::is_container<T>, // T is a container
detail::has_push_back_method<T>, // container.push_back(elem) works
detail::negation< // but not toml::array
detail::is_exact_toml_type<T, basic_value<C, M, V>>> >::value, T> get(const basic_value<C, M, V>& v) { using value_type = typename T::value_type; const auto& ary = v.as_array();
T container; try_reserve(container, ary.size());
for(const auto& elem : ary) { container.push_back(get<value_type>(elem)); } return container; }
// ============================================================================
// std::forward_list does not have push_back, insert, or emplace.
// It has insert_after, emplace_after, push_front.
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::is_std_forward_list<T>::value, T> get(const basic_value<C, M, V>& v) { using value_type = typename T::value_type; T container; for(const auto& elem : v.as_array()) { container.push_front(get<value_type>(elem)); } container.reverse(); return container; }
// ============================================================================
// array-like types, without push_back(). most likely [std|boost]::array.
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::is_container<T>, // T is a container
detail::negation<detail::has_push_back_method<T>>, // w/o push_back
detail::negation<detail::has_specialized_from<T>>, // T does not have special conversion
detail::negation< // T is not toml::array
detail::is_exact_toml_type<T, basic_value<C, M, V>>> >::value, T> get(const basic_value<C, M, V>& v) { using value_type = typename T::value_type; const auto& ar = v.as_array();
T container; if(ar.size() != container.size()) { throw std::out_of_range(detail::format_underline(concat_to_string( "toml::get: specified container size is ", container.size(), " but there are ", ar.size(), " elements in toml array."), { {v.location(), "here"} })); } for(std::size_t i=0; i<ar.size(); ++i) { container[i] = ::toml::get<value_type>(ar[i]); } return container; }
// ============================================================================
// std::pair.
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::is_std_pair<T>::value, T> get(const basic_value<C, M, V>& v) { using first_type = typename T::first_type; using second_type = typename T::second_type;
const auto& ar = v.as_array(); if(ar.size() != 2) { throw std::out_of_range(detail::format_underline(concat_to_string( "toml::get: specified std::pair but there are ", ar.size(), " elements in toml array."), {{v.location(), "here"}})); } return std::make_pair(::toml::get<first_type >(ar.at(0)), ::toml::get<second_type>(ar.at(1))); }
// ============================================================================
// std::tuple.
namespace detail { template<typename T, typename Array, std::size_t ... I> T get_tuple_impl(const Array& a, index_sequence<I...>) { return std::make_tuple( ::toml::get<typename std::tuple_element<I, T>::type>(a.at(I))...); } } // detail
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::is_std_tuple<T>::value, T> get(const basic_value<C, M, V>& v) { const auto& ar = v.as_array(); if(ar.size() != std::tuple_size<T>::value) { throw std::out_of_range(detail::format_underline(concat_to_string( "toml::get: specified std::tuple with ", std::tuple_size<T>::value, " elements, but there are ", ar.size(), " elements in toml array."), {{v.location(), "here"}})); } return detail::get_tuple_impl<T>(ar, detail::make_index_sequence<std::tuple_size<T>::value>{}); }
// ============================================================================
// map-like types; most likely STL map, like std::map or std::unordered_map.
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::is_map<T>, // T is map
detail::negation< // but not toml::array
detail::is_exact_toml_type<T, basic_value<C, M, V>>> >::value, T> get(const basic_value<C, M, V>& v) { using key_type = typename T::key_type; using mapped_type = typename T::mapped_type; static_assert(std::is_convertible<std::string, key_type>::value, "toml::get only supports map type of which key_type is " "convertible from std::string."); T map; for(const auto& kv : v.as_table()) { map.emplace(key_type(kv.first), get<mapped_type>(kv.second)); } return map; }
// ============================================================================
// user-defined, but compatible types.
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::negation< // not a toml::* type
detail::is_exact_toml_type<T, basic_value<C, M, V>>>, detail::has_from_toml_method<T, C, M, V>, // but has from_toml(toml::value) memfn
std::is_default_constructible<T> // and default constructible
>::value, T> get(const basic_value<C, M, V>& v) { T ud; ud.from_toml(v); return ud; } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::has_specialized_from<T>::value, T> get(const basic_value<C, M, V>& v) { return ::toml::from<T>::from_toml(v); } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::has_specialized_from<T>::value, T> get(basic_value<C, M, V>& v) { return ::toml::from<T>::from_toml(v); }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::negation<detail::is_basic_value<T>>, // T is not a toml::value
std::is_constructible<T, const basic_value<C, M, V>&>, // T is constructible from toml::value
detail::negation<detail::has_from_toml_method<T, C, M, V>>, // and T does not have T.from_toml(v);
detail::negation<detail::has_specialized_from<T>> // and T does not have toml::from<T>{};
>::value, T> get(const basic_value<C, M, V>& v) { return T(v); }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::negation<detail::is_basic_value<T>>, // T is not a toml::value
std::is_constructible<T, basic_value<C, M, V>&>, // T is constructible from toml::value
detail::negation<detail::has_from_toml_method<T, C, M, V>>, // and T does not have T.from_toml(v);
detail::negation<detail::has_specialized_from<T>> // and T does not have toml::from<T>{};
>::value, T> get(basic_value<C, M, V>& v) { return T(v); }
// ============================================================================
// find
// ----------------------------------------------------------------------------
// these overloads do not require to set T. and returns value itself.
template<typename C, template<typename ...> class M, template<typename ...> class V> basic_value<C, M, V> const& find(const basic_value<C, M, V>& v, const key& ky) { const auto& tab = v.as_table(); if(tab.count(ky) == 0) { detail::throw_key_not_found_error(v, ky); } return tab.at(ky); } template<typename C, template<typename ...> class M, template<typename ...> class V> basic_value<C, M, V>& find(basic_value<C, M, V>& v, const key& ky) { auto& tab = v.as_table(); if(tab.count(ky) == 0) { detail::throw_key_not_found_error(v, ky); } return tab.at(ky); } template<typename C, template<typename ...> class M, template<typename ...> class V> basic_value<C, M, V> find(basic_value<C, M, V>&& v, const key& ky) { typename basic_value<C, M, V>::table_type tab = std::move(v).as_table(); if(tab.count(ky) == 0) { detail::throw_key_not_found_error(v, ky); } return basic_value<C, M, V>(std::move(tab.at(ky))); }
// ----------------------------------------------------------------------------
// find(value, idx)
template<typename C, template<typename ...> class M, template<typename ...> class V> basic_value<C, M, V> const& find(const basic_value<C, M, V>& v, const std::size_t idx) { const auto& ary = v.as_array(); if(ary.size() <= idx) { throw std::out_of_range(detail::format_underline(concat_to_string( "index ", idx, " is out of range"), {{v.location(), "in this array"}})); } return ary.at(idx); } template<typename C, template<typename ...> class M, template<typename ...> class V> basic_value<C, M, V>& find(basic_value<C, M, V>& v, const std::size_t idx) { auto& ary = v.as_array(); if(ary.size() <= idx) { throw std::out_of_range(detail::format_underline(concat_to_string( "index ", idx, " is out of range"), {{v.location(), "in this array"}})); } return ary.at(idx); } template<typename C, template<typename ...> class M, template<typename ...> class V> basic_value<C, M, V> find(basic_value<C, M, V>&& v, const std::size_t idx) { auto& ary = v.as_array(); if(ary.size() <= idx) { throw std::out_of_range(detail::format_underline(concat_to_string( "index ", idx, " is out of range"), {{v.location(), "in this array"}})); } return basic_value<C, M, V>(std::move(ary.at(idx))); }
// ----------------------------------------------------------------------------
// find<T>(value, key);
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> decltype(::toml::get<T>(std::declval<basic_value<C, M, V> const&>())) find(const basic_value<C, M, V>& v, const key& ky) { const auto& tab = v.as_table(); if(tab.count(ky) == 0) { detail::throw_key_not_found_error(v, ky); } return ::toml::get<T>(tab.at(ky)); }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> decltype(::toml::get<T>(std::declval<basic_value<C, M, V>&>())) find(basic_value<C, M, V>& v, const key& ky) { auto& tab = v.as_table(); if(tab.count(ky) == 0) { detail::throw_key_not_found_error(v, ky); } return ::toml::get<T>(tab.at(ky)); }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> decltype(::toml::get<T>(std::declval<basic_value<C, M, V>&&>())) find(basic_value<C, M, V>&& v, const key& ky) { typename basic_value<C, M, V>::table_type tab = std::move(v).as_table(); if(tab.count(ky) == 0) { detail::throw_key_not_found_error(v, ky); } return ::toml::get<T>(std::move(tab.at(ky))); }
// ----------------------------------------------------------------------------
// find<T>(value, idx)
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> decltype(::toml::get<T>(std::declval<basic_value<C, M, V> const&>())) find(const basic_value<C, M, V>& v, const std::size_t idx) { const auto& ary = v.as_array(); if(ary.size() <= idx) { throw std::out_of_range(detail::format_underline(concat_to_string( "index ", idx, " is out of range"), {{v.location(), "in this array"}})); } return ::toml::get<T>(ary.at(idx)); } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> decltype(::toml::get<T>(std::declval<basic_value<C, M, V>&>())) find(basic_value<C, M, V>& v, const std::size_t idx) { auto& ary = v.as_array(); if(ary.size() <= idx) { throw std::out_of_range(detail::format_underline(concat_to_string( "index ", idx, " is out of range"), {{v.location(), "in this array"}})); } return ::toml::get<T>(ary.at(idx)); } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> decltype(::toml::get<T>(std::declval<basic_value<C, M, V>&&>())) find(basic_value<C, M, V>&& v, const std::size_t idx) { typename basic_value<C, M, V>::array_type ary = std::move(v).as_array(); if(ary.size() <= idx) { throw std::out_of_range(detail::format_underline(concat_to_string( "index ", idx, " is out of range"), {{v.location(), "in this array"}})); } return ::toml::get<T>(std::move(ary.at(idx))); }
// --------------------------------------------------------------------------
// toml::find(toml::value, toml::key, Ts&& ... keys)
namespace detail { // It suppresses warnings by -Wsign-conversion. Let's say we have the following
// code.
// ```cpp
// const auto x = toml::find<std::string>(data, "array", 0);
// ```
// Here, the type of literal number `0` is `int`. `int` is a signed integer.
// `toml::find` takes `std::size_t` as an index. So it causes implicit sign
// conversion and `-Wsign-conversion` warns about it. Using `0u` instead of `0`
// suppresses the warning, but it makes user code messy.
// To suppress this warning, we need to be aware of type conversion caused
// by `toml::find(v, key1, key2, ... keys)`. But the thing is that the types of
// keys can be any combination of {string-like, size_t-like}. Of course we can't
// write down all the combinations. Thus we need to use some function that
// recognize the type of argument and cast it into `std::string` or
// `std::size_t` depending on the context.
// `key_cast` does the job. It has 2 overloads. One is invoked when the
// argument type is an integer and cast the argument into `std::size_t`. The
// other is invoked when the argument type is not an integer, possibly one of
// std::string, const char[N] or const char*, and construct std::string from
// the argument.
// `toml::find(v, k1, k2, ... ks)` uses `key_cast` before passing `ks` to
// `toml::find(v, k)` to suppress -Wsign-conversion.
template<typename T> enable_if_t<conjunction<std::is_integral<remove_cvref_t<T>>, negation<std::is_same<remove_cvref_t<T>, bool>>>::value, std::size_t> key_cast(T&& v) noexcept { return std::size_t(v); } template<typename T> enable_if_t<negation<conjunction<std::is_integral<remove_cvref_t<T>>, negation<std::is_same<remove_cvref_t<T>, bool>>>>::value, std::string> key_cast(T&& v) noexcept { return std::string(std::forward<T>(v)); } } // detail
template<typename C, template<typename ...> class M, template<typename ...> class V, typename Key1, typename Key2, typename ... Keys> const basic_value<C, M, V>& find(const basic_value<C, M, V>& v, Key1&& k1, Key2&& k2, Keys&& ... keys) { return ::toml::find(::toml::find(v, detail::key_cast(k1)), detail::key_cast(k2), std::forward<Keys>(keys)...); } template<typename C, template<typename ...> class M, template<typename ...> class V, typename Key1, typename Key2, typename ... Keys> basic_value<C, M, V>& find(basic_value<C, M, V>& v, Key1&& k1, Key2&& k2, Keys&& ... keys) { return ::toml::find(::toml::find(v, detail::key_cast(k1)), detail::key_cast(k2), std::forward<Keys>(keys)...); } template<typename C, template<typename ...> class M, template<typename ...> class V, typename Key1, typename Key2, typename ... Keys> basic_value<C, M, V> find(basic_value<C, M, V>&& v, Key1&& k1, Key2&& k2, Keys&& ... keys) { return ::toml::find(::toml::find(std::move(v), std::forward<Key1>(k1)), detail::key_cast(k2), std::forward<Keys>(keys)...); }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V, typename Key1, typename Key2, typename ... Keys> decltype(::toml::get<T>(std::declval<const basic_value<C, M, V>&>())) find(const basic_value<C, M, V>& v, Key1&& k1, Key2&& k2, Keys&& ... keys) { return ::toml::find<T>(::toml::find(v, detail::key_cast(k1)), detail::key_cast(k2), std::forward<Keys>(keys)...); } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V, typename Key1, typename Key2, typename ... Keys> decltype(::toml::get<T>(std::declval<basic_value<C, M, V>&>())) find(basic_value<C, M, V>& v, Key1&& k1, Key2&& k2, Keys&& ... keys) { return ::toml::find<T>(::toml::find(v, detail::key_cast(k1)), detail::key_cast(k2), std::forward<Keys>(keys)...); } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V, typename Key1, typename Key2, typename ... Keys> decltype(::toml::get<T>(std::declval<basic_value<C, M, V>&&>())) find(basic_value<C, M, V>&& v, Key1&& k1, Key2&& k2, Keys&& ... keys) { return ::toml::find<T>(::toml::find(std::move(v), detail::key_cast(k1)), detail::key_cast(k2), std::forward<Keys>(keys)...); }
// ============================================================================
// get_or(value, fallback)
template<typename C, template<typename ...> class M, template<typename ...> class V> basic_value<C, M, V> const& get_or(const basic_value<C, M, V>& v, const basic_value<C, M, V>&) { return v; } template<typename C, template<typename ...> class M, template<typename ...> class V> basic_value<C, M, V>& get_or(basic_value<C, M, V>& v, basic_value<C, M, V>&) { return v; } template<typename C, template<typename ...> class M, template<typename ...> class V> basic_value<C, M, V> get_or(basic_value<C, M, V>&& v, basic_value<C, M, V>&&) { return v; }
// ----------------------------------------------------------------------------
// specialization for the exact toml types (return type becomes lvalue ref)
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t< detail::is_exact_toml_type<T, basic_value<C, M, V>>::value, T> const& get_or(const basic_value<C, M, V>& v, const T& opt) { try { return get<detail::remove_cvref_t<T>>(v); } catch(...) { return opt; } } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t< detail::is_exact_toml_type<T, basic_value<C, M, V>>::value, T>& get_or(basic_value<C, M, V>& v, T& opt) { try { return get<detail::remove_cvref_t<T>>(v); } catch(...) { return opt; } } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::is_exact_toml_type<detail::remove_cvref_t<T>, basic_value<C, M, V>>::value, detail::remove_cvref_t<T>> get_or(basic_value<C, M, V>&& v, T&& opt) { try { return get<detail::remove_cvref_t<T>>(std::move(v)); } catch(...) { return detail::remove_cvref_t<T>(std::forward<T>(opt)); } }
// ----------------------------------------------------------------------------
// specialization for std::string (return type becomes lvalue ref)
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<std::is_same<detail::remove_cvref_t<T>, std::string>::value, std::string> const& get_or(const basic_value<C, M, V>& v, const T& opt) { try { return v.as_string().str; } catch(...) { return opt; } } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<std::is_same<T, std::string>::value, std::string>& get_or(basic_value<C, M, V>& v, T& opt) { try { return v.as_string().str; } catch(...) { return opt; } } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t< std::is_same<detail::remove_cvref_t<T>, std::string>::value, std::string> get_or(basic_value<C, M, V>&& v, T&& opt) { try { return std::move(v.as_string().str); } catch(...) { return std::string(std::forward<T>(opt)); } }
// ----------------------------------------------------------------------------
// specialization for string literal
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::is_string_literal< typename std::remove_reference<T>::type>::value, std::string> get_or(const basic_value<C, M, V>& v, T&& opt) { try { return std::move(v.as_string().str); } catch(...) { return std::string(std::forward<T>(opt)); } }
// ----------------------------------------------------------------------------
// others (require type conversion and return type cannot be lvalue reference)
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< detail::negation<detail::is_exact_toml_type<detail::remove_cvref_t<T>, basic_value<C, M, V>>>, detail::negation<std::is_same<std::string, detail::remove_cvref_t<T>>>, detail::negation<detail::is_string_literal< typename std::remove_reference<T>::type>> >::value, detail::remove_cvref_t<T>> get_or(const basic_value<C, M, V>& v, T&& opt) { try { return get<detail::remove_cvref_t<T>>(v); } catch(...) { return detail::remove_cvref_t<T>(std::forward<T>(opt)); } }
// ===========================================================================
// find_or(value, key, fallback)
template<typename C, template<typename ...> class M, template<typename ...> class V> basic_value<C, M, V> const& find_or(const basic_value<C, M, V>& v, const key& ky, const basic_value<C, M, V>& opt) { if(!v.is_table()) {return opt;} const auto& tab = v.as_table(); if(tab.count(ky) == 0) {return opt;} return tab.at(ky); }
template<typename C, template<typename ...> class M, template<typename ...> class V> basic_value<C, M, V>& find_or(basic_value<C, M, V>& v, const toml::key& ky, basic_value<C, M, V>& opt) { if(!v.is_table()) {return opt;} auto& tab = v.as_table(); if(tab.count(ky) == 0) {return opt;} return tab.at(ky); }
template<typename C, template<typename ...> class M, template<typename ...> class V> basic_value<C, M, V> find_or(basic_value<C, M, V>&& v, const toml::key& ky, basic_value<C, M, V>&& opt) { if(!v.is_table()) {return opt;} auto tab = std::move(v).as_table(); if(tab.count(ky) == 0) {return opt;} return basic_value<C, M, V>(std::move(tab.at(ky))); }
// ---------------------------------------------------------------------------
// exact types (return type can be a reference)
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t< detail::is_exact_toml_type<T, basic_value<C, M, V>>::value, T> const& find_or(const basic_value<C, M, V>& v, const key& ky, const T& opt) { if(!v.is_table()) {return opt;} const auto& tab = v.as_table(); if(tab.count(ky) == 0) {return opt;} return get_or(tab.at(ky), opt); }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t< detail::is_exact_toml_type<T, basic_value<C, M, V>>::value, T>& find_or(basic_value<C, M, V>& v, const toml::key& ky, T& opt) { if(!v.is_table()) {return opt;} auto& tab = v.as_table(); if(tab.count(ky) == 0) {return opt;} return get_or(tab.at(ky), opt); }
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t< detail::is_exact_toml_type<T, basic_value<C, M, V>>::value, detail::remove_cvref_t<T>> find_or(basic_value<C, M, V>&& v, const toml::key& ky, T&& opt) { if(!v.is_table()) {return std::forward<T>(opt);} auto tab = std::move(v).as_table(); if(tab.count(ky) == 0) {return std::forward<T>(opt);} return get_or(std::move(tab.at(ky)), std::forward<T>(opt)); }
// ---------------------------------------------------------------------------
// std::string (return type can be a reference)
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<std::is_same<T, std::string>::value, std::string> const& find_or(const basic_value<C, M, V>& v, const key& ky, const T& opt) { if(!v.is_table()) {return opt;} const auto& tab = v.as_table(); if(tab.count(ky) == 0) {return opt;} return get_or(tab.at(ky), opt); } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<std::is_same<T, std::string>::value, std::string>& find_or(basic_value<C, M, V>& v, const toml::key& ky, T& opt) { if(!v.is_table()) {return opt;} auto& tab = v.as_table(); if(tab.count(ky) == 0) {return opt;} return get_or(tab.at(ky), opt); } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<std::is_same<T, std::string>::value, std::string> find_or(basic_value<C, M, V>&& v, const toml::key& ky, T&& opt) { if(!v.is_table()) {return std::forward<T>(opt);} auto tab = std::move(v).as_table(); if(tab.count(ky) == 0) {return std::forward<T>(opt);} return get_or(std::move(tab.at(ky)), std::forward<T>(opt)); }
// ---------------------------------------------------------------------------
// string literal (deduced as std::string)
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t< detail::is_string_literal<typename std::remove_reference<T>::type>::value, std::string> find_or(const basic_value<C, M, V>& v, const toml::key& ky, T&& opt) { if(!v.is_table()) {return std::string(opt);} const auto& tab = v.as_table(); if(tab.count(ky) == 0) {return std::string(opt);} return get_or(tab.at(ky), std::forward<T>(opt)); }
// ---------------------------------------------------------------------------
// others (require type conversion and return type cannot be lvalue reference)
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> detail::enable_if_t<detail::conjunction< // T is not an exact toml type
detail::negation<detail::is_exact_toml_type< detail::remove_cvref_t<T>, basic_value<C, M, V>>>, // T is not std::string
detail::negation<std::is_same<std::string, detail::remove_cvref_t<T>>>, // T is not a string literal
detail::negation<detail::is_string_literal< typename std::remove_reference<T>::type>> >::value, detail::remove_cvref_t<T>> find_or(const basic_value<C, M, V>& v, const toml::key& ky, T&& opt) { if(!v.is_table()) {return std::forward<T>(opt);} const auto& tab = v.as_table(); if(tab.count(ky) == 0) {return std::forward<T>(opt);} return get_or(tab.at(ky), std::forward<T>(opt)); }
// ---------------------------------------------------------------------------
// recursive find-or with type deduction (find_or(value, keys, opt))
template<typename Value, typename ... Ks, typename detail::enable_if_t<(sizeof...(Ks) > 1), std::nullptr_t> = nullptr> // here we need to add SFINAE in the template parameter to avoid
// infinite recursion in type deduction on gcc
auto find_or(Value&& v, const toml::key& ky, Ks&& ... keys) -> decltype(find_or(std::forward<Value>(v), ky, detail::last_one(std::forward<Ks>(keys)...))) { if(!v.is_table()) { return detail::last_one(std::forward<Ks>(keys)...); } auto&& tab = std::forward<Value>(v).as_table(); if(tab.count(ky) == 0) { return detail::last_one(std::forward<Ks>(keys)...); } return find_or(std::forward<decltype(tab)>(tab).at(ky), std::forward<Ks>(keys)...); }
// ---------------------------------------------------------------------------
// recursive find_or with explicit type specialization, find_or<int>(value, keys...)
template<typename T, typename Value, typename ... Ks, typename detail::enable_if_t<(sizeof...(Ks) > 1), std::nullptr_t> = nullptr> // here we need to add SFINAE in the template parameter to avoid
// infinite recursion in type deduction on gcc
auto find_or(Value&& v, const toml::key& ky, Ks&& ... keys) -> decltype(find_or<T>(std::forward<Value>(v), ky, detail::last_one(std::forward<Ks>(keys)...))) { if(!v.is_table()) { return detail::last_one(std::forward<Ks>(keys)...); } auto&& tab = std::forward<Value>(v).as_table(); if(tab.count(ky) == 0) { return detail::last_one(std::forward<Ks>(keys)...); } return find_or(std::forward<decltype(tab)>(tab).at(ky), std::forward<Ks>(keys)...); }
// ============================================================================
// expect
template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> result<T, std::string> expect(const basic_value<C, M, V>& v) noexcept { try { return ok(get<T>(v)); } catch(const std::exception& e) { return err(e.what()); } } template<typename T, typename C, template<typename ...> class M, template<typename ...> class V> result<T, std::string> expect(const basic_value<C, M, V>& v, const toml::key& k) noexcept { try { return ok(find<T>(v, k)); } catch(const std::exception& e) { return err(e.what()); } }
} // toml
#endif// TOML11_GET
|