|
|
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_DATETIME_HPP
#define TOML11_DATETIME_HPP
#include <cstdint>
#include <cstdlib>
#include <ctime>
#include <array>
#include <chrono>
#include <iomanip>
#include <ostream>
#include <tuple>
namespace toml {
// To avoid non-threadsafe std::localtime. In C11 (not C++11!), localtime_s is
// provided in the absolutely same purpose, but C++11 is actually not compatible
// with C11. We need to dispatch the function depending on the OS.
namespace detail { // TODO: find more sophisticated way to handle this
#if defined(_MSC_VER)
inline std::tm localtime_s(const std::time_t* src) { std::tm dst; const auto result = ::localtime_s(&dst, src); if (result) { throw std::runtime_error("localtime_s failed."); } return dst; } inline std::tm gmtime_s(const std::time_t* src) { std::tm dst; const auto result = ::gmtime_s(&dst, src); if (result) { throw std::runtime_error("gmtime_s failed."); } return dst; } #elif (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 1) || defined(_XOPEN_SOURCE) || defined(_BSD_SOURCE) || defined(_SVID_SOURCE) || defined(_POSIX_SOURCE)
inline std::tm localtime_s(const std::time_t* src) { std::tm dst; const auto result = ::localtime_r(src, &dst); if (!result) { throw std::runtime_error("localtime_r failed."); } return dst; } inline std::tm gmtime_s(const std::time_t* src) { std::tm dst; const auto result = ::gmtime_r(src, &dst); if (!result) { throw std::runtime_error("gmtime_r failed."); } return dst; } #else // fallback. not threadsafe
inline std::tm localtime_s(const std::time_t* src) { const auto result = std::localtime(src); if (!result) { throw std::runtime_error("localtime failed."); } return *result; } inline std::tm gmtime_s(const std::time_t* src) { const auto result = std::gmtime(src); if (!result) { throw std::runtime_error("gmtime failed."); } return *result; } #endif
} // detail
enum class month_t : std::uint8_t { Jan = 0, Feb = 1, Mar = 2, Apr = 3, May = 4, Jun = 5, Jul = 6, Aug = 7, Sep = 8, Oct = 9, Nov = 10, Dec = 11 };
struct local_date { std::int16_t year{}; // A.D. (like, 2018)
std::uint8_t month{}; // [0, 11]
std::uint8_t day{}; // [1, 31]
local_date(int y, month_t m, int d) : year (static_cast<std::int16_t>(y)), month(static_cast<std::uint8_t>(m)), day (static_cast<std::uint8_t>(d)) {}
explicit local_date(const std::tm& t) : year (static_cast<std::int16_t>(t.tm_year + 1900)), month(static_cast<std::uint8_t>(t.tm_mon)), day (static_cast<std::uint8_t>(t.tm_mday)) {}
explicit local_date(const std::chrono::system_clock::time_point& tp) { const auto t = std::chrono::system_clock::to_time_t(tp); const auto time = detail::localtime_s(&t); *this = local_date(time); }
explicit local_date(const std::time_t t) : local_date(std::chrono::system_clock::from_time_t(t)) {}
operator std::chrono::system_clock::time_point() const { // std::mktime returns date as local time zone. no conversion needed
std::tm t; t.tm_sec = 0; t.tm_min = 0; t.tm_hour = 0; t.tm_mday = static_cast<int>(this->day); t.tm_mon = static_cast<int>(this->month); t.tm_year = static_cast<int>(this->year) - 1900; t.tm_wday = 0; // the value will be ignored
t.tm_yday = 0; // the value will be ignored
t.tm_isdst = -1; return std::chrono::system_clock::from_time_t(std::mktime(&t)); }
operator std::time_t() const { return std::chrono::system_clock::to_time_t( std::chrono::system_clock::time_point(*this)); }
local_date() = default; ~local_date() = default; local_date(local_date const&) = default; local_date(local_date&&) = default; local_date& operator=(local_date const&) = default; local_date& operator=(local_date&&) = default; };
inline bool operator==(const local_date& lhs, const local_date& rhs) { return std::make_tuple(lhs.year, lhs.month, lhs.day) == std::make_tuple(rhs.year, rhs.month, rhs.day); } inline bool operator!=(const local_date& lhs, const local_date& rhs) { return !(lhs == rhs); } inline bool operator< (const local_date& lhs, const local_date& rhs) { return std::make_tuple(lhs.year, lhs.month, lhs.day) < std::make_tuple(rhs.year, rhs.month, rhs.day); } inline bool operator<=(const local_date& lhs, const local_date& rhs) { return (lhs < rhs) || (lhs == rhs); } inline bool operator> (const local_date& lhs, const local_date& rhs) { return !(lhs <= rhs); } inline bool operator>=(const local_date& lhs, const local_date& rhs) { return !(lhs < rhs); }
template<typename charT, typename traits> std::basic_ostream<charT, traits>& operator<<(std::basic_ostream<charT, traits>& os, const local_date& date) { os << std::setfill('0') << std::setw(4) << static_cast<int>(date.year ) << '-'; os << std::setfill('0') << std::setw(2) << static_cast<int>(date.month) + 1 << '-'; os << std::setfill('0') << std::setw(2) << static_cast<int>(date.day ) ; return os; }
struct local_time { std::uint8_t hour{}; // [0, 23]
std::uint8_t minute{}; // [0, 59]
std::uint8_t second{}; // [0, 60]
std::uint16_t millisecond{}; // [0, 999]
std::uint16_t microsecond{}; // [0, 999]
std::uint16_t nanosecond{}; // [0, 999]
local_time(int h, int m, int s, int ms = 0, int us = 0, int ns = 0) : hour (static_cast<std::uint8_t>(h)), minute(static_cast<std::uint8_t>(m)), second(static_cast<std::uint8_t>(s)), millisecond(static_cast<std::uint16_t>(ms)), microsecond(static_cast<std::uint16_t>(us)), nanosecond (static_cast<std::uint16_t>(ns)) {}
explicit local_time(const std::tm& t) : hour (static_cast<std::uint8_t>(t.tm_hour)), minute(static_cast<std::uint8_t>(t.tm_min)), second(static_cast<std::uint8_t>(t.tm_sec)), millisecond(0), microsecond(0), nanosecond(0) {}
template<typename Rep, typename Period> explicit local_time(const std::chrono::duration<Rep, Period>& t) { const auto h = std::chrono::duration_cast<std::chrono::hours>(t); this->hour = static_cast<std::uint8_t>(h.count()); const auto t2 = t - h; const auto m = std::chrono::duration_cast<std::chrono::minutes>(t2); this->minute = static_cast<std::uint8_t>(m.count()); const auto t3 = t2 - m; const auto s = std::chrono::duration_cast<std::chrono::seconds>(t3); this->second = static_cast<std::uint8_t>(s.count()); const auto t4 = t3 - s; const auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(t4); this->millisecond = static_cast<std::uint16_t>(ms.count()); const auto t5 = t4 - ms; const auto us = std::chrono::duration_cast<std::chrono::microseconds>(t5); this->microsecond = static_cast<std::uint16_t>(us.count()); const auto t6 = t5 - us; const auto ns = std::chrono::duration_cast<std::chrono::nanoseconds>(t6); this->nanosecond = static_cast<std::uint16_t>(ns.count()); }
operator std::chrono::nanoseconds() const { return std::chrono::nanoseconds (this->nanosecond) + std::chrono::microseconds(this->microsecond) + std::chrono::milliseconds(this->millisecond) + std::chrono::seconds(this->second) + std::chrono::minutes(this->minute) + std::chrono::hours(this->hour); }
local_time() = default; ~local_time() = default; local_time(local_time const&) = default; local_time(local_time&&) = default; local_time& operator=(local_time const&) = default; local_time& operator=(local_time&&) = default; };
inline bool operator==(const local_time& lhs, const local_time& rhs) { return std::make_tuple(lhs.hour, lhs.minute, lhs.second, lhs.millisecond, lhs.microsecond, lhs.nanosecond) == std::make_tuple(rhs.hour, rhs.minute, rhs.second, rhs.millisecond, rhs.microsecond, rhs.nanosecond); } inline bool operator!=(const local_time& lhs, const local_time& rhs) { return !(lhs == rhs); } inline bool operator< (const local_time& lhs, const local_time& rhs) { return std::make_tuple(lhs.hour, lhs.minute, lhs.second, lhs.millisecond, lhs.microsecond, lhs.nanosecond) < std::make_tuple(rhs.hour, rhs.minute, rhs.second, rhs.millisecond, rhs.microsecond, rhs.nanosecond); } inline bool operator<=(const local_time& lhs, const local_time& rhs) { return (lhs < rhs) || (lhs == rhs); } inline bool operator> (const local_time& lhs, const local_time& rhs) { return !(lhs <= rhs); } inline bool operator>=(const local_time& lhs, const local_time& rhs) { return !(lhs < rhs); }
template<typename charT, typename traits> std::basic_ostream<charT, traits>& operator<<(std::basic_ostream<charT, traits>& os, const local_time& time) { os << std::setfill('0') << std::setw(2) << static_cast<int>(time.hour ) << ':'; os << std::setfill('0') << std::setw(2) << static_cast<int>(time.minute) << ':'; os << std::setfill('0') << std::setw(2) << static_cast<int>(time.second); if(time.millisecond != 0 || time.microsecond != 0 || time.nanosecond != 0) { os << '.'; os << std::setfill('0') << std::setw(3) << static_cast<int>(time.millisecond); if(time.microsecond != 0 || time.nanosecond != 0) { os << std::setfill('0') << std::setw(3) << static_cast<int>(time.microsecond); if(time.nanosecond != 0) { os << std::setfill('0') << std::setw(3) << static_cast<int>(time.nanosecond); } } } return os; }
struct time_offset { std::int8_t hour{}; // [-12, 12]
std::int8_t minute{}; // [-59, 59]
time_offset(int h, int m) : hour (static_cast<std::int8_t>(h)), minute(static_cast<std::int8_t>(m)) {}
operator std::chrono::minutes() const { return std::chrono::minutes(this->minute) + std::chrono::hours(this->hour); }
time_offset() = default; ~time_offset() = default; time_offset(time_offset const&) = default; time_offset(time_offset&&) = default; time_offset& operator=(time_offset const&) = default; time_offset& operator=(time_offset&&) = default; };
inline bool operator==(const time_offset& lhs, const time_offset& rhs) { return std::make_tuple(lhs.hour, lhs.minute) == std::make_tuple(rhs.hour, rhs.minute); } inline bool operator!=(const time_offset& lhs, const time_offset& rhs) { return !(lhs == rhs); } inline bool operator< (const time_offset& lhs, const time_offset& rhs) { return std::make_tuple(lhs.hour, lhs.minute) < std::make_tuple(rhs.hour, rhs.minute); } inline bool operator<=(const time_offset& lhs, const time_offset& rhs) { return (lhs < rhs) || (lhs == rhs); } inline bool operator> (const time_offset& lhs, const time_offset& rhs) { return !(lhs <= rhs); } inline bool operator>=(const time_offset& lhs, const time_offset& rhs) { return !(lhs < rhs); }
template<typename charT, typename traits> std::basic_ostream<charT, traits>& operator<<(std::basic_ostream<charT, traits>& os, const time_offset& offset) { if(offset.hour == 0 && offset.minute == 0) { os << 'Z'; return os; } int minute = static_cast<int>(offset.hour) * 60 + offset.minute; if(minute < 0){os << '-'; minute = std::abs(minute);} else {os << '+';} os << std::setfill('0') << std::setw(2) << minute / 60 << ':'; os << std::setfill('0') << std::setw(2) << minute % 60; return os; }
struct local_datetime { local_date date{}; local_time time{};
local_datetime(local_date d, local_time t): date(d), time(t) {}
explicit local_datetime(const std::tm& t): date(t), time(t){}
explicit local_datetime(const std::chrono::system_clock::time_point& tp) { const auto t = std::chrono::system_clock::to_time_t(tp); std::tm ltime = detail::localtime_s(&t);
this->date = local_date(ltime); this->time = local_time(ltime);
// std::tm lacks subsecond information, so diff between tp and tm
// can be used to get millisecond & microsecond information.
const auto t_diff = tp - std::chrono::system_clock::from_time_t(std::mktime(<ime)); this->time.millisecond = static_cast<std::uint16_t>( std::chrono::duration_cast<std::chrono::milliseconds>(t_diff).count()); this->time.microsecond = static_cast<std::uint16_t>( std::chrono::duration_cast<std::chrono::microseconds>(t_diff).count()); this->time.nanosecond = static_cast<std::uint16_t>( std::chrono::duration_cast<std::chrono::nanoseconds >(t_diff).count()); }
explicit local_datetime(const std::time_t t) : local_datetime(std::chrono::system_clock::from_time_t(t)) {}
operator std::chrono::system_clock::time_point() const { using internal_duration = typename std::chrono::system_clock::time_point::duration;
// Normally DST begins at A.M. 3 or 4. If we re-use conversion operator
// of local_date and local_time independently, the conversion fails if
// it is the day when DST begins or ends. Since local_date considers the
// time is 00:00 A.M. and local_time does not consider DST because it
// does not have any date information. We need to consider both date and
// time information at the same time to convert it correctly.
std::tm t; t.tm_sec = static_cast<int>(this->time.second); t.tm_min = static_cast<int>(this->time.minute); t.tm_hour = static_cast<int>(this->time.hour); t.tm_mday = static_cast<int>(this->date.day); t.tm_mon = static_cast<int>(this->date.month); t.tm_year = static_cast<int>(this->date.year) - 1900; t.tm_wday = 0; // the value will be ignored
t.tm_yday = 0; // the value will be ignored
t.tm_isdst = -1;
// std::mktime returns date as local time zone. no conversion needed
auto dt = std::chrono::system_clock::from_time_t(std::mktime(&t)); dt += std::chrono::duration_cast<internal_duration>( std::chrono::milliseconds(this->time.millisecond) + std::chrono::microseconds(this->time.microsecond) + std::chrono::nanoseconds (this->time.nanosecond)); return dt; }
operator std::time_t() const { return std::chrono::system_clock::to_time_t( std::chrono::system_clock::time_point(*this)); }
local_datetime() = default; ~local_datetime() = default; local_datetime(local_datetime const&) = default; local_datetime(local_datetime&&) = default; local_datetime& operator=(local_datetime const&) = default; local_datetime& operator=(local_datetime&&) = default; };
inline bool operator==(const local_datetime& lhs, const local_datetime& rhs) { return std::make_tuple(lhs.date, lhs.time) == std::make_tuple(rhs.date, rhs.time); } inline bool operator!=(const local_datetime& lhs, const local_datetime& rhs) { return !(lhs == rhs); } inline bool operator< (const local_datetime& lhs, const local_datetime& rhs) { return std::make_tuple(lhs.date, lhs.time) < std::make_tuple(rhs.date, rhs.time); } inline bool operator<=(const local_datetime& lhs, const local_datetime& rhs) { return (lhs < rhs) || (lhs == rhs); } inline bool operator> (const local_datetime& lhs, const local_datetime& rhs) { return !(lhs <= rhs); } inline bool operator>=(const local_datetime& lhs, const local_datetime& rhs) { return !(lhs < rhs); }
template<typename charT, typename traits> std::basic_ostream<charT, traits>& operator<<(std::basic_ostream<charT, traits>& os, const local_datetime& dt) { os << dt.date << 'T' << dt.time; return os; }
struct offset_datetime { local_date date{}; local_time time{}; time_offset offset{};
offset_datetime(local_date d, local_time t, time_offset o) : date(d), time(t), offset(o) {} offset_datetime(const local_datetime& dt, time_offset o) : date(dt.date), time(dt.time), offset(o) {} explicit offset_datetime(const local_datetime& ld) : date(ld.date), time(ld.time), offset(get_local_offset(nullptr)) // use the current local timezone offset
{} explicit offset_datetime(const std::chrono::system_clock::time_point& tp) : offset(0, 0) // use gmtime
{ const auto timet = std::chrono::system_clock::to_time_t(tp); const auto tm = detail::gmtime_s(&timet); this->date = local_date(tm); this->time = local_time(tm); } explicit offset_datetime(const std::time_t& t) : offset(0, 0) // use gmtime
{ const auto tm = detail::gmtime_s(&t); this->date = local_date(tm); this->time = local_time(tm); } explicit offset_datetime(const std::tm& t) : offset(0, 0) // assume gmtime
{ this->date = local_date(t); this->time = local_time(t); }
operator std::chrono::system_clock::time_point() const { // get date-time
using internal_duration = typename std::chrono::system_clock::time_point::duration;
// first, convert it to local date-time information in the same way as
// local_datetime does. later we will use time_t to adjust time offset.
std::tm t; t.tm_sec = static_cast<int>(this->time.second); t.tm_min = static_cast<int>(this->time.minute); t.tm_hour = static_cast<int>(this->time.hour); t.tm_mday = static_cast<int>(this->date.day); t.tm_mon = static_cast<int>(this->date.month); t.tm_year = static_cast<int>(this->date.year) - 1900; t.tm_wday = 0; // the value will be ignored
t.tm_yday = 0; // the value will be ignored
t.tm_isdst = -1; const std::time_t tp_loc = std::mktime(std::addressof(t));
auto tp = std::chrono::system_clock::from_time_t(tp_loc); tp += std::chrono::duration_cast<internal_duration>( std::chrono::milliseconds(this->time.millisecond) + std::chrono::microseconds(this->time.microsecond) + std::chrono::nanoseconds (this->time.nanosecond));
// Since mktime uses local time zone, it should be corrected.
// `12:00:00+09:00` means `03:00:00Z`. So mktime returns `03:00:00Z` if
// we are in `+09:00` timezone. To represent `12:00:00Z` there, we need
// to add `+09:00` to `03:00:00Z`.
// Here, it uses the time_t converted from date-time info to handle
// daylight saving time.
const auto ofs = get_local_offset(std::addressof(tp_loc)); tp += std::chrono::hours (ofs.hour); tp += std::chrono::minutes(ofs.minute);
// We got `12:00:00Z` by correcting local timezone applied by mktime.
// Then we will apply the offset. Let's say `12:00:00-08:00` is given.
// And now, we have `12:00:00Z`. `12:00:00-08:00` means `20:00:00Z`.
// So we need to subtract the offset.
tp -= std::chrono::minutes(this->offset); return tp; }
operator std::time_t() const { return std::chrono::system_clock::to_time_t( std::chrono::system_clock::time_point(*this)); }
offset_datetime() = default; ~offset_datetime() = default; offset_datetime(offset_datetime const&) = default; offset_datetime(offset_datetime&&) = default; offset_datetime& operator=(offset_datetime const&) = default; offset_datetime& operator=(offset_datetime&&) = default;
private:
static time_offset get_local_offset(const std::time_t* tp) { // get local timezone with the same date-time information as mktime
const auto t = detail::localtime_s(tp);
std::array<char, 6> buf; const auto result = std::strftime(buf.data(), 6, "%z", &t); // +hhmm\0
if(result != 5) { throw std::runtime_error("toml::offset_datetime: cannot obtain " "timezone information of current env"); } const int ofs = std::atoi(buf.data()); const int ofs_h = ofs / 100; const int ofs_m = ofs - (ofs_h * 100); return time_offset(ofs_h, ofs_m); } };
inline bool operator==(const offset_datetime& lhs, const offset_datetime& rhs) { return std::make_tuple(lhs.date, lhs.time, lhs.offset) == std::make_tuple(rhs.date, rhs.time, rhs.offset); } inline bool operator!=(const offset_datetime& lhs, const offset_datetime& rhs) { return !(lhs == rhs); } inline bool operator< (const offset_datetime& lhs, const offset_datetime& rhs) { return std::make_tuple(lhs.date, lhs.time, lhs.offset) < std::make_tuple(rhs.date, rhs.time, rhs.offset); } inline bool operator<=(const offset_datetime& lhs, const offset_datetime& rhs) { return (lhs < rhs) || (lhs == rhs); } inline bool operator> (const offset_datetime& lhs, const offset_datetime& rhs) { return !(lhs <= rhs); } inline bool operator>=(const offset_datetime& lhs, const offset_datetime& rhs) { return !(lhs < rhs); }
template<typename charT, typename traits> std::basic_ostream<charT, traits>& operator<<(std::basic_ostream<charT, traits>& os, const offset_datetime& dt) { os << dt.date << 'T' << dt.time << dt.offset; return os; }
}//toml
#endif// TOML11_DATETIME
|