You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4153 lines
84 KiB

2 years ago
2 years ago
2 years ago
2 years ago
  1. /*
  2. FUSE: Filesystem in Userspace
  3. Copyright (C) 2001-2007 Miklos Szeredi <miklos@szeredi.hu>
  4. This program can be distributed under the terms of the GNU LGPLv2.
  5. See the file COPYING.LIB
  6. */
  7. /* For pthread_rwlock_t */
  8. #ifndef _GNU_SOURCE
  9. #define _GNU_SOURCE
  10. #endif
  11. #include "crc32b.h"
  12. #include "fuse_node.h"
  13. #include "khash.h"
  14. #include "kvec.h"
  15. #include "node.h"
  16. #include "config.h"
  17. #include "fuse_dirents.h"
  18. #include "fuse_i.h"
  19. #include "fuse_kernel.h"
  20. #include "fuse_lowlevel.h"
  21. #include "fuse_misc.h"
  22. #include "fuse_opt.h"
  23. #include "fuse_pollhandle.h"
  24. #include "fuse_msgbuf.hpp"
  25. #include <assert.h>
  26. #include <dlfcn.h>
  27. #include <errno.h>
  28. #include <fcntl.h>
  29. #include <inttypes.h>
  30. #include <limits.h>
  31. #include <poll.h>
  32. #include <signal.h>
  33. #include <stdbool.h>
  34. #include <stddef.h>
  35. #include <stdint.h>
  36. #include <stdio.h>
  37. #include <stdlib.h>
  38. #include <string.h>
  39. #include <sys/file.h>
  40. #include <sys/mman.h>
  41. #include <sys/param.h>
  42. #include <sys/time.h>
  43. #include <sys/uio.h>
  44. #include <syslog.h>
  45. #include <time.h>
  46. #include <unistd.h>
  47. #ifdef HAVE_MALLOC_TRIM
  48. #include <malloc.h>
  49. #endif
  50. #define FUSE_UNKNOWN_INO UINT64_MAX
  51. #define OFFSET_MAX 0x7fffffffffffffffLL
  52. #define NODE_TABLE_MIN_SIZE 8192
  53. #define PARAM(inarg) ((void*)(((char*)(inarg)) + sizeof(*(inarg))))
  54. static int g_LOG_METRICS = 0;
  55. struct fuse_config
  56. {
  57. unsigned int uid;
  58. unsigned int gid;
  59. unsigned int umask;
  60. int remember;
  61. int debug;
  62. int nogc;
  63. int set_mode;
  64. int set_uid;
  65. int set_gid;
  66. int help;
  67. };
  68. struct fuse_fs
  69. {
  70. struct fuse_operations op;
  71. };
  72. struct lock_queue_element
  73. {
  74. struct lock_queue_element *next;
  75. pthread_cond_t cond;
  76. uint64_t nodeid1;
  77. const char *name1;
  78. char **path1;
  79. node_t **wnode1;
  80. uint64_t nodeid2;
  81. const char *name2;
  82. char **path2;
  83. node_t **wnode2;
  84. int err;
  85. bool done : 1;
  86. };
  87. struct node_table
  88. {
  89. node_t **array;
  90. size_t use;
  91. size_t size;
  92. size_t split;
  93. };
  94. struct list_head
  95. {
  96. struct list_head *next;
  97. struct list_head *prev;
  98. };
  99. typedef struct remembered_node_t remembered_node_t;
  100. struct remembered_node_t
  101. {
  102. node_t *node;
  103. time_t time;
  104. };
  105. typedef struct nodeid_gen_t nodeid_gen_t;
  106. struct nodeid_gen_t
  107. {
  108. uint64_t nodeid;
  109. uint64_t generation;
  110. };
  111. struct fuse
  112. {
  113. struct fuse_session *se;
  114. struct node_table name_table;
  115. struct node_table id_table;
  116. nodeid_gen_t nodeid_gen;
  117. unsigned int hidectr;
  118. pthread_mutex_t lock;
  119. struct fuse_config conf;
  120. struct fuse_fs *fs;
  121. struct lock_queue_element *lockq;
  122. pthread_t maintenance_thread;
  123. kvec_t(remembered_node_t) remembered_nodes;
  124. };
  125. struct lock
  126. {
  127. int type;
  128. off_t start;
  129. off_t end;
  130. pid_t pid;
  131. uint64_t owner;
  132. struct lock *next;
  133. };
  134. #define TREELOCK_WRITE -1
  135. #define TREELOCK_WAIT_OFFSET INT_MIN
  136. struct fuse_dh
  137. {
  138. pthread_mutex_t lock;
  139. uint64_t fh;
  140. fuse_dirents_t d;
  141. };
  142. struct fuse_context_i
  143. {
  144. struct fuse_context ctx;
  145. fuse_req_t req;
  146. };
  147. static pthread_key_t fuse_context_key;
  148. static pthread_mutex_t fuse_context_lock = PTHREAD_MUTEX_INITIALIZER;
  149. static int fuse_context_ref;
  150. /*
  151. Why was the nodeid:generation logic simplified?
  152. nodeid is uint64_t: max value of 18446744073709551616
  153. If nodes were created at a rate of 1048576 per second it would take
  154. over 500 thousand years to roll over. I'm fine with risking that.
  155. */
  156. static
  157. uint64_t
  158. generate_nodeid(nodeid_gen_t *ng_)
  159. {
  160. ng_->nodeid++;
  161. return ng_->nodeid;
  162. }
  163. static
  164. char*
  165. filename_strdup(struct fuse *f_,
  166. const char *fn_)
  167. {
  168. return strdup(fn_);
  169. }
  170. static
  171. void
  172. filename_free(struct fuse *f_,
  173. char *fn_)
  174. {
  175. free(fn_);
  176. }
  177. static
  178. void*
  179. fuse_hdr_arg(const struct fuse_in_header *hdr_)
  180. {
  181. return (void*)&hdr_[1];
  182. }
  183. static
  184. void
  185. list_add(struct list_head *new_,
  186. struct list_head *prev_,
  187. struct list_head *next_)
  188. {
  189. next_->prev = new_;
  190. new_->next = next_;
  191. new_->prev = prev_;
  192. prev_->next = new_;
  193. }
  194. static
  195. inline
  196. void
  197. list_add_head(struct list_head *new_,
  198. struct list_head *head_)
  199. {
  200. list_add(new_,head_,head_->next);
  201. }
  202. static
  203. inline
  204. void
  205. list_add_tail(struct list_head *new_,
  206. struct list_head *head_)
  207. {
  208. list_add(new_,head_->prev,head_);
  209. }
  210. static
  211. inline
  212. void
  213. list_del(struct list_head *entry)
  214. {
  215. struct list_head *prev = entry->prev;
  216. struct list_head *next = entry->next;
  217. next->prev = prev;
  218. prev->next = next;
  219. }
  220. static
  221. size_t
  222. id_hash(struct fuse *f,
  223. uint64_t ino)
  224. {
  225. uint64_t hash = ((uint32_t)ino * 2654435761U) % f->id_table.size;
  226. uint64_t oldhash = hash % (f->id_table.size / 2);
  227. if(oldhash >= f->id_table.split)
  228. return oldhash;
  229. else
  230. return hash;
  231. }
  232. static
  233. node_t*
  234. get_node_nocheck(struct fuse *f,
  235. uint64_t nodeid)
  236. {
  237. size_t hash = id_hash(f,nodeid);
  238. node_t *node;
  239. for(node = f->id_table.array[hash]; node != NULL; node = node->id_next)
  240. if(node->nodeid == nodeid)
  241. return node;
  242. return NULL;
  243. }
  244. static
  245. node_t*
  246. get_node(struct fuse *f,
  247. const uint64_t nodeid)
  248. {
  249. node_t *node = get_node_nocheck(f,nodeid);
  250. if(!node)
  251. {
  252. fprintf(stderr,"fuse internal error: node %llu not found\n",
  253. (unsigned long long)nodeid);
  254. abort();
  255. }
  256. return node;
  257. }
  258. static
  259. void
  260. remove_remembered_node(struct fuse *f_,
  261. node_t *node_)
  262. {
  263. for(size_t i = 0; i < kv_size(f_->remembered_nodes); i++)
  264. {
  265. if(kv_A(f_->remembered_nodes,i).node != node_)
  266. continue;
  267. kv_delete(f_->remembered_nodes,i);
  268. break;
  269. }
  270. }
  271. static
  272. uint32_t
  273. stat_crc32b(const struct stat *st_)
  274. {
  275. uint32_t crc;
  276. crc = crc32b_start();
  277. crc = crc32b_continue(&st_->st_ino,sizeof(st_->st_ino),crc);
  278. crc = crc32b_continue(&st_->st_size,sizeof(st_->st_size),crc);
  279. crc = crc32b_continue(&st_->st_mtim,sizeof(st_->st_mtim),crc);
  280. crc = crc32b_finish(crc);
  281. return crc;
  282. }
  283. #ifndef CLOCK_MONOTONIC
  284. # define CLOCK_MONOTONIC CLOCK_REALTIME
  285. #endif
  286. static
  287. time_t
  288. current_time()
  289. {
  290. int rv;
  291. struct timespec now;
  292. static clockid_t clockid = CLOCK_MONOTONIC;
  293. rv = clock_gettime(clockid,&now);
  294. if((rv == -1) && (errno == EINVAL))
  295. {
  296. clockid = CLOCK_REALTIME;
  297. rv = clock_gettime(clockid,&now);
  298. }
  299. if(rv == -1)
  300. now.tv_sec = time(NULL);
  301. return now.tv_sec;
  302. }
  303. static
  304. void
  305. free_node(struct fuse *f_,
  306. node_t *node_)
  307. {
  308. filename_free(f_,node_->name);
  309. if(node_->hidden_fh)
  310. f_->fs->op.free_hide(node_->hidden_fh);
  311. node_free(node_);
  312. }
  313. static
  314. void
  315. node_table_reduce(struct node_table *t)
  316. {
  317. size_t newsize = t->size / 2;
  318. void *newarray;
  319. if(newsize < NODE_TABLE_MIN_SIZE)
  320. return;
  321. newarray = realloc(t->array,sizeof(node_t*) * newsize);
  322. if(newarray != NULL)
  323. t->array = (node_t**)newarray;
  324. t->size = newsize;
  325. t->split = t->size / 2;
  326. }
  327. static
  328. void
  329. remerge_id(struct fuse *f)
  330. {
  331. struct node_table *t = &f->id_table;
  332. int iter;
  333. if(t->split == 0)
  334. node_table_reduce(t);
  335. for(iter = 8; t->split > 0 && iter; iter--)
  336. {
  337. node_t **upper;
  338. t->split--;
  339. upper = &t->array[t->split + t->size / 2];
  340. if(*upper)
  341. {
  342. node_t **nodep;
  343. for(nodep = &t->array[t->split]; *nodep;
  344. nodep = &(*nodep)->id_next);
  345. *nodep = *upper;
  346. *upper = NULL;
  347. break;
  348. }
  349. }
  350. }
  351. static
  352. void
  353. unhash_id(struct fuse *f,
  354. node_t *node)
  355. {
  356. node_t **nodep = &f->id_table.array[id_hash(f,node->nodeid)];
  357. for(; *nodep != NULL; nodep = &(*nodep)->id_next)
  358. if(*nodep == node)
  359. {
  360. *nodep = node->id_next;
  361. f->id_table.use--;
  362. if(f->id_table.use < f->id_table.size / 4)
  363. remerge_id(f);
  364. return;
  365. }
  366. }
  367. static
  368. int
  369. node_table_resize(struct node_table *t)
  370. {
  371. size_t newsize = t->size * 2;
  372. void *newarray;
  373. newarray = realloc(t->array,sizeof(node_t*) * newsize);
  374. if(newarray == NULL)
  375. return -1;
  376. t->array = (node_t**)newarray;
  377. memset(t->array + t->size,0,t->size * sizeof(node_t*));
  378. t->size = newsize;
  379. t->split = 0;
  380. return 0;
  381. }
  382. static
  383. void
  384. rehash_id(struct fuse *f)
  385. {
  386. struct node_table *t = &f->id_table;
  387. node_t **nodep;
  388. node_t **next;
  389. size_t hash;
  390. if(t->split == t->size / 2)
  391. return;
  392. hash = t->split;
  393. t->split++;
  394. for(nodep = &t->array[hash]; *nodep != NULL; nodep = next)
  395. {
  396. node_t *node = *nodep;
  397. size_t newhash = id_hash(f,node->nodeid);
  398. if(newhash != hash)
  399. {
  400. next = nodep;
  401. *nodep = node->id_next;
  402. node->id_next = t->array[newhash];
  403. t->array[newhash] = node;
  404. }
  405. else
  406. {
  407. next = &node->id_next;
  408. }
  409. }
  410. if(t->split == t->size / 2)
  411. node_table_resize(t);
  412. }
  413. static
  414. void
  415. hash_id(struct fuse *f,
  416. node_t *node)
  417. {
  418. size_t hash;
  419. hash = id_hash(f,node->nodeid);
  420. node->id_next = f->id_table.array[hash];
  421. f->id_table.array[hash] = node;
  422. f->id_table.use++;
  423. if(f->id_table.use >= f->id_table.size / 2)
  424. rehash_id(f);
  425. }
  426. static
  427. size_t
  428. name_hash(struct fuse *f,
  429. uint64_t parent,
  430. const char *name)
  431. {
  432. uint64_t hash = parent;
  433. uint64_t oldhash;
  434. for(; *name; name++)
  435. hash = hash * 31 + (unsigned char)*name;
  436. hash %= f->name_table.size;
  437. oldhash = hash % (f->name_table.size / 2);
  438. if(oldhash >= f->name_table.split)
  439. return oldhash;
  440. else
  441. return hash;
  442. }
  443. static
  444. void
  445. unref_node(struct fuse *f,
  446. node_t *node);
  447. static
  448. void
  449. remerge_name(struct fuse *f)
  450. {
  451. int iter;
  452. struct node_table *t = &f->name_table;
  453. if(t->split == 0)
  454. node_table_reduce(t);
  455. for(iter = 8; t->split > 0 && iter; iter--)
  456. {
  457. node_t **upper;
  458. t->split--;
  459. upper = &t->array[t->split + t->size / 2];
  460. if(*upper)
  461. {
  462. node_t **nodep;
  463. for(nodep = &t->array[t->split]; *nodep; nodep = &(*nodep)->name_next);
  464. *nodep = *upper;
  465. *upper = NULL;
  466. break;
  467. }
  468. }
  469. }
  470. static
  471. void
  472. unhash_name(struct fuse *f,
  473. node_t *node)
  474. {
  475. if(node->name)
  476. {
  477. size_t hash = name_hash(f,node->parent->nodeid,node->name);
  478. node_t **nodep = &f->name_table.array[hash];
  479. for(; *nodep != NULL; nodep = &(*nodep)->name_next)
  480. if(*nodep == node)
  481. {
  482. *nodep = node->name_next;
  483. node->name_next = NULL;
  484. unref_node(f,node->parent);
  485. filename_free(f,node->name);
  486. node->name = NULL;
  487. node->parent = NULL;
  488. f->name_table.use--;
  489. if(f->name_table.use < f->name_table.size / 4)
  490. remerge_name(f);
  491. return;
  492. }
  493. fprintf(stderr,
  494. "fuse internal error: unable to unhash node: %llu\n",
  495. (unsigned long long)node->nodeid);
  496. abort();
  497. }
  498. }
  499. static
  500. void
  501. rehash_name(struct fuse *f)
  502. {
  503. struct node_table *t = &f->name_table;
  504. node_t **nodep;
  505. node_t **next;
  506. size_t hash;
  507. if(t->split == t->size / 2)
  508. return;
  509. hash = t->split;
  510. t->split++;
  511. for(nodep = &t->array[hash]; *nodep != NULL; nodep = next)
  512. {
  513. node_t *node = *nodep;
  514. size_t newhash = name_hash(f,node->parent->nodeid,node->name);
  515. if(newhash != hash)
  516. {
  517. next = nodep;
  518. *nodep = node->name_next;
  519. node->name_next = t->array[newhash];
  520. t->array[newhash] = node;
  521. }
  522. else
  523. {
  524. next = &node->name_next;
  525. }
  526. }
  527. if(t->split == t->size / 2)
  528. node_table_resize(t);
  529. }
  530. static
  531. int
  532. hash_name(struct fuse *f,
  533. node_t *node,
  534. uint64_t parentid,
  535. const char *name)
  536. {
  537. size_t hash = name_hash(f,parentid,name);
  538. node_t *parent = get_node(f,parentid);
  539. node->name = filename_strdup(f,name);
  540. if(node->name == NULL)
  541. return -1;
  542. parent->refctr++;
  543. node->parent = parent;
  544. node->name_next = f->name_table.array[hash];
  545. f->name_table.array[hash] = node;
  546. f->name_table.use++;
  547. if(f->name_table.use >= f->name_table.size / 2)
  548. rehash_name(f);
  549. return 0;
  550. }
  551. static
  552. inline
  553. int
  554. remember_nodes(struct fuse *f_)
  555. {
  556. return (f_->conf.remember > 0);
  557. }
  558. static
  559. void
  560. delete_node(struct fuse *f,
  561. node_t *node)
  562. {
  563. assert(node->treelock == 0);
  564. unhash_name(f,node);
  565. if(remember_nodes(f))
  566. remove_remembered_node(f,node);
  567. unhash_id(f,node);
  568. node_free(node);
  569. }
  570. static
  571. void
  572. unref_node(struct fuse *f,
  573. node_t *node)
  574. {
  575. assert(node->refctr > 0);
  576. node->refctr--;
  577. if(!node->refctr)
  578. delete_node(f,node);
  579. }
  580. static
  581. uint64_t
  582. rand64(void)
  583. {
  584. uint64_t rv;
  585. rv = rand();
  586. rv <<= 32;
  587. rv |= rand();
  588. return rv;
  589. }
  590. static
  591. node_t*
  592. lookup_node(struct fuse *f,
  593. uint64_t parent,
  594. const char *name)
  595. {
  596. size_t hash;
  597. node_t *node;
  598. hash = name_hash(f,parent,name);
  599. for(node = f->name_table.array[hash]; node != NULL; node = node->name_next)
  600. if(node->parent->nodeid == parent && strcmp(node->name,name) == 0)
  601. return node;
  602. return NULL;
  603. }
  604. static
  605. void
  606. inc_nlookup(node_t *node)
  607. {
  608. if(!node->nlookup)
  609. node->refctr++;
  610. node->nlookup++;
  611. }
  612. static
  613. node_t*
  614. find_node(struct fuse *f,
  615. uint64_t parent,
  616. const char *name)
  617. {
  618. node_t *node;
  619. pthread_mutex_lock(&f->lock);
  620. if(!name)
  621. node = get_node(f,parent);
  622. else
  623. node = lookup_node(f,parent,name);
  624. if(node == NULL)
  625. {
  626. node = node_alloc();
  627. if(node == NULL)
  628. goto out_err;
  629. node->nodeid = generate_nodeid(&f->nodeid_gen);
  630. if(f->conf.remember)
  631. inc_nlookup(node);
  632. if(hash_name(f,node,parent,name) == -1)
  633. {
  634. free_node(f,node);
  635. node = NULL;
  636. goto out_err;
  637. }
  638. hash_id(f,node);
  639. }
  640. else if((node->nlookup == 1) && remember_nodes(f))
  641. {
  642. remove_remembered_node(f,node);
  643. }
  644. inc_nlookup(node);
  645. out_err:
  646. pthread_mutex_unlock(&f->lock);
  647. return node;
  648. }
  649. static
  650. char*
  651. add_name(char **buf,
  652. unsigned *bufsize,
  653. char *s,
  654. const char *name)
  655. {
  656. size_t len = strlen(name);
  657. if(s - len <= *buf)
  658. {
  659. unsigned pathlen = *bufsize - (s - *buf);
  660. unsigned newbufsize = *bufsize;
  661. char *newbuf;
  662. while(newbufsize < pathlen + len + 1)
  663. {
  664. if(newbufsize >= 0x80000000)
  665. newbufsize = 0xffffffff;
  666. else
  667. newbufsize *= 2;
  668. }
  669. newbuf = (char*)realloc(*buf,newbufsize);
  670. if(newbuf == NULL)
  671. return NULL;
  672. *buf = newbuf;
  673. s = newbuf + newbufsize - pathlen;
  674. memmove(s,newbuf + *bufsize - pathlen,pathlen);
  675. *bufsize = newbufsize;
  676. }
  677. s -= len;
  678. strncpy(s,name,len);
  679. s--;
  680. *s = '/';
  681. return s;
  682. }
  683. static
  684. void
  685. unlock_path(struct fuse *f,
  686. uint64_t nodeid,
  687. node_t *wnode,
  688. node_t *end)
  689. {
  690. node_t *node;
  691. if(wnode)
  692. {
  693. assert(wnode->treelock == TREELOCK_WRITE);
  694. wnode->treelock = 0;
  695. }
  696. for(node = get_node(f,nodeid); node != end && node->nodeid != FUSE_ROOT_ID; node = node->parent)
  697. {
  698. assert(node->treelock != 0);
  699. assert(node->treelock != TREELOCK_WAIT_OFFSET);
  700. assert(node->treelock != TREELOCK_WRITE);
  701. node->treelock--;
  702. if(node->treelock == TREELOCK_WAIT_OFFSET)
  703. node->treelock = 0;
  704. }
  705. }
  706. static
  707. int
  708. try_get_path(struct fuse *f,
  709. uint64_t nodeid,
  710. const char *name,
  711. char **path,
  712. node_t **wnodep,
  713. bool need_lock)
  714. {
  715. unsigned bufsize = 256;
  716. char *buf;
  717. char *s;
  718. node_t *node;
  719. node_t *wnode = NULL;
  720. int err;
  721. *path = NULL;
  722. err = -ENOMEM;
  723. buf = (char*)malloc(bufsize);
  724. if(buf == NULL)
  725. goto out_err;
  726. s = buf + bufsize - 1;
  727. *s = '\0';
  728. if(name != NULL)
  729. {
  730. s = add_name(&buf,&bufsize,s,name);
  731. err = -ENOMEM;
  732. if(s == NULL)
  733. goto out_free;
  734. }
  735. if(wnodep)
  736. {
  737. assert(need_lock);
  738. wnode = lookup_node(f,nodeid,name);
  739. if(wnode)
  740. {
  741. if(wnode->treelock != 0)
  742. {
  743. if(wnode->treelock > 0)
  744. wnode->treelock += TREELOCK_WAIT_OFFSET;
  745. err = -EAGAIN;
  746. goto out_free;
  747. }
  748. wnode->treelock = TREELOCK_WRITE;
  749. }
  750. }
  751. for(node = get_node(f,nodeid); node->nodeid != FUSE_ROOT_ID; node = node->parent)
  752. {
  753. err = -ESTALE;
  754. if(node->name == NULL || node->parent == NULL)
  755. goto out_unlock;
  756. err = -ENOMEM;
  757. s = add_name(&buf,&bufsize,s,node->name);
  758. if(s == NULL)
  759. goto out_unlock;
  760. if(need_lock)
  761. {
  762. err = -EAGAIN;
  763. if(node->treelock < 0)
  764. goto out_unlock;
  765. node->treelock++;
  766. }
  767. }
  768. if(s[0])
  769. memmove(buf,s,bufsize - (s - buf));
  770. else
  771. strcpy(buf,"/");
  772. *path = buf;
  773. if(wnodep)
  774. *wnodep = wnode;
  775. return 0;
  776. out_unlock:
  777. if(need_lock)
  778. unlock_path(f,nodeid,wnode,node);
  779. out_free:
  780. free(buf);
  781. out_err:
  782. return err;
  783. }
  784. static
  785. int
  786. try_get_path2(struct fuse *f,
  787. uint64_t nodeid1,
  788. const char *name1,
  789. uint64_t nodeid2,
  790. const char *name2,
  791. char **path1,
  792. char **path2,
  793. node_t **wnode1,
  794. node_t **wnode2)
  795. {
  796. int err;
  797. err = try_get_path(f,nodeid1,name1,path1,wnode1,true);
  798. if(!err)
  799. {
  800. err = try_get_path(f,nodeid2,name2,path2,wnode2,true);
  801. if(err)
  802. {
  803. node_t *wn1 = wnode1 ? *wnode1 : NULL;
  804. unlock_path(f,nodeid1,wn1,NULL);
  805. free(*path1);
  806. }
  807. }
  808. return err;
  809. }
  810. static
  811. void
  812. queue_element_wakeup(struct fuse *f,
  813. struct lock_queue_element *qe)
  814. {
  815. int err;
  816. if(!qe->path1)
  817. {
  818. /* Just waiting for it to be unlocked */
  819. if(get_node(f,qe->nodeid1)->treelock == 0)
  820. pthread_cond_signal(&qe->cond);
  821. return;
  822. }
  823. if(qe->done)
  824. return;
  825. if(!qe->path2)
  826. {
  827. err = try_get_path(f,
  828. qe->nodeid1,
  829. qe->name1,
  830. qe->path1,
  831. qe->wnode1,
  832. true);
  833. }
  834. else
  835. {
  836. err = try_get_path2(f,
  837. qe->nodeid1,
  838. qe->name1,
  839. qe->nodeid2,
  840. qe->name2,
  841. qe->path1,
  842. qe->path2,
  843. qe->wnode1,
  844. qe->wnode2);
  845. }
  846. if(err == -EAGAIN)
  847. return;
  848. qe->err = err;
  849. qe->done = true;
  850. pthread_cond_signal(&qe->cond);
  851. }
  852. static
  853. void
  854. wake_up_queued(struct fuse *f)
  855. {
  856. struct lock_queue_element *qe;
  857. for(qe = f->lockq; qe != NULL; qe = qe->next)
  858. queue_element_wakeup(f,qe);
  859. }
  860. static
  861. void
  862. queue_path(struct fuse *f,
  863. struct lock_queue_element *qe)
  864. {
  865. struct lock_queue_element **qp;
  866. qe->done = false;
  867. pthread_cond_init(&qe->cond,NULL);
  868. qe->next = NULL;
  869. for(qp = &f->lockq; *qp != NULL; qp = &(*qp)->next);
  870. *qp = qe;
  871. }
  872. static
  873. void
  874. dequeue_path(struct fuse *f,
  875. struct lock_queue_element *qe)
  876. {
  877. struct lock_queue_element **qp;
  878. pthread_cond_destroy(&qe->cond);
  879. for(qp = &f->lockq; *qp != qe; qp = &(*qp)->next);
  880. *qp = qe->next;
  881. }
  882. static
  883. int
  884. wait_path(struct fuse *f,
  885. struct lock_queue_element *qe)
  886. {
  887. queue_path(f,qe);
  888. do
  889. {
  890. pthread_cond_wait(&qe->cond,&f->lock);
  891. } while(!qe->done);
  892. dequeue_path(f,qe);
  893. return qe->err;
  894. }
  895. static
  896. int
  897. get_path_common(struct fuse *f,
  898. uint64_t nodeid,
  899. const char *name,
  900. char **path,
  901. node_t **wnode)
  902. {
  903. int err;
  904. pthread_mutex_lock(&f->lock);
  905. err = try_get_path(f,nodeid,name,path,wnode,true);
  906. if(err == -EAGAIN)
  907. {
  908. struct lock_queue_element qe = {0};
  909. qe.nodeid1 = nodeid;
  910. qe.name1 = name;
  911. qe.path1 = path;
  912. qe.wnode1 = wnode;
  913. err = wait_path(f,&qe);
  914. }
  915. pthread_mutex_unlock(&f->lock);
  916. return err;
  917. }
  918. static
  919. int
  920. get_path(struct fuse *f,
  921. uint64_t nodeid,
  922. char **path)
  923. {
  924. return get_path_common(f,nodeid,NULL,path,NULL);
  925. }
  926. static
  927. int
  928. get_path_name(struct fuse *f,
  929. uint64_t nodeid,
  930. const char *name,
  931. char **path)
  932. {
  933. return get_path_common(f,nodeid,name,path,NULL);
  934. }
  935. static
  936. int
  937. get_path_wrlock(struct fuse *f,
  938. uint64_t nodeid,
  939. const char *name,
  940. char **path,
  941. node_t **wnode)
  942. {
  943. return get_path_common(f,nodeid,name,path,wnode);
  944. }
  945. static
  946. int
  947. get_path2(struct fuse *f,
  948. uint64_t nodeid1,
  949. const char *name1,
  950. uint64_t nodeid2,
  951. const char *name2,
  952. char **path1,
  953. char **path2,
  954. node_t **wnode1,
  955. node_t **wnode2)
  956. {
  957. int err;
  958. pthread_mutex_lock(&f->lock);
  959. err = try_get_path2(f,nodeid1,name1,nodeid2,name2,
  960. path1,path2,wnode1,wnode2);
  961. if(err == -EAGAIN)
  962. {
  963. struct lock_queue_element qe = {0};
  964. qe.nodeid1 = nodeid1;
  965. qe.name1 = name1;
  966. qe.path1 = path1;
  967. qe.wnode1 = wnode1;
  968. qe.nodeid2 = nodeid2;
  969. qe.name2 = name2;
  970. qe.path2 = path2;
  971. qe.wnode2 = wnode2;
  972. err = wait_path(f,&qe);
  973. }
  974. pthread_mutex_unlock(&f->lock);
  975. return err;
  976. }
  977. static
  978. void
  979. free_path_wrlock(struct fuse *f,
  980. uint64_t nodeid,
  981. node_t *wnode,
  982. char *path)
  983. {
  984. pthread_mutex_lock(&f->lock);
  985. unlock_path(f,nodeid,wnode,NULL);
  986. if(f->lockq)
  987. wake_up_queued(f);
  988. pthread_mutex_unlock(&f->lock);
  989. free(path);
  990. }
  991. static
  992. void
  993. free_path(struct fuse *f,
  994. uint64_t nodeid,
  995. char *path)
  996. {
  997. if(path)
  998. free_path_wrlock(f,nodeid,NULL,path);
  999. }
  1000. static
  1001. void
  1002. free_path2(struct fuse *f,
  1003. uint64_t nodeid1,
  1004. uint64_t nodeid2,
  1005. node_t *wnode1,
  1006. node_t *wnode2,
  1007. char *path1,
  1008. char *path2)
  1009. {
  1010. pthread_mutex_lock(&f->lock);
  1011. unlock_path(f,nodeid1,wnode1,NULL);
  1012. unlock_path(f,nodeid2,wnode2,NULL);
  1013. wake_up_queued(f);
  1014. pthread_mutex_unlock(&f->lock);
  1015. free(path1);
  1016. free(path2);
  1017. }
  1018. static
  1019. void
  1020. forget_node(struct fuse *f,
  1021. const uint64_t nodeid,
  1022. const uint64_t nlookup)
  1023. {
  1024. node_t *node;
  1025. if(nodeid == FUSE_ROOT_ID)
  1026. return;
  1027. pthread_mutex_lock(&f->lock);
  1028. node = get_node(f,nodeid);
  1029. /*
  1030. * Node may still be locked due to interrupt idiocy in open,
  1031. * create and opendir
  1032. */
  1033. while(node->nlookup == nlookup && node->treelock)
  1034. {
  1035. struct lock_queue_element qe = {0};
  1036. qe.nodeid1 = nodeid;
  1037. queue_path(f,&qe);
  1038. do
  1039. {
  1040. pthread_cond_wait(&qe.cond,&f->lock);
  1041. }
  1042. while((node->nlookup == nlookup) && node->treelock);
  1043. dequeue_path(f,&qe);
  1044. }
  1045. assert(node->nlookup >= nlookup);
  1046. node->nlookup -= nlookup;
  1047. if(node->nlookup == 0)
  1048. {
  1049. unref_node(f,node);
  1050. }
  1051. else if((node->nlookup == 1) && remember_nodes(f))
  1052. {
  1053. remembered_node_t fn;
  1054. fn.node = node;
  1055. fn.time = current_time();
  1056. kv_push(remembered_node_t,f->remembered_nodes,fn);
  1057. }
  1058. pthread_mutex_unlock(&f->lock);
  1059. }
  1060. static
  1061. void
  1062. unlink_node(struct fuse *f,
  1063. node_t *node)
  1064. {
  1065. if(remember_nodes(f))
  1066. {
  1067. assert(node->nlookup > 1);
  1068. node->nlookup--;
  1069. }
  1070. unhash_name(f,node);
  1071. }
  1072. static
  1073. void
  1074. remove_node(struct fuse *f,
  1075. uint64_t dir,
  1076. const char *name)
  1077. {
  1078. node_t *node;
  1079. pthread_mutex_lock(&f->lock);
  1080. node = lookup_node(f,dir,name);
  1081. if(node != NULL)
  1082. unlink_node(f,node);
  1083. pthread_mutex_unlock(&f->lock);
  1084. }
  1085. static
  1086. int
  1087. rename_node(struct fuse *f,
  1088. uint64_t olddir,
  1089. const char *oldname,
  1090. uint64_t newdir,
  1091. const char *newname)
  1092. {
  1093. node_t *node;
  1094. node_t *newnode;
  1095. int err = 0;
  1096. pthread_mutex_lock(&f->lock);
  1097. node = lookup_node(f,olddir,oldname);
  1098. newnode = lookup_node(f,newdir,newname);
  1099. if(node == NULL)
  1100. goto out;
  1101. if(newnode != NULL)
  1102. unlink_node(f,newnode);
  1103. unhash_name(f,node);
  1104. if(hash_name(f,node,newdir,newname) == -1)
  1105. {
  1106. err = -ENOMEM;
  1107. goto out;
  1108. }
  1109. out:
  1110. pthread_mutex_unlock(&f->lock);
  1111. return err;
  1112. }
  1113. static
  1114. void
  1115. set_stat(struct fuse *f,
  1116. uint64_t nodeid,
  1117. struct stat *stbuf)
  1118. {
  1119. if(f->conf.set_mode)
  1120. stbuf->st_mode = (stbuf->st_mode & S_IFMT) | (0777 & ~f->conf.umask);
  1121. if(f->conf.set_uid)
  1122. stbuf->st_uid = f->conf.uid;
  1123. if(f->conf.set_gid)
  1124. stbuf->st_gid = f->conf.gid;
  1125. }
  1126. static
  1127. struct fuse*
  1128. req_fuse(fuse_req_t req)
  1129. {
  1130. return (struct fuse*)fuse_req_userdata(req);
  1131. }
  1132. static
  1133. int
  1134. node_open(const node_t *node_)
  1135. {
  1136. return ((node_ != NULL) && (node_->open_count > 0));
  1137. }
  1138. static
  1139. void
  1140. update_stat(node_t *node_,
  1141. const struct stat *stnew_)
  1142. {
  1143. uint32_t crc32b;
  1144. crc32b = stat_crc32b(stnew_);
  1145. if(node_->is_stat_cache_valid && (crc32b != node_->stat_crc32b))
  1146. node_->is_stat_cache_valid = 0;
  1147. node_->stat_crc32b = crc32b;
  1148. }
  1149. static
  1150. int
  1151. set_path_info(struct fuse *f,
  1152. uint64_t nodeid,
  1153. const char *name,
  1154. struct fuse_entry_param *e)
  1155. {
  1156. node_t *node;
  1157. node = find_node(f,nodeid,name);
  1158. if(node == NULL)
  1159. return -ENOMEM;
  1160. e->ino = node->nodeid;
  1161. e->generation = ((e->ino == FUSE_ROOT_ID) ? 0 : f->nodeid_gen.generation);
  1162. pthread_mutex_lock(&f->lock);
  1163. update_stat(node,&e->attr);
  1164. pthread_mutex_unlock(&f->lock);
  1165. set_stat(f,e->ino,&e->attr);
  1166. return 0;
  1167. }
  1168. /*
  1169. lookup requests only come in for FUSE_ROOT_ID when a "parent of
  1170. child of root node" request is made. This can happen when using
  1171. EXPORT_SUPPORT=true and a file handle is used to keep a reference to
  1172. a node which has been forgotten. Mostly a NFS concern but not
  1173. excluslively. Root node always has a nodeid of 1 and generation of
  1174. 0. To ensure this set_path_info() explicitly ensures the root id has
  1175. a generation of 0.
  1176. */
  1177. static
  1178. int
  1179. lookup_path(struct fuse *f,
  1180. uint64_t nodeid,
  1181. const char *name,
  1182. const char *path,
  1183. struct fuse_entry_param *e,
  1184. fuse_file_info_t *fi)
  1185. {
  1186. int rv;
  1187. memset(e,0,sizeof(struct fuse_entry_param));
  1188. rv = ((fi == NULL) ?
  1189. f->fs->op.getattr(path,&e->attr,&e->timeout) :
  1190. f->fs->op.fgetattr(fi,&e->attr,&e->timeout));
  1191. if(rv)
  1192. return rv;
  1193. return set_path_info(f,nodeid,name,e);
  1194. }
  1195. static
  1196. struct fuse_context_i*
  1197. fuse_get_context_internal(void)
  1198. {
  1199. struct fuse_context_i *c;
  1200. c = (struct fuse_context_i *)pthread_getspecific(fuse_context_key);
  1201. if(c == NULL)
  1202. {
  1203. c = (struct fuse_context_i*)calloc(1,sizeof(struct fuse_context_i));
  1204. if(c == NULL)
  1205. {
  1206. /* This is hard to deal with properly,so just
  1207. abort. If memory is so low that the
  1208. context cannot be allocated,there's not
  1209. much hope for the filesystem anyway */
  1210. fprintf(stderr,"fuse: failed to allocate thread specific data\n");
  1211. abort();
  1212. }
  1213. pthread_setspecific(fuse_context_key,c);
  1214. }
  1215. return c;
  1216. }
  1217. static
  1218. void
  1219. fuse_freecontext(void *data)
  1220. {
  1221. free(data);
  1222. }
  1223. static
  1224. int
  1225. fuse_create_context_key(void)
  1226. {
  1227. int err = 0;
  1228. pthread_mutex_lock(&fuse_context_lock);
  1229. if(!fuse_context_ref)
  1230. {
  1231. err = pthread_key_create(&fuse_context_key,fuse_freecontext);
  1232. if(err)
  1233. {
  1234. fprintf(stderr,"fuse: failed to create thread specific key: %s\n",
  1235. strerror(err));
  1236. pthread_mutex_unlock(&fuse_context_lock);
  1237. return -1;
  1238. }
  1239. }
  1240. fuse_context_ref++;
  1241. pthread_mutex_unlock(&fuse_context_lock);
  1242. return 0;
  1243. }
  1244. static
  1245. void
  1246. fuse_delete_context_key(void)
  1247. {
  1248. pthread_mutex_lock(&fuse_context_lock);
  1249. fuse_context_ref--;
  1250. if(!fuse_context_ref)
  1251. {
  1252. free(pthread_getspecific(fuse_context_key));
  1253. pthread_key_delete(fuse_context_key);
  1254. }
  1255. pthread_mutex_unlock(&fuse_context_lock);
  1256. }
  1257. static
  1258. struct fuse*
  1259. req_fuse_prepare(fuse_req_t req)
  1260. {
  1261. struct fuse_context_i *c = fuse_get_context_internal();
  1262. const struct fuse_ctx *ctx = fuse_req_ctx(req);
  1263. c->req = req;
  1264. c->ctx.fuse = req_fuse(req);
  1265. c->ctx.uid = ctx->uid;
  1266. c->ctx.gid = ctx->gid;
  1267. c->ctx.pid = ctx->pid;
  1268. c->ctx.umask = ctx->umask;
  1269. return c->ctx.fuse;
  1270. }
  1271. static
  1272. void
  1273. reply_entry(fuse_req_t req,
  1274. const struct fuse_entry_param *e,
  1275. int err)
  1276. {
  1277. if(!err)
  1278. {
  1279. struct fuse *f = req_fuse(req);
  1280. if(fuse_reply_entry(req,e) == -ENOENT)
  1281. {
  1282. /* Skip forget for negative result */
  1283. if(e->ino != 0)
  1284. forget_node(f,e->ino,1);
  1285. }
  1286. }
  1287. else
  1288. {
  1289. fuse_reply_err(req,err);
  1290. }
  1291. }
  1292. static
  1293. void
  1294. fuse_lib_init(void *data,
  1295. struct fuse_conn_info *conn)
  1296. {
  1297. struct fuse *f = (struct fuse *)data;
  1298. struct fuse_context_i *c = fuse_get_context_internal();
  1299. memset(c,0,sizeof(*c));
  1300. c->ctx.fuse = f;
  1301. f->fs->op.init(conn);
  1302. }
  1303. static
  1304. void
  1305. fuse_lib_destroy(void *data)
  1306. {
  1307. struct fuse *f = (struct fuse *)data;
  1308. struct fuse_context_i *c = fuse_get_context_internal();
  1309. memset(c,0,sizeof(*c));
  1310. c->ctx.fuse = f;
  1311. f->fs->op.destroy();
  1312. free(f->fs);
  1313. f->fs = NULL;
  1314. }
  1315. static
  1316. void
  1317. fuse_lib_lookup(fuse_req_t req,
  1318. struct fuse_in_header *hdr_)
  1319. {
  1320. int err;
  1321. uint64_t nodeid;
  1322. char *path;
  1323. const char *name;
  1324. struct fuse *f;
  1325. node_t *dot = NULL;
  1326. struct fuse_entry_param e = {0};
  1327. name = (const char*)fuse_hdr_arg(hdr_);
  1328. nodeid = hdr_->nodeid;
  1329. f = req_fuse_prepare(req);
  1330. if(name[0] == '.')
  1331. {
  1332. if(name[1] == '\0')
  1333. {
  1334. name = NULL;
  1335. pthread_mutex_lock(&f->lock);
  1336. dot = get_node_nocheck(f,nodeid);
  1337. if(dot == NULL)
  1338. {
  1339. pthread_mutex_unlock(&f->lock);
  1340. reply_entry(req,&e,-ESTALE);
  1341. return;
  1342. }
  1343. dot->refctr++;
  1344. pthread_mutex_unlock(&f->lock);
  1345. }
  1346. else if((name[1] == '.') && (name[2] == '\0'))
  1347. {
  1348. if(nodeid == 1)
  1349. {
  1350. reply_entry(req,&e,-ENOENT);
  1351. return;
  1352. }
  1353. name = NULL;
  1354. pthread_mutex_lock(&f->lock);
  1355. nodeid = get_node(f,nodeid)->parent->nodeid;
  1356. pthread_mutex_unlock(&f->lock);
  1357. }
  1358. }
  1359. err = get_path_name(f,nodeid,name,&path);
  1360. if(!err)
  1361. {
  1362. err = lookup_path(f,nodeid,name,path,&e,NULL);
  1363. if(err == -ENOENT)
  1364. {
  1365. e.ino = 0;
  1366. err = 0;
  1367. }
  1368. free_path(f,nodeid,path);
  1369. }
  1370. if(dot)
  1371. {
  1372. pthread_mutex_lock(&f->lock);
  1373. unref_node(f,dot);
  1374. pthread_mutex_unlock(&f->lock);
  1375. }
  1376. reply_entry(req,&e,err);
  1377. }
  1378. static
  1379. void
  1380. fuse_lib_forget(fuse_req_t req,
  1381. struct fuse_in_header *hdr_)
  1382. {
  1383. struct fuse *f;
  1384. struct fuse_forget_in *arg;
  1385. f = req_fuse(req);
  1386. arg = (fuse_forget_in*)fuse_hdr_arg(hdr_);
  1387. forget_node(f,hdr_->nodeid,arg->nlookup);
  1388. fuse_reply_none(req);
  1389. }
  1390. static
  1391. void
  1392. fuse_lib_forget_multi(fuse_req_t req,
  1393. struct fuse_in_header *hdr_)
  1394. {
  1395. struct fuse *f;
  1396. struct fuse_batch_forget_in *arg;
  1397. struct fuse_forget_one *entry;
  1398. f = req_fuse(req);
  1399. arg = (fuse_batch_forget_in*)fuse_hdr_arg(hdr_);
  1400. entry = (fuse_forget_one*)PARAM(arg);
  1401. for(uint32_t i = 0; i < arg->count; i++)
  1402. {
  1403. forget_node(f,
  1404. entry[i].nodeid,
  1405. entry[i].nlookup);
  1406. }
  1407. fuse_reply_none(req);
  1408. }
  1409. static
  1410. void
  1411. fuse_lib_getattr(fuse_req_t req,
  1412. struct fuse_in_header *hdr_)
  1413. {
  1414. int err;
  1415. char *path;
  1416. struct fuse *f;
  1417. struct stat buf;
  1418. node_t *node;
  1419. fuse_timeouts_t timeout;
  1420. fuse_file_info_t ffi = {0};
  1421. const struct fuse_getattr_in *arg;
  1422. arg = (fuse_getattr_in*)fuse_hdr_arg(hdr_);
  1423. f = req_fuse_prepare(req);
  1424. if(arg->getattr_flags & FUSE_GETATTR_FH)
  1425. {
  1426. ffi.fh = arg->fh;
  1427. }
  1428. else
  1429. {
  1430. pthread_mutex_lock(&f->lock);
  1431. node = get_node(f,hdr_->nodeid);
  1432. if(node->hidden_fh)
  1433. ffi.fh = node->hidden_fh;
  1434. pthread_mutex_unlock(&f->lock);
  1435. }
  1436. memset(&buf,0,sizeof(buf));
  1437. err = 0;
  1438. path = NULL;
  1439. if(ffi.fh == 0)
  1440. err = get_path(f,hdr_->nodeid,&path);
  1441. if(!err)
  1442. {
  1443. err = ((ffi.fh == 0) ?
  1444. f->fs->op.getattr(path,&buf,&timeout) :
  1445. f->fs->op.fgetattr(&ffi,&buf,&timeout));
  1446. free_path(f,hdr_->nodeid,path);
  1447. }
  1448. if(!err)
  1449. {
  1450. pthread_mutex_lock(&f->lock);
  1451. node = get_node(f,hdr_->nodeid);
  1452. update_stat(node,&buf);
  1453. pthread_mutex_unlock(&f->lock);
  1454. set_stat(f,hdr_->nodeid,&buf);
  1455. fuse_reply_attr(req,&buf,timeout.attr);
  1456. }
  1457. else
  1458. {
  1459. fuse_reply_err(req,err);
  1460. }
  1461. }
  1462. static
  1463. void
  1464. fuse_lib_setattr(fuse_req_t req,
  1465. struct fuse_in_header *hdr_)
  1466. {
  1467. struct fuse *f = req_fuse_prepare(req);
  1468. struct stat stbuf = {0};
  1469. char *path;
  1470. int err;
  1471. node_t *node;
  1472. fuse_timeouts_t timeout;
  1473. fuse_file_info_t *fi;
  1474. fuse_file_info_t ffi = {0};
  1475. struct fuse_setattr_in *arg;
  1476. arg = (fuse_setattr_in*)fuse_hdr_arg(hdr_);
  1477. fi = NULL;
  1478. if(arg->valid & FATTR_FH)
  1479. {
  1480. fi = &ffi;
  1481. fi->fh = arg->fh;
  1482. }
  1483. else
  1484. {
  1485. pthread_mutex_lock(&f->lock);
  1486. node = get_node(f,hdr_->nodeid);
  1487. if(node->hidden_fh)
  1488. {
  1489. fi = &ffi;
  1490. fi->fh = node->hidden_fh;
  1491. }
  1492. pthread_mutex_unlock(&f->lock);
  1493. }
  1494. err = 0;
  1495. path = NULL;
  1496. if(fi == NULL)
  1497. err = get_path(f,hdr_->nodeid,&path);
  1498. if(!err)
  1499. {
  1500. err = 0;
  1501. if(!err && (arg->valid & FATTR_MODE))
  1502. err = ((fi == NULL) ?
  1503. f->fs->op.chmod(path,arg->mode) :
  1504. f->fs->op.fchmod(fi,arg->mode));
  1505. if(!err && (arg->valid & (FATTR_UID | FATTR_GID)))
  1506. {
  1507. uid_t uid = ((arg->valid & FATTR_UID) ? arg->uid : (uid_t)-1);
  1508. gid_t gid = ((arg->valid & FATTR_GID) ? arg->gid : (gid_t)-1);
  1509. err = ((fi == NULL) ?
  1510. f->fs->op.chown(path,uid,gid) :
  1511. f->fs->op.fchown(fi,uid,gid));
  1512. }
  1513. if(!err && (arg->valid & FATTR_SIZE))
  1514. err = ((fi == NULL) ?
  1515. f->fs->op.truncate(path,arg->size) :
  1516. f->fs->op.ftruncate(fi,arg->size));
  1517. #ifdef HAVE_UTIMENSAT
  1518. if(!err && (arg->valid & (FATTR_ATIME | FATTR_MTIME)))
  1519. {
  1520. struct timespec tv[2];
  1521. tv[0].tv_sec = 0;
  1522. tv[1].tv_sec = 0;
  1523. tv[0].tv_nsec = UTIME_OMIT;
  1524. tv[1].tv_nsec = UTIME_OMIT;
  1525. if(arg->valid & FATTR_ATIME_NOW)
  1526. tv[0].tv_nsec = UTIME_NOW;
  1527. else if(arg->valid & FATTR_ATIME)
  1528. tv[0] = (struct timespec){ static_cast<time_t>(arg->atime), arg->atimensec };
  1529. if(arg->valid & FATTR_MTIME_NOW)
  1530. tv[1].tv_nsec = UTIME_NOW;
  1531. else if(arg->valid & FATTR_MTIME)
  1532. tv[1] = (struct timespec){ static_cast<time_t>(arg->mtime), arg->mtimensec };
  1533. err = ((fi == NULL) ?
  1534. f->fs->op.utimens(path,tv) :
  1535. f->fs->op.futimens(fi,tv));
  1536. }
  1537. else
  1538. #endif
  1539. if(!err && ((arg->valid & (FATTR_ATIME|FATTR_MTIME)) == (FATTR_ATIME|FATTR_MTIME)))
  1540. {
  1541. struct timespec tv[2];
  1542. tv[0].tv_sec = arg->atime;
  1543. tv[0].tv_nsec = arg->atimensec;
  1544. tv[1].tv_sec = arg->mtime;
  1545. tv[1].tv_nsec = arg->mtimensec;
  1546. err = ((fi == NULL) ?
  1547. f->fs->op.utimens(path,tv) :
  1548. f->fs->op.futimens(fi,tv));
  1549. }
  1550. if(!err)
  1551. err = ((fi == NULL) ?
  1552. f->fs->op.getattr(path,&stbuf,&timeout) :
  1553. f->fs->op.fgetattr(fi,&stbuf,&timeout));
  1554. free_path(f,hdr_->nodeid,path);
  1555. }
  1556. if(!err)
  1557. {
  1558. pthread_mutex_lock(&f->lock);
  1559. update_stat(get_node(f,hdr_->nodeid),&stbuf);
  1560. pthread_mutex_unlock(&f->lock);
  1561. set_stat(f,hdr_->nodeid,&stbuf);
  1562. fuse_reply_attr(req,&stbuf,timeout.attr);
  1563. }
  1564. else
  1565. {
  1566. fuse_reply_err(req,err);
  1567. }
  1568. }
  1569. static
  1570. void
  1571. fuse_lib_access(fuse_req_t req,
  1572. struct fuse_in_header *hdr_)
  1573. {
  1574. int err;
  1575. char *path;
  1576. struct fuse *f;
  1577. struct fuse_access_in *arg;
  1578. arg = (fuse_access_in*)fuse_hdr_arg(hdr_);
  1579. f = req_fuse_prepare(req);
  1580. err = get_path(f,hdr_->nodeid,&path);
  1581. if(!err)
  1582. {
  1583. err = f->fs->op.access(path,arg->mask);
  1584. free_path(f,hdr_->nodeid,path);
  1585. }
  1586. fuse_reply_err(req,err);
  1587. }
  1588. static
  1589. void
  1590. fuse_lib_readlink(fuse_req_t req,
  1591. struct fuse_in_header *hdr_)
  1592. {
  1593. int err;
  1594. char *path;
  1595. struct fuse *f;
  1596. char linkname[PATH_MAX + 1];
  1597. f = req_fuse_prepare(req);
  1598. err = get_path(f,hdr_->nodeid,&path);
  1599. if(!err)
  1600. {
  1601. err = f->fs->op.readlink(path,linkname,sizeof(linkname));
  1602. free_path(f,hdr_->nodeid,path);
  1603. }
  1604. if(!err)
  1605. {
  1606. linkname[PATH_MAX] = '\0';
  1607. fuse_reply_readlink(req,linkname);
  1608. }
  1609. else
  1610. {
  1611. fuse_reply_err(req,err);
  1612. }
  1613. }
  1614. static
  1615. void
  1616. fuse_lib_mknod(fuse_req_t req,
  1617. struct fuse_in_header *hdr_)
  1618. {
  1619. int err;
  1620. char *path;
  1621. struct fuse *f;
  1622. const char* name;
  1623. struct fuse_entry_param e;
  1624. struct fuse_mknod_in *arg;
  1625. arg = (fuse_mknod_in*)fuse_hdr_arg(hdr_);
  1626. name = (const char*)PARAM(arg);
  1627. if(req->f->conn.proto_minor >= 12)
  1628. req->ctx.umask = arg->umask;
  1629. else
  1630. name = (char*)arg + FUSE_COMPAT_MKNOD_IN_SIZE;
  1631. f = req_fuse_prepare(req);
  1632. err = get_path_name(f,hdr_->nodeid,name,&path);
  1633. if(!err)
  1634. {
  1635. err = -ENOSYS;
  1636. if(S_ISREG(arg->mode))
  1637. {
  1638. fuse_file_info_t fi;
  1639. memset(&fi,0,sizeof(fi));
  1640. fi.flags = O_CREAT | O_EXCL | O_WRONLY;
  1641. err = f->fs->op.create(path,arg->mode,&fi);
  1642. if(!err)
  1643. {
  1644. err = lookup_path(f,hdr_->nodeid,name,path,&e,&fi);
  1645. f->fs->op.release(&fi);
  1646. }
  1647. }
  1648. if(err == -ENOSYS)
  1649. {
  1650. err = f->fs->op.mknod(path,arg->mode,arg->rdev);
  1651. if(!err)
  1652. err = lookup_path(f,hdr_->nodeid,name,path,&e,NULL);
  1653. }
  1654. free_path(f,hdr_->nodeid,path);
  1655. }
  1656. reply_entry(req,&e,err);
  1657. }
  1658. static
  1659. void
  1660. fuse_lib_mkdir(fuse_req_t req,
  1661. struct fuse_in_header *hdr_)
  1662. {
  1663. int err;
  1664. char *path;
  1665. struct fuse *f;
  1666. const char *name;
  1667. struct fuse_entry_param e;
  1668. struct fuse_mkdir_in *arg;
  1669. arg = (fuse_mkdir_in*)fuse_hdr_arg(hdr_);
  1670. name = (const char*)PARAM(arg);
  1671. if(req->f->conn.proto_minor >= 12)
  1672. req->ctx.umask = arg->umask;
  1673. f = req_fuse_prepare(req);
  1674. err = get_path_name(f,hdr_->nodeid,name,&path);
  1675. if(!err)
  1676. {
  1677. err = f->fs->op.mkdir(path,arg->mode);
  1678. if(!err)
  1679. err = lookup_path(f,hdr_->nodeid,name,path,&e,NULL);
  1680. free_path(f,hdr_->nodeid,path);
  1681. }
  1682. reply_entry(req,&e,err);
  1683. }
  1684. static
  1685. void
  1686. fuse_lib_unlink(fuse_req_t req,
  1687. struct fuse_in_header *hdr_)
  1688. {
  1689. int err;
  1690. char *path;
  1691. struct fuse *f;
  1692. const char *name;
  1693. node_t *wnode;
  1694. name = (const char*)PARAM(hdr_);
  1695. f = req_fuse_prepare(req);
  1696. err = get_path_wrlock(f,hdr_->nodeid,name,&path,&wnode);
  1697. if(!err)
  1698. {
  1699. pthread_mutex_lock(&f->lock);
  1700. if(node_open(wnode))
  1701. err = f->fs->op.prepare_hide(path,&wnode->hidden_fh);
  1702. pthread_mutex_unlock(&f->lock);
  1703. err = f->fs->op.unlink(path);
  1704. if(!err)
  1705. remove_node(f,hdr_->nodeid,name);
  1706. free_path_wrlock(f,hdr_->nodeid,wnode,path);
  1707. }
  1708. fuse_reply_err(req,err);
  1709. }
  1710. static
  1711. void
  1712. fuse_lib_rmdir(fuse_req_t req,
  1713. struct fuse_in_header *hdr_)
  1714. {
  1715. int err;
  1716. char *path;
  1717. struct fuse *f;
  1718. const char *name;
  1719. node_t *wnode;
  1720. name = (const char*)PARAM(hdr_);
  1721. f = req_fuse_prepare(req);
  1722. err = get_path_wrlock(f,hdr_->nodeid,name,&path,&wnode);
  1723. if(!err)
  1724. {
  1725. err = f->fs->op.rmdir(path);
  1726. if(!err)
  1727. remove_node(f,hdr_->nodeid,name);
  1728. free_path_wrlock(f,hdr_->nodeid,wnode,path);
  1729. }
  1730. fuse_reply_err(req,err);
  1731. }
  1732. static
  1733. void
  1734. fuse_lib_symlink(fuse_req_t req_,
  1735. struct fuse_in_header *hdr_)
  1736. {
  1737. int rv;
  1738. char *path;
  1739. struct fuse *f;
  1740. const char *name;
  1741. const char *linkname;
  1742. struct fuse_entry_param e = {0};
  1743. name = (const char*)fuse_hdr_arg(hdr_);
  1744. linkname = (name + strlen(name) + 1);
  1745. f = req_fuse_prepare(req_);
  1746. rv = get_path_name(f,hdr_->nodeid,name,&path);
  1747. if(rv == 0)
  1748. {
  1749. rv = f->fs->op.symlink(linkname,path,&e.attr,&e.timeout);
  1750. if(rv == 0)
  1751. rv = set_path_info(f,hdr_->nodeid,name,&e);
  1752. free_path(f,hdr_->nodeid,path);
  1753. }
  1754. reply_entry(req_,&e,rv);
  1755. }
  1756. static
  1757. void
  1758. fuse_lib_rename(fuse_req_t req,
  1759. struct fuse_in_header *hdr_)
  1760. {
  1761. int err;
  1762. struct fuse *f;
  1763. char *oldpath;
  1764. char *newpath;
  1765. const char *oldname;
  1766. const char *newname;
  1767. node_t *wnode1;
  1768. node_t *wnode2;
  1769. struct fuse_rename_in *arg;
  1770. arg = (fuse_rename_in*)fuse_hdr_arg(hdr_);
  1771. oldname = (const char*)PARAM(arg);
  1772. newname = (oldname + strlen(oldname) + 1);
  1773. f = req_fuse_prepare(req);
  1774. err = get_path2(f,hdr_->nodeid,oldname,arg->newdir,newname,
  1775. &oldpath,&newpath,&wnode1,&wnode2);
  1776. if(!err)
  1777. {
  1778. pthread_mutex_lock(&f->lock);
  1779. if(node_open(wnode2))
  1780. err = f->fs->op.prepare_hide(newpath,&wnode2->hidden_fh);
  1781. pthread_mutex_unlock(&f->lock);
  1782. err = f->fs->op.rename(oldpath,newpath);
  1783. if(!err)
  1784. err = rename_node(f,hdr_->nodeid,oldname,arg->newdir,newname);
  1785. free_path2(f,hdr_->nodeid,arg->newdir,wnode1,wnode2,oldpath,newpath);
  1786. }
  1787. fuse_reply_err(req,err);
  1788. }
  1789. static
  1790. void
  1791. fuse_lib_link(fuse_req_t req,
  1792. struct fuse_in_header *hdr_)
  1793. {
  1794. int rv;
  1795. char *oldpath;
  1796. char *newpath;
  1797. struct fuse *f;
  1798. const char *newname;
  1799. struct fuse_link_in *arg;
  1800. struct fuse_entry_param e = {0};
  1801. arg = (fuse_link_in*)fuse_hdr_arg(hdr_);
  1802. newname = (const char*)PARAM(arg);
  1803. f = req_fuse_prepare(req);
  1804. rv = get_path2(f,
  1805. arg->oldnodeid,NULL,
  1806. hdr_->nodeid,newname,
  1807. &oldpath,&newpath,NULL,NULL);
  1808. if(!rv)
  1809. {
  1810. rv = f->fs->op.link(oldpath,newpath,&e.attr,&e.timeout);
  1811. if(rv == 0)
  1812. rv = set_path_info(f,hdr_->nodeid,newname,&e);
  1813. free_path2(f,arg->oldnodeid,hdr_->nodeid,NULL,NULL,oldpath,newpath);
  1814. }
  1815. reply_entry(req,&e,rv);
  1816. }
  1817. static
  1818. void
  1819. fuse_do_release(struct fuse *f,
  1820. uint64_t ino,
  1821. fuse_file_info_t *fi)
  1822. {
  1823. uint64_t fh;
  1824. node_t *node;
  1825. fh = 0;
  1826. f->fs->op.release(fi);
  1827. pthread_mutex_lock(&f->lock);
  1828. {
  1829. node = get_node(f,ino);
  1830. assert(node->open_count > 0);
  1831. node->open_count--;
  1832. if(node->hidden_fh && (node->open_count == 0))
  1833. {
  1834. fh = node->hidden_fh;
  1835. node->hidden_fh = 0;
  1836. }
  1837. }
  1838. pthread_mutex_unlock(&f->lock);
  1839. if(fh)
  1840. f->fs->op.free_hide(fh);
  1841. }
  1842. static
  1843. void
  1844. fuse_lib_create(fuse_req_t req,
  1845. struct fuse_in_header *hdr_)
  1846. {
  1847. int err;
  1848. char *path;
  1849. struct fuse *f;
  1850. const char *name;
  1851. fuse_file_info_t ffi = {0};
  1852. struct fuse_entry_param e;
  1853. struct fuse_create_in *arg;
  1854. arg = (fuse_create_in*)fuse_hdr_arg(hdr_);
  1855. name = (const char*)PARAM(arg);
  1856. ffi.flags = arg->flags;
  1857. if(req->f->conn.proto_minor >= 12)
  1858. req->ctx.umask = arg->umask;
  1859. else
  1860. name = (char*)arg + sizeof(struct fuse_open_in);
  1861. f = req_fuse_prepare(req);
  1862. err = get_path_name(f,hdr_->nodeid,name,&path);
  1863. if(!err)
  1864. {
  1865. err = f->fs->op.create(path,arg->mode,&ffi);
  1866. if(!err)
  1867. {
  1868. err = lookup_path(f,hdr_->nodeid,name,path,&e,&ffi);
  1869. if(err)
  1870. {
  1871. f->fs->op.release(&ffi);
  1872. }
  1873. else if(!S_ISREG(e.attr.st_mode))
  1874. {
  1875. err = -EIO;
  1876. f->fs->op.release(&ffi);
  1877. forget_node(f,e.ino,1);
  1878. }
  1879. }
  1880. }
  1881. if(!err)
  1882. {
  1883. pthread_mutex_lock(&f->lock);
  1884. get_node(f,e.ino)->open_count++;
  1885. pthread_mutex_unlock(&f->lock);
  1886. if(fuse_reply_create(req,&e,&ffi) == -ENOENT)
  1887. {
  1888. /* The open syscall was interrupted,so it
  1889. must be cancelled */
  1890. fuse_do_release(f,e.ino,&ffi);
  1891. forget_node(f,e.ino,1);
  1892. }
  1893. }
  1894. else
  1895. {
  1896. fuse_reply_err(req,err);
  1897. }
  1898. free_path(f,hdr_->nodeid,path);
  1899. }
  1900. static
  1901. void
  1902. open_auto_cache(struct fuse *f,
  1903. uint64_t ino,
  1904. const char *path,
  1905. fuse_file_info_t *fi)
  1906. {
  1907. node_t *node;
  1908. fuse_timeouts_t timeout;
  1909. pthread_mutex_lock(&f->lock);
  1910. node = get_node(f,ino);
  1911. if(node->is_stat_cache_valid)
  1912. {
  1913. int err;
  1914. struct stat stbuf;
  1915. pthread_mutex_unlock(&f->lock);
  1916. err = f->fs->op.fgetattr(fi,&stbuf,&timeout);
  1917. pthread_mutex_lock(&f->lock);
  1918. if(!err)
  1919. update_stat(node,&stbuf);
  1920. else
  1921. node->is_stat_cache_valid = 0;
  1922. }
  1923. if(node->is_stat_cache_valid)
  1924. fi->keep_cache = 1;
  1925. node->is_stat_cache_valid = 1;
  1926. pthread_mutex_unlock(&f->lock);
  1927. }
  1928. static
  1929. void
  1930. fuse_lib_open(fuse_req_t req,
  1931. struct fuse_in_header *hdr_)
  1932. {
  1933. int err;
  1934. char *path;
  1935. struct fuse *f;
  1936. fuse_file_info_t ffi = {0};
  1937. struct fuse_open_in *arg;
  1938. arg = (fuse_open_in*)fuse_hdr_arg(hdr_);
  1939. ffi.flags = arg->flags;
  1940. f = req_fuse_prepare(req);
  1941. err = get_path(f,hdr_->nodeid,&path);
  1942. if(!err)
  1943. {
  1944. err = f->fs->op.open(path,&ffi);
  1945. if(!err)
  1946. {
  1947. if(ffi.auto_cache)
  1948. open_auto_cache(f,hdr_->nodeid,path,&ffi);
  1949. }
  1950. }
  1951. if(!err)
  1952. {
  1953. pthread_mutex_lock(&f->lock);
  1954. get_node(f,hdr_->nodeid)->open_count++;
  1955. pthread_mutex_unlock(&f->lock);
  1956. /* The open syscall was interrupted,so it must be cancelled */
  1957. if(fuse_reply_open(req,&ffi) == -ENOENT)
  1958. fuse_do_release(f,hdr_->nodeid,&ffi);
  1959. }
  1960. else
  1961. {
  1962. fuse_reply_err(req,err);
  1963. }
  1964. free_path(f,hdr_->nodeid,path);
  1965. }
  1966. static
  1967. void
  1968. fuse_lib_read(fuse_req_t req,
  1969. struct fuse_in_header *hdr_)
  1970. {
  1971. int res;
  1972. struct fuse *f;
  1973. fuse_file_info_t ffi = {0};
  1974. struct fuse_read_in *arg;
  1975. fuse_msgbuf_t *msgbuf;
  1976. arg = (fuse_read_in*)fuse_hdr_arg(hdr_);
  1977. ffi.fh = arg->fh;
  1978. if(req->f->conn.proto_minor >= 9)
  1979. {
  1980. ffi.flags = arg->flags;
  1981. ffi.lock_owner = arg->lock_owner;
  1982. }
  1983. f = req_fuse_prepare(req);
  1984. msgbuf = msgbuf_alloc_page_aligned();
  1985. res = f->fs->op.read(&ffi,msgbuf->mem,arg->size,arg->offset);
  1986. if(res >= 0)
  1987. fuse_reply_data(req,msgbuf->mem,res);
  1988. else
  1989. fuse_reply_err(req,res);
  1990. msgbuf_free(msgbuf);
  1991. }
  1992. static
  1993. void
  1994. fuse_lib_write(fuse_req_t req,
  1995. struct fuse_in_header *hdr_)
  1996. {
  1997. int res;
  1998. char *data;
  1999. struct fuse *f;
  2000. fuse_file_info_t ffi = {0};
  2001. struct fuse_write_in *arg;
  2002. arg = (fuse_write_in*)fuse_hdr_arg(hdr_);
  2003. ffi.fh = arg->fh;
  2004. ffi.writepage = !!(arg->write_flags & 1);
  2005. if(req->f->conn.proto_minor < 9)
  2006. {
  2007. data = ((char*)arg) + FUSE_COMPAT_WRITE_IN_SIZE;
  2008. }
  2009. else
  2010. {
  2011. ffi.flags = arg->flags;
  2012. ffi.lock_owner = arg->lock_owner;
  2013. data = (char*)PARAM(arg);
  2014. }
  2015. f = req_fuse_prepare(req);
  2016. res = f->fs->op.write(&ffi,data,arg->size,arg->offset);
  2017. free_path(f,hdr_->nodeid,NULL);
  2018. if(res >= 0)
  2019. fuse_reply_write(req,res);
  2020. else
  2021. fuse_reply_err(req,res);
  2022. }
  2023. static
  2024. void
  2025. fuse_lib_fsync(fuse_req_t req,
  2026. struct fuse_in_header *hdr_)
  2027. {
  2028. int err;
  2029. struct fuse *f;
  2030. struct fuse_fsync_in *arg;
  2031. fuse_file_info_t ffi = {0};
  2032. arg = (fuse_fsync_in*)fuse_hdr_arg(hdr_);
  2033. ffi.fh = arg->fh;
  2034. f = req_fuse_prepare(req);
  2035. err = f->fs->op.fsync(&ffi,
  2036. !!(arg->fsync_flags & 1));
  2037. fuse_reply_err(req,err);
  2038. }
  2039. static
  2040. struct fuse_dh*
  2041. get_dirhandle(const fuse_file_info_t *llfi,
  2042. fuse_file_info_t *fi)
  2043. {
  2044. struct fuse_dh *dh = (struct fuse_dh *)(uintptr_t)llfi->fh;
  2045. memset(fi,0,sizeof(fuse_file_info_t));
  2046. fi->fh = dh->fh;
  2047. return dh;
  2048. }
  2049. static
  2050. void
  2051. fuse_lib_opendir(fuse_req_t req,
  2052. struct fuse_in_header *hdr_)
  2053. {
  2054. int err;
  2055. char *path;
  2056. struct fuse_dh *dh;
  2057. fuse_file_info_t llffi = {0};
  2058. fuse_file_info_t ffi = {0};
  2059. struct fuse *f;
  2060. struct fuse_open_in *arg;
  2061. arg = (fuse_open_in*)fuse_hdr_arg(hdr_);
  2062. llffi.flags = arg->flags;
  2063. f = req_fuse_prepare(req);
  2064. dh = (struct fuse_dh *)calloc(1,sizeof(struct fuse_dh));
  2065. if(dh == NULL)
  2066. {
  2067. fuse_reply_err(req,ENOMEM);
  2068. return;
  2069. }
  2070. fuse_dirents_init(&dh->d);
  2071. fuse_mutex_init(&dh->lock);
  2072. llffi.fh = (uintptr_t)dh;
  2073. ffi.flags = llffi.flags;
  2074. err = get_path(f,hdr_->nodeid,&path);
  2075. if(!err)
  2076. {
  2077. err = f->fs->op.opendir(path,&ffi);
  2078. dh->fh = ffi.fh;
  2079. llffi.keep_cache = ffi.keep_cache;
  2080. llffi.cache_readdir = ffi.cache_readdir;
  2081. }
  2082. if(!err)
  2083. {
  2084. if(fuse_reply_open(req,&llffi) == -ENOENT)
  2085. {
  2086. /* The opendir syscall was interrupted,so it
  2087. must be cancelled */
  2088. f->fs->op.releasedir(&ffi);
  2089. pthread_mutex_destroy(&dh->lock);
  2090. free(dh);
  2091. }
  2092. }
  2093. else
  2094. {
  2095. fuse_reply_err(req,err);
  2096. pthread_mutex_destroy(&dh->lock);
  2097. free(dh);
  2098. }
  2099. free_path(f,hdr_->nodeid,path);
  2100. }
  2101. static
  2102. size_t
  2103. readdir_buf_size(fuse_dirents_t *d_,
  2104. size_t size_,
  2105. off_t off_)
  2106. {
  2107. if(off_ >= kv_size(d_->offs))
  2108. return 0;
  2109. if((kv_A(d_->offs,off_) + size_) > kv_size(d_->data))
  2110. return (kv_size(d_->data) - kv_A(d_->offs,off_));
  2111. return size_;
  2112. }
  2113. static
  2114. char*
  2115. readdir_buf(fuse_dirents_t *d_,
  2116. off_t off_)
  2117. {
  2118. size_t i;
  2119. i = kv_A(d_->offs,off_);
  2120. return &kv_A(d_->data,i);
  2121. }
  2122. static
  2123. void
  2124. fuse_lib_readdir(fuse_req_t req_,
  2125. struct fuse_in_header *hdr_)
  2126. {
  2127. int rv;
  2128. size_t size;
  2129. struct fuse *f;
  2130. fuse_dirents_t *d;
  2131. struct fuse_dh *dh;
  2132. fuse_file_info_t ffi = {0};
  2133. fuse_file_info_t llffi = {0};
  2134. struct fuse_read_in *arg;
  2135. arg = (fuse_read_in*)fuse_hdr_arg(hdr_);
  2136. size = arg->size;
  2137. llffi.fh = arg->fh;
  2138. f = req_fuse_prepare(req_);
  2139. dh = get_dirhandle(&llffi,&ffi);
  2140. d = &dh->d;
  2141. pthread_mutex_lock(&dh->lock);
  2142. rv = 0;
  2143. if((arg->offset == 0) || (kv_size(d->data) == 0))
  2144. rv = f->fs->op.readdir(&ffi,d);
  2145. if(rv)
  2146. {
  2147. fuse_reply_err(req_,rv);
  2148. goto out;
  2149. }
  2150. size = readdir_buf_size(d,size,arg->offset);
  2151. fuse_reply_buf(req_,
  2152. readdir_buf(d,arg->offset),
  2153. size);
  2154. out:
  2155. pthread_mutex_unlock(&dh->lock);
  2156. }
  2157. static
  2158. void
  2159. fuse_lib_readdir_plus(fuse_req_t req_,
  2160. struct fuse_in_header *hdr_)
  2161. {
  2162. int rv;
  2163. size_t size;
  2164. struct fuse *f;
  2165. fuse_dirents_t *d;
  2166. struct fuse_dh *dh;
  2167. fuse_file_info_t ffi = {0};
  2168. fuse_file_info_t llffi = {0};
  2169. struct fuse_read_in *arg;
  2170. arg = (fuse_read_in*)fuse_hdr_arg(hdr_);
  2171. size = arg->size;
  2172. llffi.fh = arg->fh;
  2173. f = req_fuse_prepare(req_);
  2174. dh = get_dirhandle(&llffi,&ffi);
  2175. d = &dh->d;
  2176. pthread_mutex_lock(&dh->lock);
  2177. rv = 0;
  2178. if((arg->offset == 0) || (kv_size(d->data) == 0))
  2179. rv = f->fs->op.readdir_plus(&ffi,d);
  2180. if(rv)
  2181. {
  2182. fuse_reply_err(req_,rv);
  2183. goto out;
  2184. }
  2185. size = readdir_buf_size(d,size,arg->offset);
  2186. fuse_reply_buf(req_,
  2187. readdir_buf(d,arg->offset),
  2188. size);
  2189. out:
  2190. pthread_mutex_unlock(&dh->lock);
  2191. }
  2192. static
  2193. void
  2194. fuse_lib_releasedir(fuse_req_t req_,
  2195. struct fuse_in_header *hdr_)
  2196. {
  2197. struct fuse *f;
  2198. struct fuse_dh *dh;
  2199. fuse_file_info_t ffi;
  2200. fuse_file_info_t llffi = {0};
  2201. struct fuse_release_in *arg;
  2202. arg = (fuse_release_in*)fuse_hdr_arg(hdr_);
  2203. llffi.fh = arg->fh;
  2204. llffi.flags = arg->flags;
  2205. f = req_fuse_prepare(req_);
  2206. dh = get_dirhandle(&llffi,&ffi);
  2207. f->fs->op.releasedir(&ffi);
  2208. /* Done to keep race condition between last readdir reply and the unlock */
  2209. pthread_mutex_lock(&dh->lock);
  2210. pthread_mutex_unlock(&dh->lock);
  2211. pthread_mutex_destroy(&dh->lock);
  2212. fuse_dirents_free(&dh->d);
  2213. free(dh);
  2214. fuse_reply_err(req_,0);
  2215. }
  2216. static
  2217. void
  2218. fuse_lib_fsyncdir(fuse_req_t req,
  2219. struct fuse_in_header *hdr_)
  2220. {
  2221. int err;
  2222. struct fuse *f;
  2223. fuse_file_info_t ffi;
  2224. fuse_file_info_t llffi = {0};
  2225. struct fuse_fsync_in *arg;
  2226. arg = (fuse_fsync_in*)fuse_hdr_arg(hdr_);
  2227. llffi.fh = arg->fh;
  2228. f = req_fuse_prepare(req);
  2229. get_dirhandle(&llffi,&ffi);
  2230. err = f->fs->op.fsyncdir(&ffi,
  2231. !!(arg->fsync_flags & FUSE_FSYNC_FDATASYNC));
  2232. fuse_reply_err(req,err);
  2233. }
  2234. static
  2235. void
  2236. fuse_lib_statfs(fuse_req_t req,
  2237. struct fuse_in_header *hdr_)
  2238. {
  2239. int err = 0;
  2240. char *path = NULL;
  2241. struct fuse *f;
  2242. struct statvfs buf = {0};
  2243. f = req_fuse_prepare(req);
  2244. if(hdr_->nodeid)
  2245. err = get_path(f,hdr_->nodeid,&path);
  2246. if(!err)
  2247. {
  2248. err = f->fs->op.statfs(path ? path : "/",&buf);
  2249. free_path(f,hdr_->nodeid,path);
  2250. }
  2251. if(!err)
  2252. fuse_reply_statfs(req,&buf);
  2253. else
  2254. fuse_reply_err(req,err);
  2255. }
  2256. static
  2257. void
  2258. fuse_lib_setxattr(fuse_req_t req,
  2259. struct fuse_in_header *hdr_)
  2260. {
  2261. int err;
  2262. char *path;
  2263. const char *name;
  2264. const char *value;
  2265. struct fuse *f;
  2266. struct fuse_setxattr_in *arg;
  2267. arg = (fuse_setxattr_in*)fuse_hdr_arg(hdr_);
  2268. if((req->f->conn.capable & FUSE_SETXATTR_EXT) && (req->f->conn.want & FUSE_SETXATTR_EXT))
  2269. name = (const char*)PARAM(arg);
  2270. else
  2271. name = (((char*)arg) + FUSE_COMPAT_SETXATTR_IN_SIZE);
  2272. value = (name + strlen(name) + 1);
  2273. f = req_fuse_prepare(req);
  2274. err = get_path(f,hdr_->nodeid,&path);
  2275. if(!err)
  2276. {
  2277. err = f->fs->op.setxattr(path,name,value,arg->size,arg->flags);
  2278. free_path(f,hdr_->nodeid,path);
  2279. }
  2280. fuse_reply_err(req,err);
  2281. }
  2282. static
  2283. int
  2284. common_getxattr(struct fuse *f,
  2285. fuse_req_t req,
  2286. uint64_t ino,
  2287. const char *name,
  2288. char *value,
  2289. size_t size)
  2290. {
  2291. int err;
  2292. char *path;
  2293. err = get_path(f,ino,&path);
  2294. if(!err)
  2295. {
  2296. err = f->fs->op.getxattr(path,name,value,size);
  2297. free_path(f,ino,path);
  2298. }
  2299. return err;
  2300. }
  2301. static
  2302. void
  2303. fuse_lib_getxattr(fuse_req_t req,
  2304. struct fuse_in_header *hdr_)
  2305. {
  2306. int res;
  2307. struct fuse *f;
  2308. const char* name;
  2309. struct fuse_getxattr_in *arg;
  2310. arg = (fuse_getxattr_in*)fuse_hdr_arg(hdr_);
  2311. name = (const char*)PARAM(arg);
  2312. f = req_fuse_prepare(req);
  2313. if(arg->size)
  2314. {
  2315. char *value = (char*)malloc(arg->size);
  2316. if(value == NULL)
  2317. {
  2318. fuse_reply_err(req,ENOMEM);
  2319. return;
  2320. }
  2321. res = common_getxattr(f,req,hdr_->nodeid,name,value,arg->size);
  2322. if(res > 0)
  2323. fuse_reply_buf(req,value,res);
  2324. else
  2325. fuse_reply_err(req,res);
  2326. free(value);
  2327. }
  2328. else
  2329. {
  2330. res = common_getxattr(f,req,hdr_->nodeid,name,NULL,0);
  2331. if(res >= 0)
  2332. fuse_reply_xattr(req,res);
  2333. else
  2334. fuse_reply_err(req,res);
  2335. }
  2336. }
  2337. static
  2338. int
  2339. common_listxattr(struct fuse *f,
  2340. fuse_req_t req,
  2341. uint64_t ino,
  2342. char *list,
  2343. size_t size)
  2344. {
  2345. char *path;
  2346. int err;
  2347. err = get_path(f,ino,&path);
  2348. if(!err)
  2349. {
  2350. err = f->fs->op.listxattr(path,list,size);
  2351. free_path(f,ino,path);
  2352. }
  2353. return err;
  2354. }
  2355. static
  2356. void
  2357. fuse_lib_listxattr(fuse_req_t req,
  2358. struct fuse_in_header *hdr_)
  2359. {
  2360. int res;
  2361. struct fuse *f;
  2362. struct fuse_getxattr_in *arg;
  2363. arg = (fuse_getxattr_in*)fuse_hdr_arg(hdr_);
  2364. f = req_fuse_prepare(req);
  2365. if(arg->size)
  2366. {
  2367. char *list = (char*)malloc(arg->size);
  2368. if(list == NULL)
  2369. {
  2370. fuse_reply_err(req,ENOMEM);
  2371. return;
  2372. }
  2373. res = common_listxattr(f,req,hdr_->nodeid,list,arg->size);
  2374. if(res > 0)
  2375. fuse_reply_buf(req,list,res);
  2376. else
  2377. fuse_reply_err(req,res);
  2378. free(list);
  2379. }
  2380. else
  2381. {
  2382. res = common_listxattr(f,req,hdr_->nodeid,NULL,0);
  2383. if(res >= 0)
  2384. fuse_reply_xattr(req,res);
  2385. else
  2386. fuse_reply_err(req,res);
  2387. }
  2388. }
  2389. static
  2390. void
  2391. fuse_lib_removexattr(fuse_req_t req,
  2392. const struct fuse_in_header *hdr_)
  2393. {
  2394. int err;
  2395. char *path;
  2396. const char *name;
  2397. struct fuse *f;
  2398. name = (const char*)fuse_hdr_arg(hdr_);
  2399. f = req_fuse_prepare(req);
  2400. err = get_path(f,hdr_->nodeid,&path);
  2401. if(!err)
  2402. {
  2403. err = f->fs->op.removexattr(path,name);
  2404. free_path(f,hdr_->nodeid,path);
  2405. }
  2406. fuse_reply_err(req,err);
  2407. }
  2408. static
  2409. void
  2410. fuse_lib_copy_file_range(fuse_req_t req_,
  2411. const struct fuse_in_header *hdr_)
  2412. {
  2413. ssize_t rv;
  2414. struct fuse *f;
  2415. fuse_file_info_t ffi_in = {0};
  2416. fuse_file_info_t ffi_out = {0};
  2417. const struct fuse_copy_file_range_in *arg;
  2418. arg = (fuse_copy_file_range_in*)fuse_hdr_arg(hdr_);
  2419. ffi_in.fh = arg->fh_in;
  2420. ffi_out.fh = arg->fh_out;
  2421. f = req_fuse_prepare(req_);
  2422. rv = f->fs->op.copy_file_range(&ffi_in,
  2423. arg->off_in,
  2424. &ffi_out,
  2425. arg->off_out,
  2426. arg->len,
  2427. arg->flags);
  2428. if(rv >= 0)
  2429. fuse_reply_write(req_,rv);
  2430. else
  2431. fuse_reply_err(req_,rv);
  2432. }
  2433. static
  2434. void
  2435. fuse_lib_setupmapping(fuse_req_t req_,
  2436. const struct fuse_in_header *hdr_)
  2437. {
  2438. fuse_reply_err(req_,ENOSYS);
  2439. }
  2440. static
  2441. void
  2442. fuse_lib_removemapping(fuse_req_t req_,
  2443. const struct fuse_in_header *hdr_)
  2444. {
  2445. fuse_reply_err(req_,ENOSYS);
  2446. }
  2447. static
  2448. void
  2449. fuse_lib_syncfs(fuse_req_t req_,
  2450. const struct fuse_in_header *hdr_)
  2451. {
  2452. fuse_reply_err(req_,ENOSYS);
  2453. }
  2454. // TODO: This is just a copy of fuse_lib_create. Needs to be rewritten
  2455. // so a nameless node can be setup.
  2456. // name is always '/'
  2457. // nodeid is the base directory
  2458. static
  2459. void
  2460. fuse_lib_tmpfile(fuse_req_t req_,
  2461. const struct fuse_in_header *hdr_)
  2462. {
  2463. int err;
  2464. char *path;
  2465. struct fuse *f;
  2466. const char *name;
  2467. fuse_file_info_t ffi = {0};
  2468. struct fuse_entry_param e;
  2469. struct fuse_create_in *arg;
  2470. arg = (fuse_create_in*)fuse_hdr_arg(hdr_);
  2471. name = (const char*)PARAM(arg);
  2472. ffi.flags = arg->flags;
  2473. if(req_->f->conn.proto_minor >= 12)
  2474. req_->ctx.umask = arg->umask;
  2475. else
  2476. name = (char*)arg + sizeof(struct fuse_open_in);
  2477. f = req_fuse_prepare(req_);
  2478. err = get_path_name(f,hdr_->nodeid,name,&path);
  2479. if(!err)
  2480. {
  2481. err = f->fs->op.tmpfile(path,arg->mode,&ffi);
  2482. if(!err)
  2483. {
  2484. err = lookup_path(f,hdr_->nodeid,name,path,&e,&ffi);
  2485. if(err)
  2486. {
  2487. f->fs->op.release(&ffi);
  2488. }
  2489. else if(!S_ISREG(e.attr.st_mode))
  2490. {
  2491. err = -EIO;
  2492. f->fs->op.release(&ffi);
  2493. forget_node(f,e.ino,1);
  2494. }
  2495. }
  2496. }
  2497. if(!err)
  2498. {
  2499. pthread_mutex_lock(&f->lock);
  2500. get_node(f,e.ino)->open_count++;
  2501. pthread_mutex_unlock(&f->lock);
  2502. if(fuse_reply_create(req_,&e,&ffi) == -ENOENT)
  2503. {
  2504. /* The open syscall was interrupted,so it
  2505. must be cancelled */
  2506. fuse_do_release(f,e.ino,&ffi);
  2507. forget_node(f,e.ino,1);
  2508. }
  2509. }
  2510. else
  2511. {
  2512. fuse_reply_err(req_,err);
  2513. }
  2514. free_path(f,hdr_->nodeid,path);
  2515. }
  2516. static
  2517. lock_t*
  2518. locks_conflict(node_t *node,
  2519. const lock_t *lock)
  2520. {
  2521. lock_t *l;
  2522. for(l = node->locks; l; l = l->next)
  2523. if(l->owner != lock->owner &&
  2524. lock->start <= l->end && l->start <= lock->end &&
  2525. (l->type == F_WRLCK || lock->type == F_WRLCK))
  2526. break;
  2527. return l;
  2528. }
  2529. static
  2530. void
  2531. delete_lock(lock_t **lockp)
  2532. {
  2533. lock_t *l = *lockp;
  2534. *lockp = l->next;
  2535. free(l);
  2536. }
  2537. static
  2538. void
  2539. insert_lock(lock_t **pos,
  2540. lock_t *lock)
  2541. {
  2542. lock->next = *pos;
  2543. *pos = lock;
  2544. }
  2545. static
  2546. int
  2547. locks_insert(node_t *node,
  2548. lock_t *lock)
  2549. {
  2550. lock_t **lp;
  2551. lock_t *newl1 = NULL;
  2552. lock_t *newl2 = NULL;
  2553. if(lock->type != F_UNLCK || lock->start != 0 || lock->end != OFFSET_MAX)
  2554. {
  2555. newl1 = (lock_t*)malloc(sizeof(lock_t));
  2556. newl2 = (lock_t*)malloc(sizeof(lock_t));
  2557. if(!newl1 || !newl2)
  2558. {
  2559. free(newl1);
  2560. free(newl2);
  2561. return -ENOLCK;
  2562. }
  2563. }
  2564. for(lp = &node->locks; *lp;)
  2565. {
  2566. lock_t *l = *lp;
  2567. if(l->owner != lock->owner)
  2568. goto skip;
  2569. if(lock->type == l->type)
  2570. {
  2571. if(l->end < lock->start - 1)
  2572. goto skip;
  2573. if(lock->end < l->start - 1)
  2574. break;
  2575. if(l->start <= lock->start && lock->end <= l->end)
  2576. goto out;
  2577. if(l->start < lock->start)
  2578. lock->start = l->start;
  2579. if(lock->end < l->end)
  2580. lock->end = l->end;
  2581. goto delete_lock;
  2582. }
  2583. else
  2584. {
  2585. if(l->end < lock->start)
  2586. goto skip;
  2587. if(lock->end < l->start)
  2588. break;
  2589. if(lock->start <= l->start && l->end <= lock->end)
  2590. goto delete_lock;
  2591. if(l->end <= lock->end)
  2592. {
  2593. l->end = lock->start - 1;
  2594. goto skip;
  2595. }
  2596. if(lock->start <= l->start)
  2597. {
  2598. l->start = lock->end + 1;
  2599. break;
  2600. }
  2601. *newl2 = *l;
  2602. newl2->start = lock->end + 1;
  2603. l->end = lock->start - 1;
  2604. insert_lock(&l->next,newl2);
  2605. newl2 = NULL;
  2606. }
  2607. skip:
  2608. lp = &l->next;
  2609. continue;
  2610. delete_lock:
  2611. delete_lock(lp);
  2612. }
  2613. if(lock->type != F_UNLCK)
  2614. {
  2615. *newl1 = *lock;
  2616. insert_lock(lp,newl1);
  2617. newl1 = NULL;
  2618. }
  2619. out:
  2620. free(newl1);
  2621. free(newl2);
  2622. return 0;
  2623. }
  2624. static
  2625. void
  2626. flock_to_lock(struct flock *flock,
  2627. lock_t *lock)
  2628. {
  2629. memset(lock,0,sizeof(lock_t));
  2630. lock->type = flock->l_type;
  2631. lock->start = flock->l_start;
  2632. lock->end = flock->l_len ? flock->l_start + flock->l_len - 1 : OFFSET_MAX;
  2633. lock->pid = flock->l_pid;
  2634. }
  2635. static
  2636. void
  2637. lock_to_flock(lock_t *lock,
  2638. struct flock *flock)
  2639. {
  2640. flock->l_type = lock->type;
  2641. flock->l_start = lock->start;
  2642. flock->l_len = (lock->end == OFFSET_MAX) ? 0 : lock->end - lock->start + 1;
  2643. flock->l_pid = lock->pid;
  2644. }
  2645. static
  2646. int
  2647. fuse_flush_common(struct fuse *f,
  2648. fuse_req_t req,
  2649. uint64_t ino,
  2650. fuse_file_info_t *fi)
  2651. {
  2652. struct flock lock;
  2653. lock_t l;
  2654. int err;
  2655. int errlock;
  2656. memset(&lock,0,sizeof(lock));
  2657. lock.l_type = F_UNLCK;
  2658. lock.l_whence = SEEK_SET;
  2659. err = f->fs->op.flush(fi);
  2660. errlock = f->fs->op.lock(fi,F_SETLK,&lock);
  2661. if(errlock != -ENOSYS)
  2662. {
  2663. flock_to_lock(&lock,&l);
  2664. l.owner = fi->lock_owner;
  2665. pthread_mutex_lock(&f->lock);
  2666. locks_insert(get_node(f,ino),&l);
  2667. pthread_mutex_unlock(&f->lock);
  2668. /* if op.lock() is defined FLUSH is needed regardless
  2669. of op.flush() */
  2670. if(err == -ENOSYS)
  2671. err = 0;
  2672. }
  2673. return err;
  2674. }
  2675. static
  2676. void
  2677. fuse_lib_release(fuse_req_t req,
  2678. struct fuse_in_header *hdr_)
  2679. {
  2680. int err = 0;
  2681. struct fuse *f;
  2682. fuse_file_info_t ffi = {0};
  2683. struct fuse_release_in *arg;
  2684. arg = (fuse_release_in*)fuse_hdr_arg(hdr_);
  2685. ffi.fh = arg->fh;
  2686. ffi.flags = arg->flags;
  2687. if(req->f->conn.proto_minor >= 8)
  2688. {
  2689. ffi.flush = !!(arg->release_flags & FUSE_RELEASE_FLUSH);
  2690. ffi.lock_owner = arg->lock_owner;
  2691. }
  2692. else
  2693. {
  2694. ffi.flock_release = 1;
  2695. ffi.lock_owner = arg->lock_owner;
  2696. }
  2697. f = req_fuse_prepare(req);
  2698. if(ffi.flush)
  2699. {
  2700. err = fuse_flush_common(f,req,hdr_->nodeid,&ffi);
  2701. if(err == -ENOSYS)
  2702. err = 0;
  2703. }
  2704. fuse_do_release(f,hdr_->nodeid,&ffi);
  2705. fuse_reply_err(req,err);
  2706. }
  2707. static
  2708. void
  2709. fuse_lib_flush(fuse_req_t req,
  2710. struct fuse_in_header *hdr_)
  2711. {
  2712. int err;
  2713. struct fuse *f;
  2714. fuse_file_info_t ffi = {0};
  2715. struct fuse_flush_in *arg;
  2716. arg = (fuse_flush_in*)fuse_hdr_arg(hdr_);
  2717. ffi.fh = arg->fh;
  2718. ffi.flush = 1;
  2719. if(req->f->conn.proto_minor >= 7)
  2720. ffi.lock_owner = arg->lock_owner;
  2721. f = req_fuse_prepare(req);
  2722. err = fuse_flush_common(f,req,hdr_->nodeid,&ffi);
  2723. fuse_reply_err(req,err);
  2724. }
  2725. static
  2726. int
  2727. fuse_lock_common(fuse_req_t req,
  2728. uint64_t ino,
  2729. fuse_file_info_t *fi,
  2730. struct flock *lock,
  2731. int cmd)
  2732. {
  2733. int err;
  2734. struct fuse *f = req_fuse_prepare(req);
  2735. err = f->fs->op.lock(fi,cmd,lock);
  2736. return err;
  2737. }
  2738. static
  2739. void
  2740. convert_fuse_file_lock(const struct fuse_file_lock *fl,
  2741. struct flock *flock)
  2742. {
  2743. memset(flock, 0, sizeof(struct flock));
  2744. flock->l_type = fl->type;
  2745. flock->l_whence = SEEK_SET;
  2746. flock->l_start = fl->start;
  2747. if (fl->end == OFFSET_MAX)
  2748. flock->l_len = 0;
  2749. else
  2750. flock->l_len = fl->end - fl->start + 1;
  2751. flock->l_pid = fl->pid;
  2752. }
  2753. static
  2754. void
  2755. fuse_lib_getlk(fuse_req_t req,
  2756. const struct fuse_in_header *hdr_)
  2757. {
  2758. int err;
  2759. struct fuse *f;
  2760. lock_t lk;
  2761. struct flock flk;
  2762. lock_t *conflict;
  2763. fuse_file_info_t ffi = {0};
  2764. const struct fuse_lk_in *arg;
  2765. arg = (fuse_lk_in*)fuse_hdr_arg(hdr_);
  2766. ffi.fh = arg->fh;
  2767. ffi.lock_owner = arg->owner;
  2768. convert_fuse_file_lock(&arg->lk,&flk);
  2769. f = req_fuse(req);
  2770. flock_to_lock(&flk,&lk);
  2771. lk.owner = ffi.lock_owner;
  2772. pthread_mutex_lock(&f->lock);
  2773. conflict = locks_conflict(get_node(f,hdr_->nodeid),&lk);
  2774. if(conflict)
  2775. lock_to_flock(conflict,&flk);
  2776. pthread_mutex_unlock(&f->lock);
  2777. if(!conflict)
  2778. err = fuse_lock_common(req,hdr_->nodeid,&ffi,&flk,F_GETLK);
  2779. else
  2780. err = 0;
  2781. if(!err)
  2782. fuse_reply_lock(req,&flk);
  2783. else
  2784. fuse_reply_err(req,err);
  2785. }
  2786. static
  2787. void
  2788. fuse_lib_setlk(fuse_req_t req,
  2789. uint64_t ino,
  2790. fuse_file_info_t *fi,
  2791. struct flock *lock,
  2792. int sleep)
  2793. {
  2794. int err = fuse_lock_common(req,ino,fi,lock,
  2795. sleep ? F_SETLKW : F_SETLK);
  2796. if(!err)
  2797. {
  2798. struct fuse *f = req_fuse(req);
  2799. lock_t l;
  2800. flock_to_lock(lock,&l);
  2801. l.owner = fi->lock_owner;
  2802. pthread_mutex_lock(&f->lock);
  2803. locks_insert(get_node(f,ino),&l);
  2804. pthread_mutex_unlock(&f->lock);
  2805. }
  2806. fuse_reply_err(req,err);
  2807. }
  2808. static
  2809. void
  2810. fuse_lib_flock(fuse_req_t req,
  2811. uint64_t ino,
  2812. fuse_file_info_t *fi,
  2813. int op)
  2814. {
  2815. int err;
  2816. struct fuse *f = req_fuse_prepare(req);
  2817. err = f->fs->op.flock(fi,op);
  2818. fuse_reply_err(req,err);
  2819. }
  2820. static
  2821. void
  2822. fuse_lib_bmap(fuse_req_t req,
  2823. const struct fuse_in_header *hdr_)
  2824. {
  2825. int err;
  2826. char *path;
  2827. struct fuse *f;
  2828. uint64_t block;
  2829. const struct fuse_bmap_in *arg;
  2830. arg = (fuse_bmap_in*)fuse_hdr_arg(hdr_);
  2831. block = arg->block;
  2832. f = req_fuse_prepare(req);
  2833. err = get_path(f,hdr_->nodeid,&path);
  2834. if(!err)
  2835. {
  2836. err = f->fs->op.bmap(path,arg->blocksize,&block);
  2837. free_path(f,hdr_->nodeid,path);
  2838. }
  2839. if(!err)
  2840. fuse_reply_bmap(req,block);
  2841. else
  2842. fuse_reply_err(req,err);
  2843. }
  2844. static
  2845. void
  2846. fuse_lib_ioctl(fuse_req_t req,
  2847. const struct fuse_in_header *hdr_)
  2848. {
  2849. int err;
  2850. char *out_buf = NULL;
  2851. struct fuse *f = req_fuse_prepare(req);
  2852. fuse_file_info_t ffi;
  2853. fuse_file_info_t llffi = {0};
  2854. const void *in_buf;
  2855. uint32_t out_size;
  2856. const struct fuse_ioctl_in *arg;
  2857. arg = (fuse_ioctl_in*)fuse_hdr_arg(hdr_);
  2858. if((arg->flags & FUSE_IOCTL_DIR) && !(req->f->conn.want & FUSE_CAP_IOCTL_DIR))
  2859. {
  2860. fuse_reply_err(req,ENOTTY);
  2861. return;
  2862. }
  2863. if((sizeof(void*) == 4) &&
  2864. (req->f->conn.proto_minor >= 16) &&
  2865. !(arg->flags & FUSE_IOCTL_32BIT))
  2866. {
  2867. req->ioctl_64bit = 1;
  2868. }
  2869. llffi.fh = arg->fh;
  2870. out_size = arg->out_size;
  2871. in_buf = (arg->in_size ? PARAM(arg) : NULL);
  2872. err = -EPERM;
  2873. if(arg->flags & FUSE_IOCTL_UNRESTRICTED)
  2874. goto err;
  2875. if(arg->flags & FUSE_IOCTL_DIR)
  2876. get_dirhandle(&llffi,&ffi);
  2877. else
  2878. ffi = llffi;
  2879. if(out_size)
  2880. {
  2881. err = -ENOMEM;
  2882. out_buf = (char*)malloc(out_size);
  2883. if(!out_buf)
  2884. goto err;
  2885. }
  2886. assert(!arg->in_size || !out_size || arg->in_size == out_size);
  2887. if(out_buf)
  2888. memcpy(out_buf,in_buf,arg->in_size);
  2889. err = f->fs->op.ioctl(&ffi,
  2890. arg->cmd,
  2891. (void*)(uintptr_t)arg->arg,
  2892. arg->flags,
  2893. out_buf ?: (void *)in_buf,
  2894. &out_size);
  2895. if(err < 0)
  2896. goto err;
  2897. fuse_reply_ioctl(req,err,out_buf,out_size);
  2898. goto out;
  2899. err:
  2900. fuse_reply_err(req,err);
  2901. out:
  2902. free(out_buf);
  2903. }
  2904. static
  2905. void
  2906. fuse_lib_poll(fuse_req_t req,
  2907. const struct fuse_in_header *hdr_)
  2908. {
  2909. int err;
  2910. struct fuse *f = req_fuse_prepare(req);
  2911. unsigned revents = 0;
  2912. fuse_file_info_t ffi = {0};
  2913. fuse_pollhandle_t *ph = NULL;
  2914. const struct fuse_poll_in *arg;
  2915. arg = (fuse_poll_in*)fuse_hdr_arg(hdr_);
  2916. ffi.fh = arg->fh;
  2917. if(arg->flags & FUSE_POLL_SCHEDULE_NOTIFY)
  2918. {
  2919. ph = (fuse_pollhandle_t*)malloc(sizeof(fuse_pollhandle_t));
  2920. if(ph == NULL)
  2921. {
  2922. fuse_reply_err(req,ENOMEM);
  2923. return;
  2924. }
  2925. ph->kh = arg->kh;
  2926. ph->ch = req->ch;
  2927. ph->f = req->f;
  2928. }
  2929. err = f->fs->op.poll(&ffi,ph,&revents);
  2930. if(!err)
  2931. fuse_reply_poll(req,revents);
  2932. else
  2933. fuse_reply_err(req,err);
  2934. }
  2935. static
  2936. void
  2937. fuse_lib_fallocate(fuse_req_t req,
  2938. const struct fuse_in_header *hdr_)
  2939. {
  2940. int err;
  2941. struct fuse *f;
  2942. fuse_file_info_t ffi = {0};
  2943. const struct fuse_fallocate_in *arg;
  2944. arg = (fuse_fallocate_in*)fuse_hdr_arg(hdr_);
  2945. ffi.fh = arg->fh;
  2946. f = req_fuse_prepare(req);
  2947. err = f->fs->op.fallocate(&ffi,
  2948. arg->mode,
  2949. arg->offset,
  2950. arg->length);
  2951. fuse_reply_err(req,err);
  2952. }
  2953. static
  2954. int
  2955. remembered_node_cmp(const void *a_,
  2956. const void *b_)
  2957. {
  2958. const remembered_node_t *a = (const remembered_node_t*)a_;
  2959. const remembered_node_t *b = (const remembered_node_t*)b_;
  2960. return (a->time - b->time);
  2961. }
  2962. static
  2963. void
  2964. remembered_nodes_sort(struct fuse *f_)
  2965. {
  2966. pthread_mutex_lock(&f_->lock);
  2967. qsort(&kv_first(f_->remembered_nodes),
  2968. kv_size(f_->remembered_nodes),
  2969. sizeof(remembered_node_t),
  2970. remembered_node_cmp);
  2971. pthread_mutex_unlock(&f_->lock);
  2972. }
  2973. #define MAX_PRUNE 100
  2974. #define MAX_CHECK 1000
  2975. int
  2976. fuse_prune_some_remembered_nodes(struct fuse *f_,
  2977. int *offset_)
  2978. {
  2979. time_t now;
  2980. int pruned;
  2981. int checked;
  2982. pthread_mutex_lock(&f_->lock);
  2983. pruned = 0;
  2984. checked = 0;
  2985. now = current_time();
  2986. while(*offset_ < kv_size(f_->remembered_nodes))
  2987. {
  2988. time_t age;
  2989. remembered_node_t *fn = &kv_A(f_->remembered_nodes,*offset_);
  2990. if(pruned >= MAX_PRUNE)
  2991. break;
  2992. if(checked >= MAX_CHECK)
  2993. break;
  2994. checked++;
  2995. age = (now - fn->time);
  2996. if(f_->conf.remember > age)
  2997. break;
  2998. assert(fn->node->nlookup == 1);
  2999. /* Don't forget active directories */
  3000. if(fn->node->refctr > 1)
  3001. {
  3002. (*offset_)++;
  3003. continue;
  3004. }
  3005. fn->node->nlookup = 0;
  3006. unref_node(f_,fn->node);
  3007. kv_delete(f_->remembered_nodes,*offset_);
  3008. pruned++;
  3009. }
  3010. pthread_mutex_unlock(&f_->lock);
  3011. if((pruned < MAX_PRUNE) && (checked < MAX_CHECK))
  3012. *offset_ = -1;
  3013. return pruned;
  3014. }
  3015. #undef MAX_PRUNE
  3016. #undef MAX_CHECK
  3017. static
  3018. void
  3019. sleep_100ms(void)
  3020. {
  3021. const struct timespec ms100 = {0,100 * 1000000};
  3022. nanosleep(&ms100,NULL);
  3023. }
  3024. void
  3025. fuse_prune_remembered_nodes(struct fuse *f_)
  3026. {
  3027. int offset;
  3028. int pruned;
  3029. offset = 0;
  3030. pruned = 0;
  3031. for(;;)
  3032. {
  3033. pruned += fuse_prune_some_remembered_nodes(f_,&offset);
  3034. if(offset >= 0)
  3035. {
  3036. sleep_100ms();
  3037. continue;
  3038. }
  3039. break;
  3040. }
  3041. if(pruned > 0)
  3042. remembered_nodes_sort(f_);
  3043. }
  3044. static struct fuse_lowlevel_ops fuse_path_ops =
  3045. {
  3046. .access = fuse_lib_access,
  3047. .bmap = fuse_lib_bmap,
  3048. .copy_file_range = fuse_lib_copy_file_range,
  3049. .create = fuse_lib_create,
  3050. .destroy = fuse_lib_destroy,
  3051. .fallocate = fuse_lib_fallocate,
  3052. .flock = fuse_lib_flock,
  3053. .flush = fuse_lib_flush,
  3054. .forget = fuse_lib_forget,
  3055. .forget_multi = fuse_lib_forget_multi,
  3056. .fsync = fuse_lib_fsync,
  3057. .fsyncdir = fuse_lib_fsyncdir,
  3058. .getattr = fuse_lib_getattr,
  3059. .getlk = fuse_lib_getlk,
  3060. .getxattr = fuse_lib_getxattr,
  3061. .init = fuse_lib_init,
  3062. .ioctl = fuse_lib_ioctl,
  3063. .link = fuse_lib_link,
  3064. .listxattr = fuse_lib_listxattr,
  3065. .lookup = fuse_lib_lookup,
  3066. .mkdir = fuse_lib_mkdir,
  3067. .mknod = fuse_lib_mknod,
  3068. .open = fuse_lib_open,
  3069. .opendir = fuse_lib_opendir,
  3070. .poll = fuse_lib_poll,
  3071. .read = fuse_lib_read,
  3072. .readdir = fuse_lib_readdir,
  3073. .readdir_plus = fuse_lib_readdir_plus,
  3074. .readlink = fuse_lib_readlink,
  3075. .release = fuse_lib_release,
  3076. .releasedir = fuse_lib_releasedir,
  3077. .removemapping = fuse_lib_removemapping,
  3078. .removexattr = fuse_lib_removexattr,
  3079. .rename = fuse_lib_rename,
  3080. .retrieve_reply = NULL,
  3081. .rmdir = fuse_lib_rmdir,
  3082. .setattr = fuse_lib_setattr,
  3083. .setlk = fuse_lib_setlk,
  3084. .setupmapping = fuse_lib_setupmapping,
  3085. .setxattr = fuse_lib_setxattr,
  3086. .statfs = fuse_lib_statfs,
  3087. .symlink = fuse_lib_symlink,
  3088. .syncfs = fuse_lib_syncfs,
  3089. .tmpfile = fuse_lib_tmpfile,
  3090. .unlink = fuse_lib_unlink,
  3091. .write = fuse_lib_write,
  3092. };
  3093. int
  3094. fuse_notify_poll(fuse_pollhandle_t *ph)
  3095. {
  3096. return fuse_lowlevel_notify_poll(ph);
  3097. }
  3098. int
  3099. fuse_exited(struct fuse *f)
  3100. {
  3101. return fuse_session_exited(f->se);
  3102. }
  3103. struct fuse_session*
  3104. fuse_get_session(struct fuse *f)
  3105. {
  3106. return f->se;
  3107. }
  3108. void
  3109. fuse_exit(struct fuse *f)
  3110. {
  3111. f->se->exited = 1;
  3112. }
  3113. struct fuse_context*
  3114. fuse_get_context(void)
  3115. {
  3116. return &fuse_get_context_internal()->ctx;
  3117. }
  3118. enum {
  3119. KEY_HELP,
  3120. };
  3121. #define FUSE_LIB_OPT(t,p,v) { t,offsetof(struct fuse_config,p),v }
  3122. static const struct fuse_opt fuse_lib_opts[] =
  3123. {
  3124. FUSE_OPT_KEY("-h", KEY_HELP),
  3125. FUSE_OPT_KEY("--help", KEY_HELP),
  3126. FUSE_OPT_KEY("debug", FUSE_OPT_KEY_KEEP),
  3127. FUSE_OPT_KEY("-d", FUSE_OPT_KEY_KEEP),
  3128. FUSE_LIB_OPT("debug", debug,1),
  3129. FUSE_LIB_OPT("-d", debug,1),
  3130. FUSE_LIB_OPT("nogc", nogc,1),
  3131. FUSE_LIB_OPT("umask=", set_mode,1),
  3132. FUSE_LIB_OPT("umask=%o", umask,0),
  3133. FUSE_LIB_OPT("uid=", set_uid,1),
  3134. FUSE_LIB_OPT("uid=%d", uid,0),
  3135. FUSE_LIB_OPT("gid=", set_gid,1),
  3136. FUSE_LIB_OPT("gid=%d", gid,0),
  3137. FUSE_LIB_OPT("noforget", remember,-1),
  3138. FUSE_LIB_OPT("remember=%u", remember,0),
  3139. FUSE_OPT_END
  3140. };
  3141. static void fuse_lib_help(void)
  3142. {
  3143. fprintf(stderr,
  3144. " -o umask=M set file permissions (octal)\n"
  3145. " -o uid=N set file owner\n"
  3146. " -o gid=N set file group\n"
  3147. " -o noforget never forget cached inodes\n"
  3148. " -o remember=T remember cached inodes for T seconds (0s)\n"
  3149. " -o threads=NUM number of worker threads. 0 = autodetect.\n"
  3150. " Negative values autodetect then divide by\n"
  3151. " absolute value. default = 0\n"
  3152. "\n");
  3153. }
  3154. static
  3155. int
  3156. fuse_lib_opt_proc(void *data,
  3157. const char *arg,
  3158. int key,
  3159. struct fuse_args *outargs)
  3160. {
  3161. (void)arg; (void)outargs;
  3162. if(key == KEY_HELP)
  3163. {
  3164. struct fuse_config *conf = (struct fuse_config *)data;
  3165. fuse_lib_help();
  3166. conf->help = 1;
  3167. }
  3168. return 1;
  3169. }
  3170. int
  3171. fuse_is_lib_option(const char *opt)
  3172. {
  3173. return fuse_lowlevel_is_lib_option(opt) || fuse_opt_match(fuse_lib_opts,opt);
  3174. }
  3175. struct fuse_fs*
  3176. fuse_fs_new(const struct fuse_operations *op,
  3177. size_t op_size)
  3178. {
  3179. struct fuse_fs *fs;
  3180. if(sizeof(struct fuse_operations) < op_size)
  3181. {
  3182. fprintf(stderr,"fuse: warning: library too old,some operations may not not work\n");
  3183. op_size = sizeof(struct fuse_operations);
  3184. }
  3185. fs = (struct fuse_fs *)calloc(1,sizeof(struct fuse_fs));
  3186. if(!fs)
  3187. {
  3188. fprintf(stderr,"fuse: failed to allocate fuse_fs object\n");
  3189. return NULL;
  3190. }
  3191. if(op)
  3192. memcpy(&fs->op,op,op_size);
  3193. return fs;
  3194. }
  3195. static
  3196. int
  3197. node_table_init(struct node_table *t)
  3198. {
  3199. t->size = NODE_TABLE_MIN_SIZE;
  3200. t->array = (node_t **)calloc(1,sizeof(node_t *) * t->size);
  3201. if(t->array == NULL)
  3202. {
  3203. fprintf(stderr,"fuse: memory allocation failed\n");
  3204. return -1;
  3205. }
  3206. t->use = 0;
  3207. t->split = 0;
  3208. return 0;
  3209. }
  3210. static
  3211. struct fuse*
  3212. fuse_get_fuse_obj()
  3213. {
  3214. static struct fuse f = {0};
  3215. return &f;
  3216. }
  3217. static
  3218. void
  3219. metrics_log_nodes_info(struct fuse *f_,
  3220. FILE *file_)
  3221. {
  3222. char buf[1024];
  3223. char time_str[64];
  3224. struct tm tm;
  3225. struct timeval tv;
  3226. uint64_t sizeof_node;
  3227. float node_usage_ratio;
  3228. uint64_t node_slab_count;
  3229. uint64_t node_avail_objs;
  3230. uint64_t node_total_alloc_mem;
  3231. gettimeofday(&tv,NULL);
  3232. localtime_r(&tv.tv_sec,&tm);
  3233. strftime(time_str,sizeof(time_str),"%Y-%m-%dT%H:%M:%S.000%z",&tm);
  3234. sizeof_node = sizeof(node_t);
  3235. lfmp_t *lfmp;
  3236. lfmp = node_lfmp();
  3237. lfmp_lock(lfmp);
  3238. node_slab_count = fmp_slab_count(&lfmp->fmp);
  3239. node_usage_ratio = fmp_slab_usage_ratio(&lfmp->fmp);
  3240. node_avail_objs = fmp_avail_objs(&lfmp->fmp);
  3241. node_total_alloc_mem = fmp_total_allocated_memory(&lfmp->fmp);
  3242. lfmp_unlock(lfmp);
  3243. snprintf(buf,sizeof(buf),
  3244. "time: %s\n"
  3245. "sizeof(node): %" PRIu64 "\n"
  3246. "node id_table size: %" PRIu64 "\n"
  3247. "node id_table usage: %" PRIu64 "\n"
  3248. "node id_table total allocated memory: %" PRIu64 "\n"
  3249. "node name_table size: %" PRIu64 "\n"
  3250. "node name_table usage: %" PRIu64 "\n"
  3251. "node name_table total allocated memory: %" PRIu64 "\n"
  3252. "node memory pool slab count: %" PRIu64 "\n"
  3253. "node memory pool usage ratio: %f\n"
  3254. "node memory pool avail objs: %" PRIu64 "\n"
  3255. "node memory pool total allocated memory: %" PRIu64 "\n"
  3256. "msgbuf bufsize: %" PRIu64 "\n"
  3257. "msgbuf allocation count: %" PRIu64 "\n"
  3258. "msgbuf available count: %" PRIu64 "\n"
  3259. "msgbuf total allocated memory: %" PRIu64 "\n"
  3260. "\n"
  3261. ,
  3262. time_str,
  3263. sizeof_node,
  3264. (uint64_t)f_->id_table.size,
  3265. (uint64_t)f_->id_table.use,
  3266. (uint64_t)(f_->id_table.size * sizeof(node_t*)),
  3267. (uint64_t)f_->name_table.size,
  3268. (uint64_t)f_->name_table.use,
  3269. (uint64_t)(f_->name_table.size * sizeof(node_t*)),
  3270. node_slab_count,
  3271. node_usage_ratio,
  3272. node_avail_objs,
  3273. node_total_alloc_mem,
  3274. msgbuf_get_bufsize(),
  3275. msgbuf_alloc_count(),
  3276. msgbuf_avail_count(),
  3277. msgbuf_alloc_count() * msgbuf_get_bufsize()
  3278. );
  3279. fputs(buf,file_);
  3280. }
  3281. static
  3282. void
  3283. metrics_log_nodes_info_to_tmp_dir(struct fuse *f_)
  3284. {
  3285. int rv;
  3286. FILE *file;
  3287. char filepath[256];
  3288. struct stat st;
  3289. char const *mode = "a";
  3290. off_t const max_size = (1024 * 1024);
  3291. sprintf(filepath,"/tmp/mergerfs.%d.info",getpid());
  3292. rv = lstat(filepath,&st);
  3293. if((rv == 0) && (st.st_size > max_size))
  3294. mode = "w";
  3295. file = fopen(filepath,mode);
  3296. if(file == NULL)
  3297. return;
  3298. metrics_log_nodes_info(f_,file);
  3299. fclose(file);
  3300. }
  3301. static
  3302. void
  3303. fuse_malloc_trim(void)
  3304. {
  3305. #ifdef HAVE_MALLOC_TRIM
  3306. malloc_trim(1024 * 1024);
  3307. #endif
  3308. }
  3309. void
  3310. fuse_invalidate_all_nodes()
  3311. {
  3312. struct fuse *f = fuse_get_fuse_obj();
  3313. syslog(LOG_INFO,"invalidating file entries");
  3314. pthread_mutex_lock(&f->lock);
  3315. for(size_t i = 0; i < f->id_table.size; i++)
  3316. {
  3317. node_t *node;
  3318. for(node = f->id_table.array[i]; node != NULL; node = node->id_next)
  3319. {
  3320. if(node->nodeid == FUSE_ROOT_ID)
  3321. continue;
  3322. if(node->parent->nodeid != FUSE_ROOT_ID)
  3323. continue;
  3324. fuse_lowlevel_notify_inval_entry(f->se->ch,
  3325. node->parent->nodeid,
  3326. node->name,
  3327. strlen(node->name));
  3328. }
  3329. }
  3330. pthread_mutex_unlock(&f->lock);
  3331. }
  3332. void
  3333. fuse_gc()
  3334. {
  3335. syslog(LOG_INFO,"running thorough garbage collection");
  3336. node_gc();
  3337. msgbuf_gc();
  3338. fuse_malloc_trim();
  3339. }
  3340. void
  3341. fuse_gc1()
  3342. {
  3343. syslog(LOG_INFO,"running basic garbage collection");
  3344. node_gc1();
  3345. msgbuf_gc_10percent();
  3346. fuse_malloc_trim();
  3347. }
  3348. static
  3349. void*
  3350. fuse_maintenance_loop(void *fuse_)
  3351. {
  3352. int loops;
  3353. int sleep_time;
  3354. struct fuse *f = (struct fuse*)fuse_;
  3355. pthread_setname_np(pthread_self(),"fuse.maint");
  3356. loops = 0;
  3357. sleep_time = 60;
  3358. while(1)
  3359. {
  3360. if(remember_nodes(f))
  3361. fuse_prune_remembered_nodes(f);
  3362. if((loops % 15) == 0)
  3363. fuse_gc1();
  3364. if(g_LOG_METRICS)
  3365. metrics_log_nodes_info_to_tmp_dir(f);
  3366. loops++;
  3367. sleep(sleep_time);
  3368. }
  3369. return NULL;
  3370. }
  3371. int
  3372. fuse_start_maintenance_thread(struct fuse *f_)
  3373. {
  3374. return fuse_start_thread(&f_->maintenance_thread,fuse_maintenance_loop,f_);
  3375. }
  3376. void
  3377. fuse_stop_maintenance_thread(struct fuse *f_)
  3378. {
  3379. pthread_mutex_lock(&f_->lock);
  3380. pthread_cancel(f_->maintenance_thread);
  3381. pthread_mutex_unlock(&f_->lock);
  3382. pthread_join(f_->maintenance_thread,NULL);
  3383. }
  3384. struct fuse*
  3385. fuse_new_common(struct fuse_chan *ch,
  3386. struct fuse_args *args,
  3387. const struct fuse_operations *op,
  3388. size_t op_size)
  3389. {
  3390. struct fuse *f;
  3391. node_t *root;
  3392. struct fuse_fs *fs;
  3393. struct fuse_lowlevel_ops llop = fuse_path_ops;
  3394. if(fuse_create_context_key() == -1)
  3395. goto out;
  3396. f = fuse_get_fuse_obj();
  3397. if(f == NULL)
  3398. {
  3399. fprintf(stderr,"fuse: failed to allocate fuse object\n");
  3400. goto out_delete_context_key;
  3401. }
  3402. fs = fuse_fs_new(op,op_size);
  3403. if(!fs)
  3404. goto out_free;
  3405. f->fs = fs;
  3406. /* Oh f**k,this is ugly! */
  3407. if(!fs->op.lock)
  3408. {
  3409. llop.getlk = NULL;
  3410. llop.setlk = NULL;
  3411. }
  3412. if(fuse_opt_parse(args,&f->conf,fuse_lib_opts,fuse_lib_opt_proc) == -1)
  3413. goto out_free_fs;
  3414. g_LOG_METRICS = f->conf.debug;
  3415. f->se = fuse_lowlevel_new_common(args,&llop,sizeof(llop),f);
  3416. if(f->se == NULL)
  3417. goto out_free_fs;
  3418. fuse_session_add_chan(f->se,ch);
  3419. /* Trace topmost layer by default */
  3420. srand(time(NULL));
  3421. f->nodeid_gen.nodeid = FUSE_ROOT_ID;
  3422. f->nodeid_gen.generation = rand64();
  3423. if(node_table_init(&f->name_table) == -1)
  3424. goto out_free_session;
  3425. if(node_table_init(&f->id_table) == -1)
  3426. goto out_free_name_table;
  3427. fuse_mutex_init(&f->lock);
  3428. kv_init(f->remembered_nodes);
  3429. root = node_alloc();
  3430. if(root == NULL)
  3431. {
  3432. fprintf(stderr,"fuse: memory allocation failed\n");
  3433. goto out_free_id_table;
  3434. }
  3435. root->name = filename_strdup(f,"/");
  3436. root->parent = NULL;
  3437. root->nodeid = FUSE_ROOT_ID;
  3438. inc_nlookup(root);
  3439. hash_id(f,root);
  3440. return f;
  3441. out_free_id_table:
  3442. free(f->id_table.array);
  3443. out_free_name_table:
  3444. free(f->name_table.array);
  3445. out_free_session:
  3446. fuse_session_destroy(f->se);
  3447. out_free_fs:
  3448. /* Horrible compatibility hack to stop the destructor from being
  3449. called on the filesystem without init being called first */
  3450. fs->op.destroy = NULL;
  3451. free(f->fs);
  3452. out_free:
  3453. // free(f);
  3454. out_delete_context_key:
  3455. fuse_delete_context_key();
  3456. out:
  3457. return NULL;
  3458. }
  3459. struct fuse*
  3460. fuse_new(struct fuse_chan *ch,
  3461. struct fuse_args *args,
  3462. const struct fuse_operations *op,
  3463. size_t op_size)
  3464. {
  3465. return fuse_new_common(ch,args,op,op_size);
  3466. }
  3467. void
  3468. fuse_destroy(struct fuse *f)
  3469. {
  3470. size_t i;
  3471. if(f->fs)
  3472. {
  3473. struct fuse_context_i *c = fuse_get_context_internal();
  3474. memset(c,0,sizeof(*c));
  3475. c->ctx.fuse = f;
  3476. for(i = 0; i < f->id_table.size; i++)
  3477. {
  3478. node_t *node;
  3479. for(node = f->id_table.array[i]; node != NULL; node = node->id_next)
  3480. {
  3481. if(!node->hidden_fh)
  3482. continue;
  3483. f->fs->op.free_hide(node->hidden_fh);
  3484. node->hidden_fh = 0;
  3485. }
  3486. }
  3487. }
  3488. for(i = 0; i < f->id_table.size; i++)
  3489. {
  3490. node_t *node;
  3491. node_t *next;
  3492. for(node = f->id_table.array[i]; node != NULL; node = next)
  3493. {
  3494. next = node->id_next;
  3495. free_node(f,node);
  3496. f->id_table.use--;
  3497. }
  3498. }
  3499. free(f->id_table.array);
  3500. free(f->name_table.array);
  3501. pthread_mutex_destroy(&f->lock);
  3502. fuse_session_destroy(f->se);
  3503. kv_destroy(f->remembered_nodes);
  3504. fuse_delete_context_key();
  3505. }
  3506. void
  3507. fuse_log_metrics_set(int log_)
  3508. {
  3509. g_LOG_METRICS = log_;
  3510. }
  3511. int
  3512. fuse_log_metrics_get(void)
  3513. {
  3514. return g_LOG_METRICS;
  3515. }