|
|
// Formatting library for C++ - experimental range support
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
//
// Copyright (c) 2018 - present, Remotion (Igor Schulz)
// All Rights Reserved
// {fmt} support for ranges, containers and types tuple interface.
#ifndef FMT_RANGES_H_
#define FMT_RANGES_H_
#include <initializer_list>
#include <tuple>
#include <type_traits>
#include "format.h"
FMT_BEGIN_NAMESPACE
namespace detail {
template <typename RangeT, typename OutputIterator> OutputIterator copy(const RangeT& range, OutputIterator out) { for (auto it = range.begin(), end = range.end(); it != end; ++it) *out++ = *it; return out; }
template <typename OutputIterator> OutputIterator copy(const char* str, OutputIterator out) { while (*str) *out++ = *str++; return out; }
template <typename OutputIterator> OutputIterator copy(char ch, OutputIterator out) { *out++ = ch; return out; }
template <typename OutputIterator> OutputIterator copy(wchar_t ch, OutputIterator out) { *out++ = ch; return out; }
// Returns true if T has a std::string-like interface, like std::string_view.
template <typename T> class is_std_string_like { template <typename U> static auto check(U* p) -> decltype((void)p->find('a'), p->length(), (void)p->data(), int()); template <typename> static void check(...);
public: static constexpr const bool value = is_string<T>::value || std::is_convertible<T, std_string_view<char>>::value || !std::is_void<decltype(check<T>(nullptr))>::value; };
template <typename Char> struct is_std_string_like<fmt::basic_string_view<Char>> : std::true_type {};
template <typename T> class is_map { template <typename U> static auto check(U*) -> typename U::mapped_type; template <typename> static void check(...);
public: #ifdef FMT_FORMAT_MAP_AS_LIST
static constexpr const bool value = false; #else
static constexpr const bool value = !std::is_void<decltype(check<T>(nullptr))>::value; #endif
};
template <typename T> class is_set { template <typename U> static auto check(U*) -> typename U::key_type; template <typename> static void check(...);
public: #ifdef FMT_FORMAT_SET_AS_LIST
static constexpr const bool value = false; #else
static constexpr const bool value = !std::is_void<decltype(check<T>(nullptr))>::value && !is_map<T>::value; #endif
};
template <typename... Ts> struct conditional_helper {};
template <typename T, typename _ = void> struct is_range_ : std::false_type {};
#if !FMT_MSC_VERSION || FMT_MSC_VERSION > 1800
# define FMT_DECLTYPE_RETURN(val) \
->decltype(val) { return val; } \ static_assert( \ true, "") // This makes it so that a semicolon is required after the
// macro, which helps clang-format handle the formatting.
// C array overload
template <typename T, std::size_t N> auto range_begin(const T (&arr)[N]) -> const T* { return arr; } template <typename T, std::size_t N> auto range_end(const T (&arr)[N]) -> const T* { return arr + N; }
template <typename T, typename Enable = void> struct has_member_fn_begin_end_t : std::false_type {};
template <typename T> struct has_member_fn_begin_end_t<T, void_t<decltype(std::declval<T>().begin()), decltype(std::declval<T>().end())>> : std::true_type {};
// Member function overload
template <typename T> auto range_begin(T&& rng) FMT_DECLTYPE_RETURN(static_cast<T&&>(rng).begin()); template <typename T> auto range_end(T&& rng) FMT_DECLTYPE_RETURN(static_cast<T&&>(rng).end());
// ADL overload. Only participates in overload resolution if member functions
// are not found.
template <typename T> auto range_begin(T&& rng) -> enable_if_t<!has_member_fn_begin_end_t<T&&>::value, decltype(begin(static_cast<T&&>(rng)))> { return begin(static_cast<T&&>(rng)); } template <typename T> auto range_end(T&& rng) -> enable_if_t<!has_member_fn_begin_end_t<T&&>::value, decltype(end(static_cast<T&&>(rng)))> { return end(static_cast<T&&>(rng)); }
template <typename T, typename Enable = void> struct has_const_begin_end : std::false_type {}; template <typename T, typename Enable = void> struct has_mutable_begin_end : std::false_type {};
template <typename T> struct has_const_begin_end< T, void_t< decltype(detail::range_begin(std::declval<const remove_cvref_t<T>&>())), decltype(detail::range_end(std::declval<const remove_cvref_t<T>&>()))>> : std::true_type {};
template <typename T> struct has_mutable_begin_end< T, void_t<decltype(detail::range_begin(std::declval<T>())), decltype(detail::range_end(std::declval<T>())), enable_if_t<std::is_copy_constructible<T>::value>>> : std::true_type {};
template <typename T> struct is_range_<T, void> : std::integral_constant<bool, (has_const_begin_end<T>::value || has_mutable_begin_end<T>::value)> {}; # undef FMT_DECLTYPE_RETURN
#endif
// tuple_size and tuple_element check.
template <typename T> class is_tuple_like_ { template <typename U> static auto check(U* p) -> decltype(std::tuple_size<U>::value, int()); template <typename> static void check(...);
public: static constexpr const bool value = !std::is_void<decltype(check<T>(nullptr))>::value; };
// Check for integer_sequence
#if defined(__cpp_lib_integer_sequence) || FMT_MSC_VERSION >= 1900
template <typename T, T... N> using integer_sequence = std::integer_sequence<T, N...>; template <size_t... N> using index_sequence = std::index_sequence<N...>; template <size_t N> using make_index_sequence = std::make_index_sequence<N>; #else
template <typename T, T... N> struct integer_sequence { using value_type = T;
static FMT_CONSTEXPR size_t size() { return sizeof...(N); } };
template <size_t... N> using index_sequence = integer_sequence<size_t, N...>;
template <typename T, size_t N, T... Ns> struct make_integer_sequence : make_integer_sequence<T, N - 1, N - 1, Ns...> {}; template <typename T, T... Ns> struct make_integer_sequence<T, 0, Ns...> : integer_sequence<T, Ns...> {};
template <size_t N> using make_index_sequence = make_integer_sequence<size_t, N>; #endif
template <typename T> using tuple_index_sequence = make_index_sequence<std::tuple_size<T>::value>;
template <typename T, typename C, bool = is_tuple_like_<T>::value> class is_tuple_formattable_ { public: static constexpr const bool value = false; }; template <typename T, typename C> class is_tuple_formattable_<T, C, true> { template <std::size_t... I> static std::true_type check2(index_sequence<I...>, integer_sequence<bool, (I == I)...>); static std::false_type check2(...); template <std::size_t... I> static decltype(check2( index_sequence<I...>{}, integer_sequence< bool, (is_formattable<typename std::tuple_element<I, T>::type, C>::value)...>{})) check(index_sequence<I...>);
public: static constexpr const bool value = decltype(check(tuple_index_sequence<T>{}))::value; };
template <class Tuple, class F, size_t... Is> void for_each(index_sequence<Is...>, Tuple&& tup, F&& f) noexcept { using std::get; // using free function get<I>(T) now.
const int _[] = {0, ((void)f(get<Is>(tup)), 0)...}; (void)_; // blocks warnings
}
template <class T> FMT_CONSTEXPR make_index_sequence<std::tuple_size<T>::value> get_indexes( T const&) { return {}; }
template <class Tuple, class F> void for_each(Tuple&& tup, F&& f) { const auto indexes = get_indexes(tup); for_each(indexes, std::forward<Tuple>(tup), std::forward<F>(f)); }
#if FMT_MSC_VERSION && FMT_MSC_VERSION < 1920
// Older MSVC doesn't get the reference type correctly for arrays.
template <typename R> struct range_reference_type_impl { using type = decltype(*detail::range_begin(std::declval<R&>())); };
template <typename T, std::size_t N> struct range_reference_type_impl<T[N]> { using type = T&; };
template <typename T> using range_reference_type = typename range_reference_type_impl<T>::type; #else
template <typename Range> using range_reference_type = decltype(*detail::range_begin(std::declval<Range&>())); #endif
// We don't use the Range's value_type for anything, but we do need the Range's
// reference type, with cv-ref stripped.
template <typename Range> using uncvref_type = remove_cvref_t<range_reference_type<Range>>;
template <typename Range> using uncvref_first_type = remove_cvref_t<decltype(std::declval<range_reference_type<Range>>().first)>;
template <typename Range> using uncvref_second_type = remove_cvref_t< decltype(std::declval<range_reference_type<Range>>().second)>;
template <typename OutputIt> OutputIt write_delimiter(OutputIt out) { *out++ = ','; *out++ = ' '; return out; }
template <typename Char, typename OutputIt> auto write_range_entry(OutputIt out, basic_string_view<Char> str) -> OutputIt { return write_escaped_string(out, str); }
template <typename Char, typename OutputIt, typename T, FMT_ENABLE_IF(std::is_convertible<T, std_string_view<char>>::value)> inline auto write_range_entry(OutputIt out, const T& str) -> OutputIt { auto sv = std_string_view<Char>(str); return write_range_entry<Char>(out, basic_string_view<Char>(sv)); }
template <typename Char, typename OutputIt, typename Arg, FMT_ENABLE_IF(std::is_same<Arg, Char>::value)> OutputIt write_range_entry(OutputIt out, const Arg v) { return write_escaped_char(out, v); }
template < typename Char, typename OutputIt, typename Arg, FMT_ENABLE_IF(!is_std_string_like<typename std::decay<Arg>::type>::value && !std::is_same<Arg, Char>::value)> OutputIt write_range_entry(OutputIt out, const Arg& v) { return write<Char>(out, v); }
} // namespace detail
template <typename T> struct is_tuple_like { static constexpr const bool value = detail::is_tuple_like_<T>::value && !detail::is_range_<T>::value; };
template <typename T, typename C> struct is_tuple_formattable { static constexpr const bool value = detail::is_tuple_formattable_<T, C>::value; };
template <typename TupleT, typename Char> struct formatter<TupleT, Char, enable_if_t<fmt::is_tuple_like<TupleT>::value && fmt::is_tuple_formattable<TupleT, Char>::value>> { private: basic_string_view<Char> separator_ = detail::string_literal<Char, ',', ' '>{}; basic_string_view<Char> opening_bracket_ = detail::string_literal<Char, '('>{}; basic_string_view<Char> closing_bracket_ = detail::string_literal<Char, ')'>{};
// C++11 generic lambda for format().
template <typename FormatContext> struct format_each { template <typename T> void operator()(const T& v) { if (i > 0) out = detail::copy_str<Char>(separator, out); out = detail::write_range_entry<Char>(out, v); ++i; } int i; typename FormatContext::iterator& out; basic_string_view<Char> separator; };
public: FMT_CONSTEXPR formatter() {}
FMT_CONSTEXPR void set_separator(basic_string_view<Char> sep) { separator_ = sep; }
FMT_CONSTEXPR void set_brackets(basic_string_view<Char> open, basic_string_view<Char> close) { opening_bracket_ = open; closing_bracket_ = close; }
template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { return ctx.begin(); }
template <typename FormatContext = format_context> auto format(const TupleT& values, FormatContext& ctx) const -> decltype(ctx.out()) { auto out = ctx.out(); out = detail::copy_str<Char>(opening_bracket_, out); detail::for_each(values, format_each<FormatContext>{0, out, separator_}); out = detail::copy_str<Char>(closing_bracket_, out); return out; } };
template <typename T, typename Char> struct is_range { static constexpr const bool value = detail::is_range_<T>::value && !detail::is_std_string_like<T>::value && !std::is_convertible<T, std::basic_string<Char>>::value && !std::is_convertible<T, detail::std_string_view<Char>>::value; };
namespace detail { template <typename Context> struct range_mapper { using mapper = arg_mapper<Context>;
template <typename T, FMT_ENABLE_IF(has_formatter<remove_cvref_t<T>, Context>::value)> static auto map(T&& value) -> T&& { return static_cast<T&&>(value); } template <typename T, FMT_ENABLE_IF(!has_formatter<remove_cvref_t<T>, Context>::value)> static auto map(T&& value) -> decltype(mapper().map(static_cast<T&&>(value))) { return mapper().map(static_cast<T&&>(value)); } };
template <typename Char, typename Element> using range_formatter_type = conditional_t< is_formattable<Element, Char>::value, formatter<remove_cvref_t<decltype(range_mapper<buffer_context<Char>>{}.map( std::declval<Element>()))>, Char>, fallback_formatter<Element, Char>>;
template <typename R> using maybe_const_range = conditional_t<has_const_begin_end<R>::value, const R, R>;
// Workaround a bug in MSVC 2015 and earlier.
#if !FMT_MSC_VERSION || FMT_MSC_VERSION >= 1910
template <typename R, typename Char> struct is_formattable_delayed : disjunction< is_formattable<uncvref_type<maybe_const_range<R>>, Char>, has_fallback_formatter<uncvref_type<maybe_const_range<R>>, Char>> {}; #endif
} // namespace detail
template <typename T, typename Char, typename Enable = void> struct range_formatter;
template <typename T, typename Char> struct range_formatter< T, Char, enable_if_t<conjunction< std::is_same<T, remove_cvref_t<T>>, disjunction<is_formattable<T, Char>, detail::has_fallback_formatter<T, Char>>>::value>> { private: detail::range_formatter_type<Char, T> underlying_; bool custom_specs_ = false; basic_string_view<Char> separator_ = detail::string_literal<Char, ',', ' '>{}; basic_string_view<Char> opening_bracket_ = detail::string_literal<Char, '['>{}; basic_string_view<Char> closing_bracket_ = detail::string_literal<Char, ']'>{};
template <class U> FMT_CONSTEXPR static auto maybe_set_debug_format(U& u, int) -> decltype(u.set_debug_format()) { u.set_debug_format(); }
template <class U> FMT_CONSTEXPR static void maybe_set_debug_format(U&, ...) {}
FMT_CONSTEXPR void maybe_set_debug_format() { maybe_set_debug_format(underlying_, 0); }
public: FMT_CONSTEXPR range_formatter() {}
FMT_CONSTEXPR auto underlying() -> detail::range_formatter_type<Char, T>& { return underlying_; }
FMT_CONSTEXPR void set_separator(basic_string_view<Char> sep) { separator_ = sep; }
FMT_CONSTEXPR void set_brackets(basic_string_view<Char> open, basic_string_view<Char> close) { opening_bracket_ = open; closing_bracket_ = close; }
template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { auto it = ctx.begin(); auto end = ctx.end(); if (it == end || *it == '}') { maybe_set_debug_format(); return it; }
if (*it == 'n') { set_brackets({}, {}); ++it; }
if (*it == '}') { maybe_set_debug_format(); return it; }
if (*it != ':') FMT_THROW(format_error("no other top-level range formatters supported"));
custom_specs_ = true; ++it; ctx.advance_to(it); return underlying_.parse(ctx); }
template <typename R, class FormatContext> auto format(R&& range, FormatContext& ctx) const -> decltype(ctx.out()) { detail::range_mapper<buffer_context<Char>> mapper; auto out = ctx.out(); out = detail::copy_str<Char>(opening_bracket_, out); int i = 0; auto it = detail::range_begin(range); auto end = detail::range_end(range); for (; it != end; ++it) { if (i > 0) out = detail::copy_str<Char>(separator_, out); ; ctx.advance_to(out); out = underlying_.format(mapper.map(*it), ctx); ++i; } out = detail::copy_str<Char>(closing_bracket_, out); return out; } };
enum class range_format { disabled, map, set, sequence, string, debug_string };
namespace detail { template <typename T> struct range_format_kind_ { static constexpr auto value = std::is_same<range_reference_type<T>, T>::value ? range_format::disabled : is_map<T>::value ? range_format::map : is_set<T>::value ? range_format::set : range_format::sequence; };
template <range_format K, typename R, typename Char, typename Enable = void> struct range_default_formatter;
template <range_format K> using range_format_constant = std::integral_constant<range_format, K>;
template <range_format K, typename R, typename Char> struct range_default_formatter< K, R, Char, enable_if_t<(K == range_format::sequence || K == range_format::map || K == range_format::set)>> { using range_type = detail::maybe_const_range<R>; range_formatter<detail::uncvref_type<range_type>, Char> underlying_;
FMT_CONSTEXPR range_default_formatter() { init(range_format_constant<K>()); }
FMT_CONSTEXPR void init(range_format_constant<range_format::set>) { underlying_.set_brackets(detail::string_literal<Char, '{'>{}, detail::string_literal<Char, '}'>{}); }
FMT_CONSTEXPR void init(range_format_constant<range_format::map>) { underlying_.set_brackets(detail::string_literal<Char, '{'>{}, detail::string_literal<Char, '}'>{}); underlying_.underlying().set_brackets({}, {}); underlying_.underlying().set_separator( detail::string_literal<Char, ':', ' '>{}); }
FMT_CONSTEXPR void init(range_format_constant<range_format::sequence>) {}
template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { return underlying_.parse(ctx); }
template <typename FormatContext> auto format(range_type& range, FormatContext& ctx) const -> decltype(ctx.out()) { return underlying_.format(range, ctx); } }; } // namespace detail
template <typename T, typename Char, typename Enable = void> struct range_format_kind : conditional_t< is_range<T, Char>::value, detail::range_format_kind_<T>, std::integral_constant<range_format, range_format::disabled>> {};
template <typename R, typename Char> struct formatter< R, Char, enable_if_t<conjunction<bool_constant<range_format_kind<R, Char>::value != range_format::disabled> // Workaround a bug in MSVC 2015 and earlier.
#if !FMT_MSC_VERSION || FMT_MSC_VERSION >= 1910
, detail::is_formattable_delayed<R, Char> #endif
>::value>> : detail::range_default_formatter<range_format_kind<R, Char>::value, R, Char> { };
template <typename Char, typename... T> struct tuple_join_view : detail::view { const std::tuple<T...>& tuple; basic_string_view<Char> sep;
tuple_join_view(const std::tuple<T...>& t, basic_string_view<Char> s) : tuple(t), sep{s} {} };
template <typename Char, typename... T> using tuple_arg_join = tuple_join_view<Char, T...>;
// Define FMT_TUPLE_JOIN_SPECIFIERS to enable experimental format specifiers
// support in tuple_join. It is disabled by default because of issues with
// the dynamic width and precision.
#ifndef FMT_TUPLE_JOIN_SPECIFIERS
# define FMT_TUPLE_JOIN_SPECIFIERS 0
#endif
template <typename Char, typename... T> struct formatter<tuple_join_view<Char, T...>, Char> { template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { return do_parse(ctx, std::integral_constant<size_t, sizeof...(T)>()); }
template <typename FormatContext> auto format(const tuple_join_view<Char, T...>& value, FormatContext& ctx) const -> typename FormatContext::iterator { return do_format(value, ctx, std::integral_constant<size_t, sizeof...(T)>()); }
private: std::tuple<formatter<typename std::decay<T>::type, Char>...> formatters_;
template <typename ParseContext> FMT_CONSTEXPR auto do_parse(ParseContext& ctx, std::integral_constant<size_t, 0>) -> decltype(ctx.begin()) { return ctx.begin(); }
template <typename ParseContext, size_t N> FMT_CONSTEXPR auto do_parse(ParseContext& ctx, std::integral_constant<size_t, N>) -> decltype(ctx.begin()) { auto end = ctx.begin(); #if FMT_TUPLE_JOIN_SPECIFIERS
end = std::get<sizeof...(T) - N>(formatters_).parse(ctx); if (N > 1) { auto end1 = do_parse(ctx, std::integral_constant<size_t, N - 1>()); if (end != end1) FMT_THROW(format_error("incompatible format specs for tuple elements")); } #endif
return end; }
template <typename FormatContext> auto do_format(const tuple_join_view<Char, T...>&, FormatContext& ctx, std::integral_constant<size_t, 0>) const -> typename FormatContext::iterator { return ctx.out(); }
template <typename FormatContext, size_t N> auto do_format(const tuple_join_view<Char, T...>& value, FormatContext& ctx, std::integral_constant<size_t, N>) const -> typename FormatContext::iterator { auto out = std::get<sizeof...(T) - N>(formatters_) .format(std::get<sizeof...(T) - N>(value.tuple), ctx); if (N > 1) { out = std::copy(value.sep.begin(), value.sep.end(), out); ctx.advance_to(out); return do_format(value, ctx, std::integral_constant<size_t, N - 1>()); } return out; } };
FMT_MODULE_EXPORT_BEGIN
/**
\rst Returns an object that formats `tuple` with elements separated by `sep`.
**Example**::
std::tuple<int, char> t = {1, 'a'}; fmt::print("{}", fmt::join(t, ", ")); // Output: "1, a"
\endrst */ template <typename... T> FMT_CONSTEXPR auto join(const std::tuple<T...>& tuple, string_view sep) -> tuple_join_view<char, T...> { return {tuple, sep}; }
template <typename... T> FMT_CONSTEXPR auto join(const std::tuple<T...>& tuple, basic_string_view<wchar_t> sep) -> tuple_join_view<wchar_t, T...> { return {tuple, sep}; }
/**
\rst Returns an object that formats `initializer_list` with elements separated by `sep`.
**Example**::
fmt::print("{}", fmt::join({1, 2, 3}, ", ")); // Output: "1, 2, 3"
\endrst */ template <typename T> auto join(std::initializer_list<T> list, string_view sep) -> join_view<const T*, const T*> { return join(std::begin(list), std::end(list), sep); }
FMT_MODULE_EXPORT_END FMT_END_NAMESPACE
#endif // FMT_RANGES_H_
|