|
|
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="theme-color" content="#375EAB">
<title>rsa - The Go Programming Language</title>
<link type="text/css" rel="stylesheet" href="../../../lib/godoc/style.css">
<link rel="stylesheet" href="../../../lib/godoc/jquery.treeview.css"> <script type="text/javascript">window.initFuncs = [];</script> </head> <body>
<div id='lowframe' style="position: fixed; bottom: 0; left: 0; height: 0; width: 100%; border-top: thin solid grey; background-color: white; overflow: auto;"> ... </div><!-- #lowframe -->
<div id="topbar" class="wide"><div class="container"> <div class="top-heading" id="heading-wide"><a href="http://localhost:6060/">The Go Programming Language</a></div> <div class="top-heading" id="heading-narrow"><a href="http://localhost:6060/">Go</a></div> <a href="index.html#" id="menu-button"><span id="menu-button-arrow">▽</span></a> <form method="GET" action="http://localhost:6060/search"> <div id="menu"> <a href="http://localhost:6060/doc/">Documents</a> <a href="http://localhost:6060/pkg/">Packages</a> <a href="http://localhost:6060/project/">The Project</a> <a href="http://localhost:6060/help/">Help</a> <a href="http://localhost:6060/blog/">Blog</a>
<input type="text" id="search" name="q" class="inactive" value="Search" placeholder="Search"> </div> </form>
</div></div>
<div id="page" class="wide"> <div class="container">
<h1>Package rsa</h1>
<div id="nav"></div>
<!--
Copyright 2009 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. --> <!--
Note: Static (i.e., not template-generated) href and id attributes start with "pkg-" to make it impossible for them to conflict with generated attributes (some of which correspond to Go identifiers). -->
<script type='text/javascript'> document.ANALYSIS_DATA = null; document.CALLGRAPH = null; </script>
<div id="short-nav"> <dl> <dd><code>import "crypto/rsa"</code></dd> </dl> <dl> <dd><a href="index.html#pkg-overview" class="overviewLink">Overview</a></dd> <dd><a href="index.html#pkg-index" class="indexLink">Index</a></dd> <dd><a href="index.html#pkg-examples" class="examplesLink">Examples</a></dd> </dl> </div> <!-- The package's Name is printed as title by the top-level template --> <div id="pkg-overview" class="toggleVisible"> <div class="collapsed"> <h2 class="toggleButton" title="Click to show Overview section">Overview ▹</h2> </div> <div class="expanded"> <h2 class="toggleButton" title="Click to hide Overview section">Overview ▾</h2> <p> Package rsa implements RSA encryption as specified in PKCS#1. </p> <p> RSA is a single, fundamental operation that is used in this package to implement either public-key encryption or public-key signatures. </p> <p> The original specification for encryption and signatures with RSA is PKCS#1 and the terms "RSA encryption" and "RSA signatures" by default refer to PKCS#1 version 1.5. However, that specification has flaws and new designs should use version two, usually called by just OAEP and PSS, where possible. </p> <p> Two sets of interfaces are included in this package. When a more abstract interface isn't neccessary, there are functions for encrypting/decrypting with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract over the public-key primitive, the PrivateKey struct implements the Decrypter and Signer interfaces from the crypto package. </p>
</div> </div>
<div id="pkg-index" class="toggleVisible"> <div class="collapsed"> <h2 class="toggleButton" title="Click to show Index section">Index ▹</h2> </div> <div class="expanded"> <h2 class="toggleButton" title="Click to hide Index section">Index ▾</h2>
<!-- Table of contents for API; must be named manual-nav to turn off auto nav. --> <div id="manual-nav"> <dl> <dd><a href="index.html#pkg-constants">Constants</a></dd> <dd><a href="index.html#pkg-variables">Variables</a></dd> <dd><a href="index.html#DecryptOAEP">func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error)</a></dd> <dd><a href="index.html#DecryptPKCS1v15">func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err error)</a></dd> <dd><a href="index.html#DecryptPKCS1v15SessionKey">func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err error)</a></dd> <dd><a href="index.html#EncryptOAEP">func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error)</a></dd> <dd><a href="index.html#EncryptPKCS1v15">func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err error)</a></dd> <dd><a href="index.html#SignPKCS1v15">func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error)</a></dd> <dd><a href="index.html#SignPSS">func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte, opts *PSSOptions) (s []byte, err error)</a></dd> <dd><a href="index.html#VerifyPKCS1v15">func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) (err error)</a></dd> <dd><a href="index.html#VerifyPSS">func VerifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, opts *PSSOptions) error</a></dd> <dd><a href="index.html#CRTValue">type CRTValue</a></dd> <dd><a href="index.html#OAEPOptions">type OAEPOptions</a></dd> <dd><a href="index.html#PKCS1v15DecryptOptions">type PKCS1v15DecryptOptions</a></dd> <dd><a href="index.html#PSSOptions">type PSSOptions</a></dd> <dd> <a href="index.html#PSSOptions.HashFunc">func (pssOpts *PSSOptions) HashFunc() crypto.Hash</a></dd> <dd><a href="index.html#PrecomputedValues">type PrecomputedValues</a></dd> <dd><a href="index.html#PrivateKey">type PrivateKey</a></dd> <dd> <a href="index.html#GenerateKey">func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error)</a></dd> <dd> <a href="index.html#GenerateMultiPrimeKey">func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error)</a></dd> <dd> <a href="index.html#PrivateKey.Decrypt">func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error)</a></dd> <dd> <a href="index.html#PrivateKey.Precompute">func (priv *PrivateKey) Precompute()</a></dd> <dd> <a href="index.html#PrivateKey.Public">func (priv *PrivateKey) Public() crypto.PublicKey</a></dd> <dd> <a href="index.html#PrivateKey.Sign">func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error)</a></dd> <dd> <a href="index.html#PrivateKey.Validate">func (priv *PrivateKey) Validate() error</a></dd> <dd><a href="index.html#PublicKey">type PublicKey</a></dd> </dl> </div><!-- #manual-nav -->
<div id="pkg-examples"> <h4>Examples</h4> <dl> <dd><a class="exampleLink" href="index.html#example_DecryptOAEP">DecryptOAEP</a></dd> <dd><a class="exampleLink" href="index.html#example_DecryptPKCS1v15SessionKey">DecryptPKCS1v15SessionKey</a></dd> <dd><a class="exampleLink" href="index.html#example_EncryptOAEP">EncryptOAEP</a></dd> <dd><a class="exampleLink" href="index.html#example_SignPKCS1v15">SignPKCS1v15</a></dd> <dd><a class="exampleLink" href="index.html#example_VerifyPKCS1v15">VerifyPKCS1v15</a></dd> </dl> </div>
<h4>Package files</h4> <p> <span style="font-size:90%"> <a href="http://localhost:6060/src/crypto/rsa/pkcs1v15.go">pkcs1v15.go</a> <a href="http://localhost:6060/src/crypto/rsa/pss.go">pss.go</a> <a href="http://localhost:6060/src/crypto/rsa/rsa.go">rsa.go</a> </span> </p> </div><!-- .expanded --> </div><!-- #pkg-index -->
<div id="pkg-callgraph" class="toggle" style="display: none"> <div class="collapsed"> <h2 class="toggleButton" title="Click to show Internal Call Graph section">Internal call graph ▹</h2> </div> <!-- .expanded --> <div class="expanded"> <h2 class="toggleButton" title="Click to hide Internal Call Graph section">Internal call graph ▾</h2> <p> In the call graph viewer below, each node is a function belonging to this package and its children are the functions it calls—perhaps dynamically. </p> <p> The root nodes are the entry points of the package: functions that may be called from outside the package. There may be non-exported or anonymous functions among them if they are called dynamically from another package. </p> <p> Click a node to visit that function's source code. From there you can visit its callers by clicking its declaring <code>func</code> token. </p> <p> Functions may be omitted if they were determined to be unreachable in the particular programs or tests that were analyzed. </p> <!-- Zero means show all package entry points. --> <ul style="margin-left: 0.5in" id="callgraph-0" class="treeview"></ul> </div> </div> <!-- #pkg-callgraph -->
<h2 id="pkg-constants">Constants</h2> <pre>const ( <span class="comment">// PSSSaltLengthAuto causes the salt in a PSS signature to be as large</span> <span class="comment">// as possible when signing, and to be auto-detected when verifying.</span> <span id="PSSSaltLengthAuto">PSSSaltLengthAuto</span> = 0 <span class="comment">// PSSSaltLengthEqualsHash causes the salt length to equal the length</span> <span class="comment">// of the hash used in the signature.</span> <span id="PSSSaltLengthEqualsHash">PSSSaltLengthEqualsHash</span> = -1 )</pre> <h2 id="pkg-variables">Variables</h2> <pre>var <span id="ErrDecryption">ErrDecryption</span> = <a href="../../errors/index.html">errors</a>.<a href="../../errors/index.html#New">New</a>("crypto/rsa: decryption error")</pre> <p> ErrDecryption represents a failure to decrypt a message. It is deliberately vague to avoid adaptive attacks. </p>
<pre>var <span id="ErrMessageTooLong">ErrMessageTooLong</span> = <a href="../../errors/index.html">errors</a>.<a href="../../errors/index.html#New">New</a>("crypto/rsa: message too long for RSA public key size")</pre> <p> ErrMessageTooLong is returned when attempting to encrypt a message which is too large for the size of the public key. </p>
<pre>var <span id="ErrVerification">ErrVerification</span> = <a href="../../errors/index.html">errors</a>.<a href="../../errors/index.html#New">New</a>("crypto/rsa: verification error")</pre> <p> ErrVerification represents a failure to verify a signature. It is deliberately vague to avoid adaptive attacks. </p>
<h2 id="DecryptOAEP">func <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=16830:16955#L555">DecryptOAEP</a></h2> <pre>func DecryptOAEP(hash <a href="../../hash/index.html">hash</a>.<a href="../../hash/index.html#Hash">Hash</a>, random <a href="../../io/index.html">io</a>.<a href="../../io/index.html#Reader">Reader</a>, priv *<a href="index.html#PrivateKey">PrivateKey</a>, ciphertext []<a href="../../builtin/index.html#byte">byte</a>, label []<a href="../../builtin/index.html#byte">byte</a>) (msg []<a href="../../builtin/index.html#byte">byte</a>, err <a href="../../builtin/index.html#error">error</a>)</pre> <p> OAEP is parameterised by a hash function that is used as a random oracle. Encryption and decryption of a given message must use the same hash function and sha256.New() is a reasonable choice. </p> <p> The random parameter, if not nil, is used to blind the private-key operation and avoid timing side-channel attacks. Blinding is purely internal to this function – the random data need not match that used when encrypting. </p> <p> The label parameter must match the value given when encrypting. See EncryptOAEP for details. </p>
<div id="example_DecryptOAEP" class="toggle"> <div class="collapsed"> <p class="exampleHeading toggleButton">▹ <span class="text">Example</span></p> </div> <div class="expanded"> <p class="exampleHeading toggleButton">▾ <span class="text">Example</span></p> <p>Code:</p> <pre class="code"> ciphertext, _ := hex.DecodeString("4d1ee10e8f286390258c51a5e80802844c3e6358ad6690b7285218a7c7ed7fc3a4c7b950fbd04d4b0239cc060dcc7065ca6f84c1756deb71ca5685cadbb82be025e16449b905c568a19c088a1abfad54bf7ecc67a7df39943ec511091a34c0f2348d04e058fcff4d55644de3cd1d580791d4524b92f3e91695582e6e340a1c50b6c6d78e80b4e42c5b4d45e479b492de42bbd39cc642ebb80226bb5200020d501b24a37bcc2ec7f34e596b4fd6b063de4858dbf5a4e3dd18e262eda0ec2d19dbd8e890d672b63d368768360b20c0b6b8592a438fa275e5fa7f60bef0dd39673fd3989cc54d2cb80c08fcd19dacbc265ee1c6014616b0e04ea0328c2a04e73460") label := []byte("orders")
<span class="comment">// crypto/rand.Reader is a good source of entropy for blinding the RSA</span> <span class="comment">// operation.</span> rng := rand.Reader
plaintext, err := DecryptOAEP(sha256.New(), rng, test2048Key, ciphertext, label) if err != nil { fmt.Fprintf(os.Stderr, "Error from decryption: %s\n", err) return }
fmt.Printf("Plaintext: %s\n", string(plaintext))
<span class="comment">// Remember that encryption only provides confidentiality. The</span> <span class="comment">// ciphertext should be signed before authenticity is assumed and, even</span> <span class="comment">// then, consider that messages might be reordered.</span> </pre> </div> </div>
<h2 id="DecryptPKCS1v15">func <a href="http://localhost:6060/src/crypto/rsa/pkcs1v15.go?s=2346:2443#L62">DecryptPKCS1v15</a></h2> <pre>func DecryptPKCS1v15(rand <a href="../../io/index.html">io</a>.<a href="../../io/index.html#Reader">Reader</a>, priv *<a href="index.html#PrivateKey">PrivateKey</a>, ciphertext []<a href="../../builtin/index.html#byte">byte</a>) (out []<a href="../../builtin/index.html#byte">byte</a>, err <a href="../../builtin/index.html#error">error</a>)</pre> <p> DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5. If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. </p> <p> Note that whether this function returns an error or not discloses secret information. If an attacker can cause this function to run repeatedly and learn whether each instance returned an error then they can decrypt and forge signatures as if they had the private key. See DecryptPKCS1v15SessionKey for a way of solving this problem. </p>
<h2 id="DecryptPKCS1v15SessionKey">func <a href="http://localhost:6060/src/crypto/rsa/pkcs1v15.go?s=3987:4094#L96">DecryptPKCS1v15SessionKey</a></h2> <pre>func DecryptPKCS1v15SessionKey(rand <a href="../../io/index.html">io</a>.<a href="../../io/index.html#Reader">Reader</a>, priv *<a href="index.html#PrivateKey">PrivateKey</a>, ciphertext []<a href="../../builtin/index.html#byte">byte</a>, key []<a href="../../builtin/index.html#byte">byte</a>) (err <a href="../../builtin/index.html#error">error</a>)</pre> <p> DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5. If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. It returns an error if the ciphertext is the wrong length or if the ciphertext is greater than the public modulus. Otherwise, no error is returned. If the padding is valid, the resulting plaintext message is copied into key. Otherwise, key is unchanged. These alternatives occur in constant time. It is intended that the user of this function generate a random session key beforehand and continue the protocol with the resulting value. This will remove any possibility that an attacker can learn any information about the plaintext. See “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1”, Daniel Bleichenbacher, Advances in Cryptology (Crypto '98). </p> <p> Note that if the session key is too small then it may be possible for an attacker to brute-force it. If they can do that then they can learn whether a random value was used (because it'll be different for the same ciphertext) and thus whether the padding was correct. This defeats the point of this function. Using at least a 16-byte key will protect against this attack. </p>
<div id="example_DecryptPKCS1v15SessionKey" class="toggle"> <div class="collapsed"> <p class="exampleHeading toggleButton">▹ <span class="text">Example</span></p> </div> <div class="expanded"> <p class="exampleHeading toggleButton">▾ <span class="text">Example</span></p> <p>RSA is able to encrypt only a very limited amount of data. In order to encrypt reasonable amounts of data a hybrid scheme is commonly used: RSA is used to encrypt a key for a symmetric primitive like AES-GCM.
Before encrypting, data is “padded” by embedding it in a known structure. This is done for a number of reasons, but the most obvious is to ensure that the value is large enough that the exponentiation is larger than the modulus. (Otherwise it could be decrypted with a square-root.)
In these designs, when using PKCS#1 v1.5, it's vitally important to avoid disclosing whether the received RSA message was well-formed (that is, whether the result of decrypting is a correctly padded message) because this leaks secret information. DecryptPKCS1v15SessionKey is designed for this situation and copies the decrypted, symmetric key (if well-formed) in constant-time over a buffer that contains a random key. Thus, if the RSA result isn't well-formed, the implementation uses a random key in constant time. </p> <p>Code:</p> <pre class="code"> <span class="comment">// crypto/rand.Reader is a good source of entropy for blinding the RSA</span> <span class="comment">// operation.</span> rng := rand.Reader
<span class="comment">// The hybrid scheme should use at least a 16-byte symmetric key. Here</span> <span class="comment">// we read the random key that will be used if the RSA decryption isn't</span> <span class="comment">// well-formed.</span> key := make([]byte, 32) if _, err := io.ReadFull(rng, key); err != nil { panic("RNG failure") }
rsaCiphertext, _ := hex.DecodeString("aabbccddeeff")
if err := DecryptPKCS1v15SessionKey(rng, rsaPrivateKey, rsaCiphertext, key); err != nil { <span class="comment">// Any errors that result will be “public” – meaning that they</span> <span class="comment">// can be determined without any secret information. (For</span> <span class="comment">// instance, if the length of key is impossible given the RSA</span> <span class="comment">// public key.)</span> fmt.Fprintf(os.Stderr, "Error from RSA decryption: %s\n", err) return }
<span class="comment">// Given the resulting key, a symmetric scheme can be used to decrypt a</span> <span class="comment">// larger ciphertext.</span> block, err := aes.NewCipher(key) if err != nil { panic("aes.NewCipher failed: " + err.Error()) }
<span class="comment">// Since the key is random, using a fixed nonce is acceptable as the</span> <span class="comment">// (key, nonce) pair will still be unique, as required.</span> var zeroNonce [12]byte aead, err := cipher.NewGCM(block) if err != nil { panic("cipher.NewGCM failed: " + err.Error()) } ciphertext, _ := hex.DecodeString("00112233445566") plaintext, err := aead.Open(nil, zeroNonce[:], ciphertext, nil) if err != nil { <span class="comment">// The RSA ciphertext was badly formed; the decryption will</span> <span class="comment">// fail here because the AES-GCM key will be incorrect.</span> fmt.Fprintf(os.Stderr, "Error decrypting: %s\n", err) return }
fmt.Printf("Plaintext: %s\n", string(plaintext)) </pre> </div> </div>
<h2 id="EncryptOAEP">func <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=11100:11216#L341">EncryptOAEP</a></h2> <pre>func EncryptOAEP(hash <a href="../../hash/index.html">hash</a>.<a href="../../hash/index.html#Hash">Hash</a>, random <a href="../../io/index.html">io</a>.<a href="../../io/index.html#Reader">Reader</a>, pub *<a href="index.html#PublicKey">PublicKey</a>, msg []<a href="../../builtin/index.html#byte">byte</a>, label []<a href="../../builtin/index.html#byte">byte</a>) (out []<a href="../../builtin/index.html#byte">byte</a>, err <a href="../../builtin/index.html#error">error</a>)</pre> <p> EncryptOAEP encrypts the given message with RSA-OAEP. </p> <p> OAEP is parameterised by a hash function that is used as a random oracle. Encryption and decryption of a given message must use the same hash function and sha256.New() is a reasonable choice. </p> <p> The random parameter is used as a source of entropy to ensure that encrypting the same message twice doesn't result in the same ciphertext. </p> <p> The label parameter may contain arbitrary data that will not be encrypted, but which gives important context to the message. For example, if a given public key is used to decrypt two types of messages then distinct label values could be used to ensure that a ciphertext for one purpose cannot be used for another by an attacker. If not required it can be empty. </p> <p> The message must be no longer than the length of the public modulus less twice the hash length plus 2. </p>
<div id="example_EncryptOAEP" class="toggle"> <div class="collapsed"> <p class="exampleHeading toggleButton">▹ <span class="text">Example</span></p> </div> <div class="expanded"> <p class="exampleHeading toggleButton">▾ <span class="text">Example</span></p> <p>Code:</p> <pre class="code"> secretMessage := []byte("send reinforcements, we're going to advance") label := []byte("orders")
<span class="comment">// crypto/rand.Reader is a good source of entropy for randomizing the</span> <span class="comment">// encryption function.</span> rng := rand.Reader
ciphertext, err := EncryptOAEP(sha256.New(), rng, &test2048Key.PublicKey, secretMessage, label) if err != nil { fmt.Fprintf(os.Stderr, "Error from encryption: %s\n", err) return }
<span class="comment">// Since encryption is a randomized function, ciphertext will be</span> <span class="comment">// different each time.</span> fmt.Printf("Ciphertext: %x\n", ciphertext) </pre> </div> </div>
<h2 id="EncryptPKCS1v15">func <a href="http://localhost:6060/src/crypto/rsa/pkcs1v15.go?s=1218:1306#L25">EncryptPKCS1v15</a></h2> <pre>func EncryptPKCS1v15(rand <a href="../../io/index.html">io</a>.<a href="../../io/index.html#Reader">Reader</a>, pub *<a href="index.html#PublicKey">PublicKey</a>, msg []<a href="../../builtin/index.html#byte">byte</a>) (out []<a href="../../builtin/index.html#byte">byte</a>, err <a href="../../builtin/index.html#error">error</a>)</pre> <p> EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5. The message must be no longer than the length of the public modulus minus 11 bytes. </p> <p> The rand parameter is used as a source of entropy to ensure that encrypting the same message twice doesn't result in the same ciphertext. </p> <p> WARNING: use of this function to encrypt plaintexts other than session keys is dangerous. Use RSA OAEP in new protocols. </p>
<h2 id="SignPKCS1v15">func <a href="http://localhost:6060/src/crypto/rsa/pkcs1v15.go?s=8750:8856#L217">SignPKCS1v15</a></h2> <pre>func SignPKCS1v15(rand <a href="../../io/index.html">io</a>.<a href="../../io/index.html#Reader">Reader</a>, priv *<a href="index.html#PrivateKey">PrivateKey</a>, hash <a href="../index.html">crypto</a>.<a href="../index.html#Hash">Hash</a>, hashed []<a href="../../builtin/index.html#byte">byte</a>) (s []<a href="../../builtin/index.html#byte">byte</a>, err <a href="../../builtin/index.html#error">error</a>)</pre> <p> SignPKCS1v15 calculates the signature of hashed using RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5. Note that hashed must be the result of hashing the input message using the given hash function. If hash is zero, hashed is signed directly. This isn't advisable except for interoperability. </p> <p> If rand is not nil then RSA blinding will be used to avoid timing side-channel attacks. </p> <p> This function is deterministic. Thus, if the set of possible messages is small, an attacker may be able to build a map from messages to signatures and identify the signed messages. As ever, signatures provide authenticity, not confidentiality. </p>
<div id="example_SignPKCS1v15" class="toggle"> <div class="collapsed"> <p class="exampleHeading toggleButton">▹ <span class="text">Example</span></p> </div> <div class="expanded"> <p class="exampleHeading toggleButton">▾ <span class="text">Example</span></p> <p>Code:</p> <pre class="code"> <span class="comment">// crypto/rand.Reader is a good source of entropy for blinding the RSA</span> <span class="comment">// operation.</span> rng := rand.Reader
message := []byte("message to be signed")
<span class="comment">// Only small messages can be signed directly; thus the hash of a</span> <span class="comment">// message, rather than the message itself, is signed. This requires</span> <span class="comment">// that the hash function be collision resistant. SHA-256 is the</span> <span class="comment">// least-strong hash function that should be used for this at the time</span> <span class="comment">// of writing (2016).</span> hashed := sha256.Sum256(message)
signature, err := SignPKCS1v15(rng, rsaPrivateKey, crypto.SHA256, hashed[:]) if err != nil { fmt.Fprintf(os.Stderr, "Error from signing: %s\n", err) return }
fmt.Printf("Signature: %x\n", signature) </pre> </div> </div>
<h2 id="SignPSS">func <a href="http://localhost:6060/src/crypto/rsa/pss.go?s=6955:7074#L239">SignPSS</a></h2> <pre>func SignPSS(rand <a href="../../io/index.html">io</a>.<a href="../../io/index.html#Reader">Reader</a>, priv *<a href="index.html#PrivateKey">PrivateKey</a>, hash <a href="../index.html">crypto</a>.<a href="../index.html#Hash">Hash</a>, hashed []<a href="../../builtin/index.html#byte">byte</a>, opts *<a href="index.html#PSSOptions">PSSOptions</a>) (s []<a href="../../builtin/index.html#byte">byte</a>, err <a href="../../builtin/index.html#error">error</a>)</pre> <p> SignPSS calculates the signature of hashed using RSASSA-PSS [1]. Note that hashed must be the result of hashing the input message using the given hash function. The opts argument may be nil, in which case sensible defaults are used. </p>
<h2 id="VerifyPKCS1v15">func <a href="http://localhost:6060/src/crypto/rsa/pkcs1v15.go?s=9744:9836#L254">VerifyPKCS1v15</a></h2> <pre>func VerifyPKCS1v15(pub *<a href="index.html#PublicKey">PublicKey</a>, hash <a href="../index.html">crypto</a>.<a href="../index.html#Hash">Hash</a>, hashed []<a href="../../builtin/index.html#byte">byte</a>, sig []<a href="../../builtin/index.html#byte">byte</a>) (err <a href="../../builtin/index.html#error">error</a>)</pre> <p> VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature. hashed is the result of hashing the input message using the given hash function and sig is the signature. A valid signature is indicated by returning a nil error. If hash is zero then hashed is used directly. This isn't advisable except for interoperability. </p>
<div id="example_VerifyPKCS1v15" class="toggle"> <div class="collapsed"> <p class="exampleHeading toggleButton">▹ <span class="text">Example</span></p> </div> <div class="expanded"> <p class="exampleHeading toggleButton">▾ <span class="text">Example</span></p> <p>Code:</p> <pre class="code"> message := []byte("message to be signed") signature, _ := hex.DecodeString("ad2766728615cc7a746cc553916380ca7bfa4f8983b990913bc69eb0556539a350ff0f8fe65ddfd3ebe91fe1c299c2fac135bc8c61e26be44ee259f2f80c1530")
<span class="comment">// Only small messages can be signed directly; thus the hash of a</span> <span class="comment">// message, rather than the message itself, is signed. This requires</span> <span class="comment">// that the hash function be collision resistant. SHA-256 is the</span> <span class="comment">// least-strong hash function that should be used for this at the time</span> <span class="comment">// of writing (2016).</span> hashed := sha256.Sum256(message)
err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA256, hashed[:], signature) if err != nil { fmt.Fprintf(os.Stderr, "Error from verification: %s\n", err) return }
<span class="comment">// signature is a valid signature of message from the public key.</span> </pre> </div> </div>
<h2 id="VerifyPSS">func <a href="http://localhost:6060/src/crypto/rsa/pss.go?s=7774:7873#L264">VerifyPSS</a></h2> <pre>func VerifyPSS(pub *<a href="index.html#PublicKey">PublicKey</a>, hash <a href="../index.html">crypto</a>.<a href="../index.html#Hash">Hash</a>, hashed []<a href="../../builtin/index.html#byte">byte</a>, sig []<a href="../../builtin/index.html#byte">byte</a>, opts *<a href="index.html#PSSOptions">PSSOptions</a>) <a href="../../builtin/index.html#error">error</a></pre> <p> VerifyPSS verifies a PSS signature. hashed is the result of hashing the input message using the given hash function and sig is the signature. A valid signature is indicated by returning a nil error. The opts argument may be nil, in which case sensible defaults are used. </p>
<h2 id="CRTValue">type <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=4921:5092#L138">CRTValue</a></h2> <pre>type CRTValue struct { Exp *<a href="../../math/big/index.html">big</a>.<a href="../../math/big/index.html#Int">Int</a> <span class="comment">// D mod (prime-1).</span> Coeff *<a href="../../math/big/index.html">big</a>.<a href="../../math/big/index.html#Int">Int</a> <span class="comment">// R·Coeff ≡ 1 mod Prime.</span> R *<a href="../../math/big/index.html">big</a>.<a href="../../math/big/index.html#Int">Int</a> <span class="comment">// product of primes prior to this (inc p and q).</span> }</pre> <p> CRTValue contains the precomputed Chinese remainder theorem values. </p>
<h2 id="OAEPOptions">type <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=1463:1692#L34">OAEPOptions</a></h2> <pre>type OAEPOptions struct { <span class="comment">// Hash is the hash function that will be used when generating the mask.</span> Hash <a href="../index.html">crypto</a>.<a href="../index.html#Hash">Hash</a> <span class="comment">// Label is an arbitrary byte string that must be equal to the value</span> <span class="comment">// used when encrypting.</span> Label []<a href="../../builtin/index.html#byte">byte</a> }</pre> <p> OAEPOptions is an interface for passing options to OAEP decryption using the crypto.Decrypter interface. </p>
<h2 id="PKCS1v15DecryptOptions">type <a href="http://localhost:6060/src/crypto/rsa/pkcs1v15.go?s=433:756#L9">PKCS1v15DecryptOptions</a></h2> <pre>type PKCS1v15DecryptOptions struct { <span class="comment">// SessionKeyLen is the length of the session key that is being</span> <span class="comment">// decrypted. If not zero, then a padding error during decryption will</span> <span class="comment">// cause a random plaintext of this length to be returned rather than</span> <span class="comment">// an error. These alternatives happen in constant time.</span> SessionKeyLen <a href="../../builtin/index.html#int">int</a> }</pre> <p> PKCS1v15DecrypterOpts is for passing options to PKCS#1 v1.5 decryption using the crypto.Decrypter interface. </p>
<h2 id="PSSOptions">type <a href="http://localhost:6060/src/crypto/rsa/pss.go?s=6035:6429#L210">PSSOptions</a></h2> <pre>type PSSOptions struct { <span class="comment">// SaltLength controls the length of the salt used in the PSS</span> <span class="comment">// signature. It can either be a number of bytes, or one of the special</span> <span class="comment">// PSSSaltLength constants.</span> SaltLength <a href="../../builtin/index.html#int">int</a>
<span class="comment">// Hash, if not zero, overrides the hash function passed to SignPSS.</span> <span class="comment">// This is the only way to specify the hash function when using the</span> <span class="comment">// crypto.Signer interface.</span> Hash <a href="../index.html">crypto</a>.<a href="../index.html#Hash">Hash</a> }</pre> <p> PSSOptions contains options for creating and verifying PSS signatures. </p>
<h3 id="PSSOptions.HashFunc">func (*PSSOptions) <a href="http://localhost:6060/src/crypto/rsa/pss.go?s=6516:6565#L224">HashFunc</a></h3> <pre>func (pssOpts *<a href="index.html#PSSOptions">PSSOptions</a>) HashFunc() <a href="../index.html">crypto</a>.<a href="../index.html#Hash">Hash</a></pre> <p> HashFunc returns pssOpts.Hash so that PSSOptions implements crypto.SignerOpts. </p>
<h2 id="PrecomputedValues">type <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=4483:4848#L126">PrecomputedValues</a></h2> <pre>type PrecomputedValues struct { Dp, Dq *<a href="../../math/big/index.html">big</a>.<a href="../../math/big/index.html#Int">Int</a> <span class="comment">// D mod (P-1) (or mod Q-1)</span> Qinv *<a href="../../math/big/index.html">big</a>.<a href="../../math/big/index.html#Int">Int</a> <span class="comment">// Q^-1 mod P</span>
<span class="comment">// CRTValues is used for the 3rd and subsequent primes. Due to a</span> <span class="comment">// historical accident, the CRT for the first two primes is handled</span> <span class="comment">// differently in PKCS#1 and interoperability is sufficiently</span> <span class="comment">// important that we mirror this.</span> CRTValues []<a href="index.html#CRTValue">CRTValue</a> }</pre>
<h2 id="PrivateKey">type <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=2444:2742#L67">PrivateKey</a></h2> <pre>type PrivateKey struct { <a href="index.html#PublicKey">PublicKey</a> <span class="comment">// public part.</span> D *<a href="../../math/big/index.html">big</a>.<a href="../../math/big/index.html#Int">Int</a> <span class="comment">// private exponent</span> Primes []*<a href="../../math/big/index.html">big</a>.<a href="../../math/big/index.html#Int">Int</a> <span class="comment">// prime factors of N, has >= 2 elements.</span>
<span class="comment">// Precomputed contains precomputed values that speed up private</span> <span class="comment">// operations, if available.</span> Precomputed <a href="index.html#PrecomputedValues">PrecomputedValues</a> }</pre> <p> A PrivateKey represents an RSA key </p>
<h3 id="GenerateKey">func <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=6490:6564#L184">GenerateKey</a></h3> <pre>func GenerateKey(random <a href="../../io/index.html">io</a>.<a href="../../io/index.html#Reader">Reader</a>, bits <a href="../../builtin/index.html#int">int</a>) (priv *<a href="index.html#PrivateKey">PrivateKey</a>, err <a href="../../builtin/index.html#error">error</a>)</pre> <p> GenerateKey generates an RSA keypair of the given bit size using the random source random (for example, crypto/rand.Reader). </p>
<h3 id="GenerateMultiPrimeKey">func <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=7206:7303#L199">GenerateMultiPrimeKey</a></h3> <pre>func GenerateMultiPrimeKey(random <a href="../../io/index.html">io</a>.<a href="../../io/index.html#Reader">Reader</a>, nprimes <a href="../../builtin/index.html#int">int</a>, bits <a href="../../builtin/index.html#int">int</a>) (priv *<a href="index.html#PrivateKey">PrivateKey</a>, err <a href="../../builtin/index.html#error">error</a>)</pre> <p> GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit size and the given random source, as suggested in [1]. Although the public keys are compatible (actually, indistinguishable) from the 2-prime case, the private keys are not. Thus it may not be possible to export multi-prime private keys in certain formats or to subsequently import them into other code. </p> <p> Table 1 in [2] suggests maximum numbers of primes for a given size. </p> <p> [1] US patent 4405829 (1972, expired) [2] <a href="http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf">http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf</a> </p>
<h3 id="PrivateKey.Decrypt">func (*PrivateKey) <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=3689:3812#L98">Decrypt</a></h3> <pre>func (priv *<a href="index.html#PrivateKey">PrivateKey</a>) Decrypt(rand <a href="../../io/index.html">io</a>.<a href="../../io/index.html#Reader">Reader</a>, ciphertext []<a href="../../builtin/index.html#byte">byte</a>, opts <a href="../index.html">crypto</a>.<a href="../index.html#DecrypterOpts">DecrypterOpts</a>) (plaintext []<a href="../../builtin/index.html#byte">byte</a>, err <a href="../../builtin/index.html#error">error</a>)</pre> <p> Decrypt decrypts ciphertext with priv. If opts is nil or of type *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise opts must have type *OAEPOptions and OAEP decryption is done. </p>
<h3 id="PrivateKey.Precompute">func (*PrivateKey) <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=13148:13184#L421">Precompute</a></h3> <pre>func (priv *<a href="index.html#PrivateKey">PrivateKey</a>) Precompute()</pre> <p> Precompute performs some calculations that speed up private key operations in the future. </p>
<h3 id="PrivateKey.Public">func (*PrivateKey) <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=2800:2849#L78">Public</a></h3> <pre>func (priv *<a href="index.html#PrivateKey">PrivateKey</a>) Public() <a href="../index.html">crypto</a>.<a href="../index.html#PublicKey">PublicKey</a></pre> <p> Public returns the public key corresponding to priv. </p>
<h3 id="PrivateKey.Sign">func (*PrivateKey) <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=3215:3311#L87">Sign</a></h3> <pre>func (priv *<a href="index.html#PrivateKey">PrivateKey</a>) Sign(rand <a href="../../io/index.html">io</a>.<a href="../../io/index.html#Reader">Reader</a>, msg []<a href="../../builtin/index.html#byte">byte</a>, opts <a href="../index.html">crypto</a>.<a href="../index.html#SignerOpts">SignerOpts</a>) ([]<a href="../../builtin/index.html#byte">byte</a>, <a href="../../builtin/index.html#error">error</a>)</pre> <p> Sign signs msg with priv, reading randomness from rand. If opts is a *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will be used. This method is intended to support keys where the private part is kept in, for example, a hardware module. Common uses should use the Sign* functions in this package. </p>
<h3 id="PrivateKey.Validate">func (*PrivateKey) <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=5225:5265#L146">Validate</a></h3> <pre>func (priv *<a href="index.html#PrivateKey">PrivateKey</a>) Validate() <a href="../../builtin/index.html#error">error</a></pre> <p> Validate performs basic sanity checks on the key. It returns nil if the key is valid, or else an error describing a problem. </p>
<h2 id="PublicKey">type <a href="http://localhost:6060/src/crypto/rsa/rsa.go?s=1271:1350#L27">PublicKey</a></h2> <pre>type PublicKey struct { N *<a href="../../math/big/index.html">big</a>.<a href="../../math/big/index.html#Int">Int</a> <span class="comment">// modulus</span> E <a href="../../builtin/index.html#int">int</a> <span class="comment">// public exponent</span> }</pre> <p> A PublicKey represents the public part of an RSA key. </p>
<div id="footer"> Build version go1.6.<br> Except as <a href="https://developers.google.com/site-policies#restrictions">noted</a>, the content of this page is licensed under the Creative Commons Attribution 3.0 License, and code is licensed under a <a href="http://localhost:6060/LICENSE">BSD license</a>.<br> <a href="http://localhost:6060/doc/tos.html">Terms of Service</a> | <a href="http://www.google.com/intl/en/policies/privacy/">Privacy Policy</a> </div>
</div><!-- .container --> </div><!-- #page -->
<!-- TODO(adonovan): load these from <head> using "defer" attribute? --> <script type="text/javascript" src="../../../lib/godoc/jquery.js"></script> <script type="text/javascript" src="../../../lib/godoc/jquery.treeview.js"></script> <script type="text/javascript" src="../../../lib/godoc/jquery.treeview.edit.js"></script>
<script type="text/javascript" src="../../../lib/godoc/godocs.js"></script>
</body> </html>
|